
Merry: Web-based Code Clone Detection System using Machine Learning

1

MERRY: WEB-BASED CODE CLONE DETECTION SYSTEM

USING MACHINE LEARNING

เมอร์รีÉ ระบบตรวจจบัโคด้โคลนผา่นเวบ็โดยใชก้ารเรียนรู้ของเครืÉอง

BY
MR. VARA ARAMMONGKOLVICHAI 5988060
MR. WEEKIT AUSAVASERENONT 5988067
MISS. WANNAPORN VICHAISRI 5988266

ADVISOR
DR. CHAIYONG RAGKHITWETSAGUL

CO-ADVISOR
DR. MORAKOT CHOETKIERTIKUL

A Senior Project Submitted in Partial Fullfillment of
the Requirement for

THE DEGREE OF BACHELOR OF SCIENCE
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Faculty of Information and Communication Technology
Mahidol University

2019

ACKNOWLEDGEMENTS

We would like to give gratitude to everyone who has been involved with the de-

velopment and the success of this project and thank them for their assistance throughout

the entire period of this project. Dr. Chaiyong Ragkhitwetsagul, our senior project advi-

sor, Dr. Morakot Choetkiertikul, our Co-advisor. Wewould also like to thank the Faculty

of Information and Communication Technology, instructors, staff, members for the sup-

port given to us. Lastly, we would also like to thank our families for giving us support

while making this project. The project would not have been this successful without those

mentioned and their support that was offered.

Mr. Vara Arammongkolvichai

Mr. Weekit Ausavaserenont

Miss. Wannaporn Vichaisri

Faculty of ICT, Mahidol Univ. Senior Project / iii

MERRY: WEB-BASED CODE CLONE DETECTION SYSTEM USING MACHINE
LEARNING

MR. VARA ARAMMONGKOLVICHAI 5988060 ITCS/B
MR. WEEKIT AUSAVASERENONT 5988067 ITCS/B
MISS. WANNAPORN VICHAISRI 5988266 ITCS/B

B.Sc.(INFORMATION AND COMMUNICATION TECHNOLOGY)

PROJECT ADVISOR: DR. CHAIYONG RAGKHITWETSAGUL

ABSTRACT

Code clones (similar fragments of code) generally occur in software project due

to intentional copying and pasting of code or unintentional independently developed

code. Code clones can be found by using automated tools called code clone detection

tools. However, the existing tools still face challenges when detecting clones with sev-

eral modifications. This is partially because the existing techniques, for instance textual

approach, lexical approach, syntactic approach, and semantic approach, still rely on rigid

code matching techniques or only compare structure of the code.

To avoid using rigid pattern matching rules of the traditional clones detection

techniques, we can use machine learning, that detects clones based on existing cloned

data, to detect clones instead. We investigate the effectiveness of using machine learn-

ing as a code clone detection techniques in this project. Moreover,the existing clones

detection tools mostly have to run via command line. Thus, this project proposes a clone

detection system that runs as a web application to provide a better user experience.

We build the web-based clone detection tool, called Merry, by using 4 machine

learning models including decision tree (REPTree), random forest, support vector ma-

chine (SVM), and Support VectorMachine using SequentialMinimalOptimization (SVM

using SMO). The evaluation of our clone detection performance using the BigCloneBench,

which is the largest clone ground truth database, shows that our tool has high precision

and recall. In addition, the user study of Merry web application also demonstrates that

the tool is easier to use and friendlier than the well-known command line based tool,

Simian.
KEYWORDS: SOFTWARE ENGINEERING, CODE CLONE DETECTION, MA-

CHINE LEARNING

71 P.

Faculty of ICT, Mahidol Univ. Senior Project / iv

เมอร์รีÉ ระบบตรวจจบัโคด้โคลนผา่นเวบ็โดยใชก้ารเรียนรู้ของเครืÉอง

นาย วรา อร่ามมงคลวชิยั 5988060 ITCS/B

นาย วกิีจ อศัวเสรีนนท์ 5988067 ITCS/B

นางสาว วรรณพร วชิยัศรี 5988266 ITCS/B

วท.บ. (เทคโนโลยสีารสนเทศและการสืÉอสาร)

อาจารยที์Éปรึกษาโครงการ: ดร. ชยัยงค์ รักขิตเวชสกลุ

บทคดัยอ่

โคด้โคลน (ส่วนของโคด้ทีÉ เหมือนกนั) มกัจะเกิดขึÊนในโครงการซอฟตแ์วร์ เนืÉองจากการ
ตัÊงใจคดัลอกโคด้หรือการพฒันาโคด้อยา่งอิสระโดยไม่ได้ตัÊงใจ โคด้โคลนสามารถพบได้โดยใช้
เครืÉองมืออตัโนมติัทีÉเรียกวา่เครืÉองมือตรวจจบัโคลน อยา่งไรกต็าม เครืÉองมือตรวจจบัโคลนในปัจจุบนั
ยงัคงประสบปัญหาเมืÉอตอ้งจรวจจบัโคลนทีÉมีการแกไ้ขจาํนวนมาก เหตุผลบางส่วนเนืÉองจากเทคนิค
ทีÉ มีอยู่ เช่น วธีิการตรวจจบัแบบขอ้ความ, วธีิการตรวจจบัแบบโดยใช้คาํ, วธีิการตรวจจบัโดยใช้
โครงสร้างภาษา และวธีิการการตรวจจบัเชิงความหมาย ยงัคงพึÉงพาเทคนิคการจบัคู่โคด้ทีÉตายตวั
หรือเพียงแค่เปรียบเทียบโครงสร้างของโคด้เท่านัÊน

เพืÉอหลีกเลีÉยงวธีิการแบบดัÊงเดิมทีÉมีการจบัคู่โคด้แบบมีรูปแบบตายตวัเพืÉอตรวจบัโคลน พวก
เราเลือกใช้การเรียนรู้ของเครืÉองเพืÉอตรวจจบัโคลน เนืÉองจากวธีิการนีÊ ใช้ขอ้มูลของโคลนทีÉมีอยู่เพืÉอ
สร้างเครืÉองมือตรวจจบัโคลนแทนทีÉจะใชรู้ปแบบตายตวัดงักล่าวมาขา้งตน้ ดงันัÊนในโครงการนีÊพวก
เราศึกษาประสิทธิผลของการใช้การเรียนรู้ของเครืÉองเพืÉอตรวจจบัโคลน นอกจากนีÊ เครืÉองมือการ
ตรวจจบัโคลนทีÉมีอยูใ่นปัจจุบนั ส่วนมากตอ้งรันโดยใชบ้รรทดัคาํสัÉง ดงันัÊน โปรเจคนีÊยงัเสนอระบบ
ตรวจจบัโคลนซึÉงรันบนเวบ็แอปพลิเคชัÉน เพืÉอมอบประสบการณ์การใชง้านทีÉดีขึÊน

พวกเราสร้างเครืÉองมือตรวจจบัโคลนใชง้านผา่นเวบ็ทีÉมีชืÉอวา่ เมอร์รีÉ โดยใชโ้มเดลการเรียน
รู้ของเครืÉอง 4 แบบ ประกอบดว้ย แผนภาพตน้ไม,้ แรนดอ้มฟอเรส, ซพัพอร์ตเวกเตอร์แมชชีน และ
ซพัพอร์ตเวกเตอร์แมชชีนร่วมกบัซีเควนเชีÉยลมินิมอลออปติไมซ์เซชัÉน การประเมินประสิทธิภาพ
ของเครืÉองมือตรวจจบัโคลน พวกเราใช้ บิÊกโคลนเบน๊ซ์ ซึÉงเป็นฐานขอ้มูลโคลนทีÉเชืÉอถือไดที้Éสุด ผล
จากการประเมินประสิทธิภาพแสดงให้เห็นวา่เครืÉองมือของพวกเรามีความแม่นยาํสูง นอกจากนีÊ การ
ศึกษาผูใ้ชข้องเมอร์รีÉ เวบ็แอปพลิเคชัÉนยงัแสดงใหเ้ห็นวา่เครืÉองมือนีÊ ใชง้านง่ายและเป็นมิตรกวา่เครืÉอง
มือตรวจจบัโคลนทีÉรู้จกักนัดีชืÉอ ซิเมียน ทีÉเป็นเครืÉองมือแบบบรรทดัคาํ
71 หนา้

v

CONTENTS

Page

ACKNOWLEDGMENTS ii

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF LISTINGS xi

1 INTRODUCTION ... 1

1.1 MOTIVATION... 1

1.2 PROBLEM STATEMENTS .. 2

1.3 OBJECTIVES OF PROJECT .. 2

1.4 SCOPE OF THE PROJECT .. 3

1.5 EXPECTED BENEFITS .. 3

1.6 ORGANIZATION OF THE DOCUMENT................................... 3

2 BACKGROUND ... 5

2.1 FUNDAMENTALS .. 5

2.1.1 CODE CLONES .. 5

2.1.2 MACHINE LEARNING .. 9

2.1.3 WEB APPLICATION.. 10

2.2 TOOLS AND TECHNIQUES ... 10

2.2.1 GITHUB .. 10

2.2.2 GITHUB API .. 11

2.2.3 NODE.JS.. 11

2.2.4 MONGODB.. 12

2.2.5 WEKA ... 12

2.2.6 JAVA PARSER .. 12

2.2.7 JAVA TOKENIZER .. 12

2.2.8 CODE2VEC.. 13

vi

2.3 LITERATURE REVIEW.. 15

2.3.1 SYNTACTIC CODE CLONE DETECTION TECHNIQUE .. 15

2.3.2 USINGMACHINELEARNINGTO IMPROVEEXISTING

CODE CLONE DETECTION TECHNIQUE 17

2.3.3 USING MACHINE LEARNING FOR CODE CLONE DE-

TECTION... 18

2.3.4 DATASET FOR EVALUATING CODE CLONE DETEC-

TION TECHNIQUES.. 19

2.4 COMPARISON TO RELATED WORK 20

3 ANALYSIS AND DESIGN ... 22

3.1 SYSTEM ARCHITECTURE OVERVIEW 22

3.2 USE CASE ANALYSIS ... 23

3.3 STRUCTURE CHART .. 24

3.4 SYSTEM ANALYSIS ... 26

3.4.1 CONTEXT DIAGRAM ... 26

3.4.2 DATA FLOW DIAGRAM LEVEL 1 26

3.4.3 DATA FLOW DIAGRAM LEVEL 2 26

4 IMPLEMENTATION .. 32

4.1 BUILDING ML CODE CLONE DETECTION ENGINE................ 32

4.1.1 DATA COLLECTION AND PREPARATION 32

4.1.2 CODE METRICS EXTRACTION 36

4.1.3 ML MODEL SELECTION... 37

4.2 USING TRAINED ML MODELS FOR CLONE DETECTION........ 40

4.3 BUILDING A WEB APPLICATION .. 41

4.3.1 FRONT-END .. 41

4.3.2 BACK-END.. 42

5 EVALUATION RESULTS .. 49

5.1 EVALUATION OF MERRY CLONE DETECTION ENGINE US-

ING BCB.. 49

5.1.1 METHODOLOGY ... 49

5.1.2 ERROR MEASURES.. 49

vii

5.1.3 EVALUATION RESULTS.. 51

5.1.4 DISCUSSION ... 54

5.2 EVALUATION OF MERRY CLONE DETECTION ENGINE ON

REAL SOFTWARE PROJECTS .. 54

5.2.1 METHODOLOGY ... 54

5.2.2 EVALUATION RESULT ... 54

5.3 EVALUATION OF MERRY WEB APPLICATION BY USERS....... 57

5.3.1 METHODOLOGY ... 57

5.3.2 EVALUATION RESULTS.. 58

6 CONCLUSIONS ... 63

6.1 CONCLUSION.. 63

6.2 PROBLEMS AND LIMITATIONS .. 63

6.3 FUTURE WORK ... 64

REFERENCES 65

BIOGRAPHIES 70

APPENDIX A 71

viii

LIST OF TABLES

Page

Table 2.1: Comparison with Existing Tools .. 21

Table 4.1: BigCloneBench Data Summary ... 35

Table 4.2: Amount of Training Data ... 35

Table 4.3: Amount of Testing Data... 35

Table 4.4: Syntactic Code Metrics.. 37

Table 5.1: Merry execution parameters ... 49

Table 5.2: Experimental result on sampled BCB dataset 52

Table 5.3: Merry’s result on real software project .. 55

ix

LIST OF FIGURES

Page

Figure 2.1: Set of AST path of finding method ... 14

Figure 2.2: Generalized Suffix Tree (GST) .. 16

Figure 2.3: Overview Diagram of Oreo’s Clones Detection Pipeline.................. 17

Figure 3.1: System Architecture .. 22

Figure 3.2: Use case Diagram ... 23

Figure 3.3: Structure Chart ... 25

Figure 3.4: Context Diagram .. 28

Figure 3.5: Data Flow Diagram Level 1 .. 29

Figure 3.6: Prepare Data Process ... 29

Figure 3.7: Train Model Process .. 30

Figure 3.8: Detect Clones Process.. 31

Figure 4.1: Training process ... 32

Figure 4.2: BigCloneBench Structure ... 34

Figure 4.3: code2Vec Process ... 37

Figure 4.4: An Example of a Decision Tree [1] ... 38

Figure 4.5: Random Forest Simplified .. 39

Figure 4.6: How SVM classify the data [2] .. 40

Figure 4.7: Detection process.. 41

Figure 4.8: Structure of the two collections in the MongoDB database 45

Figure 4.9: Home page .. 45

Figure 4.10: Login page .. 46

Figure 4.11: Repo page ... 46

Figure 4.12: Result page.. 47

Figure 4.13: History page .. 48

Figure 4.14: Setting page... 48

Figure 5.1: Terminology of the confusion matrix [3] 50

Figure 5.2: Precision and Recall measurement [3] ... 51

x

Figure 5.3: Detection process.. 52

Figure 5.4: Detection process.. 53

Figure 5.5: Detection process.. 53

Figure 5.6: Question 1... 59

Figure 5.7: Question 2... 60

Figure 5.8: Question 3... 60

Figure 5.9: Question 4... 61

Figure 5.10: Question 5... 61

Figure 5.11: Question 6... 62

xi

LIST OF LISTINGS

Page

Listing 1.1: Java implementation of bubble sort algorithm............................... 1

Listing 2.1: Java binary search source code.. 15

Listing 4.1: Connection with GitHub .. 42

Listing 4.2: Connection with GitHub .. 42

Listing 4.3: Write data to MongoDB .. 43

Listing 4.4: Read data from MongoDB ... 44

Listing 5.1: Example of challenge true clone .. 55

Listing 5.2: Example of false clone .. 56

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 1

CHAPTER 1
INTRODUCTION

1.1 Motivation

Code clones are similar segments of code. Most software systems and various

open-source software contain duplicate parts of code or code clones that are generated

by copying and pasting the same source code, which is the normal behavior of software

developers. Roy et al.’s research [4] shows that about 7% to 23% of all over software

system consists of clone fragments. Code clone detection is a trendy topic in the software

engineering field. It is an approach to detect clones in software. These duplicated parts of

code were a cause of code redundancy and several bugs when developers incompletely

update all the duplicated code segments when they are making changes to the source

code.

Presently, several techniques can be used to detect code clones, which are text-

based, token-based, tree-based, and graph-based; however, the accuracy results are still

low on a lot of modification. Machine Learning technique is a new technology that can

predict the outcome by learning from past data. We are interested in investigating if it

may enhance the performance of existing code clone detection tools.

Listing 1.1: Java implementation of bubble sort algorithm

public void bubblesort(String filenames[]){
for(int i = filenames.length-1; i > 0 ; i--){

for(int j = 0 ; j < i ; j++){
String temp;
if(filename[j].compareTo(filenames[j + 1]) > 0){
temp = filenames[j];
filenames[j] = filenames[j + 1];
filenames[j+1] = temp;
}

}
}

}

Arammongkolvichai, Ausavaserenont, Vichaisri Introduction / 2

private voidsortByName() {
int i , j ;
String v;
for(i = 0; i < count; i++) {

ChannelItem ch = chans[i];
v = ch.getTag() ;
j = i ;
while((j > 0) && (collator .compare(chans[−j1].getTag() , v) > 0)) {

chans[j] = chans[−j1];
0−−j;

}
chans[j] = ch;
}

}

1.2 Problem Statements

This project tackles the following problems in code clone detection:

1. The most important and challenging task in code clone detection development is

to make a tool that detect clones with high precision and high recall. The existing

techniques and tools are still facing challenges when detecting clones with several

modifications (e.g., added/deleted/modified statements).

2. Existing clone detection tools are difficult to use for naive programmers because

they are mostly created as a command-line program with poor user interface and

limited visualization and reporting techniques.

1.3 Objectives of project

The objectives of the project are as follows:

1. To create a code clone detection tool using machine learning techniques and study

its effectiveness.

2. To enhance the user experience of code clone detection tools as follows:

(1) providing code clone detection as a web application to users

(2) providing visualization of clone results

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 3

1.4 Scope of the project

The project falls under the following scope:

• The system must support connection to GitHub account and able to clone a repos-

itory.

• The system should run as a web application.

• The system should be able to support Java.

• The system should be able to keep track of system log.

1.5 Expected Benefits

This project provides the following expected benefits:

• Providing a tool to identify code clone in software systems.

• Helping software developers to be aware of redundancy source code in their soft-

ware system.

• Performing code clone detection easier and more convenient.

• Decreasing false clones in clone detection result.

1.6 Organization of the document

The document consists of 6 parts that are Introduction (Chapter 1), Background

(Chapter 2), Analysis and Design (Chapter 3), Implementation (Chapter 4), Evaluation

Results (Chapter 5), and Conclusion (Chapter 6). The Introduction chapter includes

motivation, problem statement, the objective of the project, scope of the project, ex-

pected benefits, and organization of the document. The Background chapter describes

the overview of the project, which has fundamental and related work. Analysis and

design chapter contains work procedures, which are methodology, system architecture,

structure chart, and system analysis. Implementation includes building anML code clone

detection engine, using trained ML models for clone detection, and building a web ap-

plication. Evaluation Results consists of the evaluation of Merry clone detection engine

Arammongkolvichai, Ausavaserenont, Vichaisri Introduction / 4

using BigCloneBench, evaluation of Merry clone detection engine on a real software

project, and evaluation of Merry web application by users. The last chapter is conclu-

sion that includes conclusion, problem and limitations, and future work.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 5

CHAPTER 2
BACKGROUND

2.1 Fundamentals

The fundamental section is to provide the basic knowledge of the project includ-

ing code clones, an overview of clone detection techniques, machine learning, and web

application.

2.1.1 Code Clones

Roy et al. [4] have defined the word code clone as a fragment of code that appear

several times in software during software development. Code clones are not only the

copy-and-paste segments of code but they also contain minor modifications of code.

Another definition of code clones was given by Bellon et al. [5], Clone pair is two similar

code fragments based on the definition of similarity. The research shows that about 7% to

23% of all over software system consists of clone fragments. However, the cloning code

in a software project can be harmful for several reasons. For example, if a code fragment

has bugs and clone to other places of software, Debugging will consume developer time.

Copy of code fragments can increase workload when enhancing or adapting. Detecting

code leading to multiple benefits between developing software such as detect plagiarism,

quality analysis, virus detection, etc. In the study of clone detection, Roy et al [4]. give

a definition to use in this study as follows:

1. Clone Fragment or CF is a sequence of code line that includes with or without

comments.

2. Code clone is two code fragment or CF1, CF2. If code fragment number one

is a clone of code fragment number two, we can call them a clone pair and can

represent in (CF1, CF2). Furthermore, if many code fragments are similar, we can

call it clone class or clone group.

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 6

Clone Types

Clones can be categorized into 4 types according to their syntactic and semantic

similarity. For type 1 to type 3 is the syntactic-based and type 4 is functionality-based.

• Type 1: Code fragments that are identical except for layout, white space, and com-

ments.

• Type 2: Code fragments that are identical except for literals, identifiers, data types,

layout, white space, and comments.

• Types 3: Similar clone fragments that contain added, changed, and removed some

statement.

• Type 4: Code fragments that have the same computation but different in syntax or

algorithm.

Code Clone Detection Process

There are 3 fundamental steps of all existing clone detection tools and techniques

in performing clone detection process.

1. Pre-processing

This is a preparation step for raw codes to detect clone easily. The preparation contains

three phases. Firstly, removing uninteresting parts use to filter raw codes into a single

language that can detect a clone. For example, some of JAVA code has SQL embedded.

Determining source units is the next phases by separating into disjoint fragments. The

last one is to determine comparison units/granularity for massive source units, so we

need to separate it more to make it even smaller.

2. Transformation

Transformation earn the fragment of code that call units of comparison. Then, transform-

ing the unit of comparison to appropriate inter-mediation for comparison. This method

to convert in reverse engineering community often called extraction. However, some

code clone detection tools support the process called normalization, which is the process

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 7

that will make source code simple normalize form such as remove white space and com-

ment, involving source code transformation. By include normalization step, it could be

done before or after extraction.

2.1 Extraction

Extraction is the method that transforms source code to be suitable for comparison algo-

rithm. Extraction has multiple methods depend on tools.

• Tokenization: Tokenization is the process that changes the line of source code

into token form based on lexical rule of programming language. It also removes

whitespace between these processes.

• Parsing: Parsing is the process that transforms a line of source code into a tree

which is call parse tree or abstract syntax tree (AST). Then, comparison algorithms

with look for similar subtrees to mark as clones.

• Control and data flow analysis: This is the process that will generate program

dependence graphs or PDGs from source code. In PDGs, it has a node that repre-

sents the statements and conditions of the program and edge represent controls and

data dependencies. Subgraphs show clone when getting through the comparison

algorithms.

2.2 Normalization

Normalization is an optional step to make source code in a suitable form for detecting

clones.

• Removal of white space: This step is to remove white space from code.

• Removal of comments: This step is to remove or ignore all comments.

• Normalizing identifiers: This step is to replace difference identifier in to single

identifier. It helps to detect Type2 clones.

• Pretty-printing of source code: This step is to make the source code into a standard

from which is removes difference in spacing and layout.

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 8

• Structural transformation: This step makes the source code minor modify but still

has the same syntax such as remove static in the C programming language.

2.3 Match detection

When receiving the transformed code, it will go through the comparison algorithm to

find matches. Popular matching algorithms for clone detection are suffix-trees, dynamic

pattern matching (DPM), and Hash-value comparison.

2.4 Formatting

After the match detection is done, the result of matching algorithm will compare with

the original source file.

2.5 Post-processing / Filtering

This is a process to rank or filter clones which has two popular methods.

• Manual analysis: This is a method that filter clone by human expert. They will

focus on false positive clones.

• Automated heuristics: This is a method that will automate rank or filter from char-

acteristic of clones.

2.6 Aggregations

This process will group clone group into clone class to reduce resources.

Overview of Clone Detection Techniques and Tools

Based on analysis applied on the source code, techniques can be classified into

four main categories which is textual, lexical, syntactic, and semantic.

1. Textual approaches or text-based techniques are clone detection techniques that

require little or no transformation/normalization of code before directly comparing

them together. Examples of a technique for text-based detection include finger-

prints, scatter plots or dot pot, etc. NICAD [6, 7], Simian [8] and Marcus [9] are

the example of text-based techniques.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 9

2. Lexical approaches or token-based techniques is the technique that transforms

the source code into tokens using compiler-style lexical analysis. Then, scanning

tokens for group same token to be clones. This technique mostly found type1,

type2, and type3 in clone detection. This is the example of token-based techniques

including CP-Miner [10], iClones [11], and CCFinder [12, 13].

3. Syntactic approaches focuses on parse tree or abstract syntax trees (ASTs) which

the process can use tree matching method or structural metrics to find clone.

• Tree matching approaches or tree-based techniques: It using tree character-

istic to find clones such characteristic as subtrees, Variable names, literal

values and other leaves (tokens).

• Metric-based approaches: This approaches use metrics applied to code frag-

ments and vectors of metrics rather than code or ASTs directly.

The example of tools that use this techniques are CloneDr [14], SimScan [15], and

Deckard [16].

4. Semantic approaches use a program dependency graph (PDG) to visualize the

control flow and data dependencies of the source code in the project. By using

this static programming analysis makes semantic approaches more accurate than

simple syntactic similarity. Davey [17] is the tool that using semantic approaches.

5. Hybrid approaches This is a combination between syntactic and semantic ap-

proaches. Duplix [18], Gabel [19], and Komondoor [20] are the example of hybrid

tools.

2.1.2 Machine Learning

Machine Learning or ML is a tool to improve the progress of data analysis. It

has self-learning ability without entering the commands of the programmer. ML demon-

strates that a computer can only learn from data to produce accurate results. They are

generally divided into 2 categories, which are supervised and unsupervised.

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 10

Supervised learning uses a data set that the labels are already known. It is cate-

gorized into (1) regression, which predicts continuous results and (2) classification prob-

lems that predict discrete results. Decision tree, random forest, and support vector ma-

chine are the example of a supervised model.

On the other side, unsupervised learning requires only a data set without any

labels including (1) clustering, which distributes data into smaller groups by their simi-

larity and divergence and (2) association which is to discover the rules and relationship

of the data. An example of unsupervised learning is k-means. In our project, we will

use the supervised Machine Learning model because we want to classify clones into true

clones and false clones.

2.1.3 Web Application

Aweb application is one kind of online service. It is a system that provides a user

interface through a web browser [21]. Typically, the architecture of web application is a

client-server system including some remarkable distinctions. Deployment is a significant

advantage of a web application. Most deployments for a web application is about setting

up the components on the network on a server-side. On the client-side, no additional

software or configuration is needed [22].

Using the web application, users do not need to set an environment to execute a

code clone detection tool. On the other hand, traditional clone detection tools are com-

plicated to use because they have to run by a command in the command line, so the user

has to know the command and tool’s parameters to execute the tool. Moreover, the re-

sult that difficult to understand in traditional command-line based tools can be visualized

into graphic in a web application to understand the result more comfortable. Therefore,

improving user performance is one of the reasons that web application involves our code

clone detection project.

2.2 Tools and Techniques

This section explains several tools and techniques which are applied into the

project.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 11

2.2.1 GitHub

Git is version control that keeps file changes in the project. GitHub is the largest

code archives in the form of Git website and developers community. There are more than

one hundred million repositories and forty million developers1 in GitHub [23] Around

the world, GitHub are often used to store open source projects, for example, Bootstrap,

Node.js, Angular etc. Several projects in GitHub can be able to see and also can be

shared with other people. It is therefore very effective if working as a team.

2.2.2 GitHub API

GitHub provides API (Application Programming Interface – an interface that al-

lows third-party programs to request for data from a host or a data holder) for third-party

companies or coding projects. API gives developers to connect with GitHub system.

API also provides access to some features. For example, GitHub API gives privilege

to third-party system which authorized users to manage repository such as create, view,

deleted their repository through a third-party system. Another example is authorized

with GitHub. This is giving third-parties system about necessary information that store

in GitHub ID.

2.2.3 Node.js

Node.js is the name of an open-source framework for the creation of a web-server

using JavaScript language. Traditional JavaScript is a language for client-side web de-

velopment. Therefore, it needs to cooperate with another language, like PHP, to work on

the server-side. Node.js is the open-source software built by Google. It can work on the

server-side more suitable than other server-side software because it is written combine

with C language, C++, and JavaScript. For the benefit of writing in C language and C+

+, This makes Node.js super fast and supports multiple operating systems. Moreover,

including JavaScript makes Node.js accept the JSON file that is a common data inter-

change of the website. Node.js has a feature that is non-I/O blocking. For example,

compare with PHP, The non-I/O blocking makes Node.js execute a command in parallel

and has a callback function to report back which success or failure. In contrast, PHP

1Data as of January 2020

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 12

executes a command when the previous command finishes only.

2.2.4 MongoDB

MongoDB is an open-source document database [24]. There is no relation (i.e.,

NoSQL), and it stores data as JSON (JavaScript Object Notation) objects. The data is

stored in terms of key and value, which is called a document. A collection of many

documents in MongoDB is stored as a collection. Moreover, the collection is schema-

less, which means there is no need to define any structure. Since MongoDB is flexible

and uncomplicated, several well-known companies are using MongoDB, such as Baidu

and Adobe Experience Manager.

2.2.5 WEKA

Weka is the Java open-source machine learning application that can be accessed

through a graphical user interface, standard terminal applications, or a Java API. It pro-

vides several features which use in Machine Learning techniques, for instance, data ma-

nipulation, model training, and model evaluation. It was created by the Machine Learn-

ing Group of the University of Waikato, New Zealand [25]. In this project, we use Weka

for training the machine learning model.

2.2.6 Java Parser

Java Parser is the tool that decomposes the java source code into smaller elements

such as classes, methods, or parameters. These smaller elements are extracted from an

Abstract Syntax Tree (AST) of given source code after analyzed by the parser [26]. We

aim to detect the clone in method level which is a suitable granularity in clone detection

because each method performs only one function. However, if we compare at the file

level that performs several functions in a file which is too rough to detect clones. This

level of clone detection is also used by several existing clone detection tools, for instance,

CCLearner, Oreo, and NICAD. Moreover, the ground truth data from BCB are method

level.

We use the Java Parser for extracting methods from Java source code in both data

preparation and code clone detection steps.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 13

2.2.7 Java Tokenizer

Java Tokenizer tool called “ANTLR” is used in our project. ANTLR is a parser

generator for reading, writing, executing, or converting structured text or binary files.

After we get methods from JavaParser, we use ANTLR tokenize Java methods into to-

kens or words with is needed for creating metrics that are used in the model training and

clone detection steps.

2.2.8 code2vec

code2vec [27] is a neural network model that creates a fixed-length vector that

represents the semantic of a given Java source code snippet. It can also give the predic-

tion of the name according to the Java method body such as sort, find, or count. The

main idea of code2vec predicting source snippet vectors is representing source code as a

set of AST paths before aggregate all paths in the set by using neural attention. Because

code2vec can represent the semantic of the source code, we use code2vec to enhance

our machine learning performance by using the vector from code2vec as our semantic

features.

A
ram

m
ongkolvichai,A

usavaserenont,V
ichaisri

B
ackground

/14

Figure 2.1: Set of AST path of finding method

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 15

Listing 2.1: Java binary search source code

{
int res = Arrays.binarySearch(arr, key);
if (res >= 0)

System.out.println(key + " found at index = " + res);
else

System.out.println(key + " Not found");
key = 40;
res = Arrays.binarySearch(arr, key);
if (res >= 0)

System.out.println(key + " found at index = " + res);
else

System.out.println(key + " Not found");
}

Figure 2.1 represent the AST paths of the binary search source code in Listing 2.1

that visualize is retrieved from code2vec.org (the official code2vec website) [28]. Each

color on the tree represent the path of data flow of the source code that will be converted

into a vector. Then, code2vec uses all path vectors to predict the final vector of source

code by code2vec’s algorithm.

2.3 Literature Review

The literature review section is a summary of the researches which are related to

the project.

2.3.1 Syntactic Code Clone Detection Technique

Gode et al. [11] present an incremental clone detection technique that detect

clones in several revisions of the system to analyze the evolution of clones. This in-

cremental clone detection technique based on suffix trees and use for token-based clone

detector. The token-based detector performs the lexical analysis to the source code to

convert source code into the sequence of tokens. A token has type, which is the lexical

category of the token, and value that is the textual presence of the token. Considering

the token stream, the challenge of detecting exact clones relies on detecting equivalent

token sequences. Types of clones that can detect using this technique are Type-1 clone

(exact clone), Type-2 clone (parameter-substituted clone), and Type-3 (modified clone).

Even though only Type-1 clones and Type-2 clones can be detected by using suffix trees,

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 16

Type-3 can be detected by combining Type-1 clones and Type-2 clones in to the larger

clones with a certain threshold of lexical gap.

Figure 2.1 shows the structure of the suffix tree that is used in this technique,

which is generalized suffix tree (GST) that represents the suffixes of set of code strings.

GST also have property that suffix links of leaves always indicate to a leaf that represents

a suffix of the same string. A string is inserted into a set of strings by adding its suffixes

from longest to shortest to the GST. Due to the fact that files change from one revision

to the next revision, the tokens of these files have to be added or removed from the

token table and the set of strings. Their incremental clone detection algorithm reuses the

data resulting from the previous revision analysis which contain token table, GST, and

the set of clones. The new clones that come from file changing also retrieved from the

updated GST. From the experimental they compare the incremental (iClones) and non-

incremental (traditional token-based clone detection) technique in two scenarios; the

first scenario is the clone detectors are part of an integrated development environment

(IDE), and another scenario is evolution, show that iClones require only 25% run time

of traditional token-based clone detection but it also require 50% memory space than

traditional token-based clone detection for both scenarios. To conclude, they implement

the incremental clone detection technique based on generalized suffix tree call “iClones”

that use for token-based detection tool which can improve the run time when compared

to traditional token-based clone detection technique.

Figure 2.2: Generalized Suffix Tree (GST)

SonarQupe [29] is the platform that developed and service by SonarSource. This

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 17

platform is open-source which features are focus on inspection of code and automation

reviews. This platform also provide detect bugs, code smell which is part of codes that

could be a deep problem, security vulnerability. SonarQupe also support more over 20

languages such as Java, C/C++, C#, etc. However, one of SonarQupe features relates to

code clone detection called duplicated code. This feature focus on detection duplication

in codes and it can ignore some variables and indentations.

2.3.2 Using Machine Learning To Improve Existing Code Clone Detection
Technique

Koschke et al. [30] presented the clones rate analysis of 7,800 open-source C or

C++ projects. They used their own token-based clone detector call “cpf” to detect clone.

This detector detect clones by creating suffix tree and detect all the duplicating subse-

quent of token in the suffix array. In their researching period their clone detector can

detect only type-1 and type-2 clones. So, type-3 clone in their research are from com-

bining type-1 and type-2 clones into one segment. After getting these clone candidates

the detector create code metrics which are number of tokens, number of parameters,

clone type, the number of distinct token types, fraction of non-repetitive tokens, param-

eter overlap, parameter consistency, degree of valid references, and fraction of repeated

parameter to be the feature of decision tree filter that automatic calibrate by machine

to improve precision without losing recall. In the result they can determined only 20

percent of the open-source projects to have no type-2 clone and 44 percent of projects

contain at least 1 type-1 clone of at minimum of 1000 tokens.

Figure 2.3: Overview Diagram of Oreo's Clones Detection Pipeline

Saini et al. [31] invented a code clone detection tool name “Oreo”. Oreo was

invented to improve a detecting clone in Twilight zone and able to process large dataset.

Twilight zone is define to be a meaning of challenging Type3 clone which contain mod-

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 18

erately type3 and onward. As the figure 2.1 shows, Oreo use size to be first heristic to

measure clone between two methods. This is specific for clone in twilight zone. The

Action Filter is a a next process after using size. This is due to low lexical and syntactic

similarity in Twilight zone. The action filter use “Action token” to capture semantics

of methods. For example, name[1] action token will capture it as ArrayAccess. On the

other hand, if name[i+1] action token will difference capture it to ArrayAccessBinary.

Not only Action token that added in this process but it also store with “freq”. “freq” is

the number of that action token appear in the method. In this paper, it define in set of <

t , freq > which t is action token. After, track action token it will filter by metric hash.

If metric hash matched, it is classified into type1 and type2. However, if it not match

with metric hash, it will pass though neural networks or deep learning methods to detect

type3 and type4 clones. Deep learning has characteristic to handle the vector so Oreo

uses Siamese architecture model to train. The input model is a 48 dimensional vector

that come from 24 metrics. In Siamese, two inputs are sent into identical subnetworks of

Siamese. Then, all of output from subnetworks are send to the comparator for concate-

nated. Classification unit which is output of comparator will multiple with input to be

final output in range between 0 and 1. In this paper, they classify codes that have value

above 0.5 to be clones. They involve Siamese can prevent overfiting and it can support

the large number of training set.

Arammongkolvichai et al. [32] present an approach for increasing the precision of

code clone detection using machine learning techniques. This approach is working like

a filter to filter the false-positive results out out from clone result. The filter are created

from decision tree that training from 19 clone metrics. In their experiment, they apply

this filter into clone detection tool called “iClones” and compare the result between result

of iClones and iClones with filter. They found that using filter on iClones can increase

4% of precision from 94% to 98% by filtering the false-positive result out.

2.3.3 Using Machine Learning For Code Clone Detection

Li et al. [33] presented the first solely token-based clone detection approach using

deep learning which called CCLearner. CCLearner applies the concept of deep learning

on known true clones and false clones for training. CCLearner uses the training and

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 19

testing data from BigCloneBench [34] that contains ten folders by divided folder 4 for

training and the other folders for testing. The amount of data is 22,663 true clone and

22,663 false clone pairs for training and 1,581,218 clone pairs for testing. In the training

phase, they trained the model with true and false clone pairs. Then extracts the similarity

vectors and give them to a deep neural network (DNN) which include two hidden layers

and run 300 iterations based on their experiment to train a binary classifier. For the

testing phase, firstly they extract methods from source code by using Eclipse ASTParser

after that compare method pairs and tagged pairs as clones or non-clones. An evaluation

session, CCLearner compare the efficiency with three popular clone detection tools that

are SourcererCC [35], Nicad [36], and Deckard [16]. The result is that CCLearner has

higher recall than SourcererCC and Nica and higher precision than Nicad and Deckard.

To sum up, CCLearner performs highly effective in detecting clones using deep learning

which is evident from high precision and recall.

White et al. [37] represent a new way to detect clone that is learning-based clone

detection techniques using deep learning AST-based and Greedy. All source code is col-

lected as terms or fragments and mined from the repository. The first process is deep

learning code in lexical level that transform the original code to be a suitable similar

forms or terms. Each term in a fragment are mapped to similar vectors. The second pro-

cess is deep learning code in syntactic level which design the learning-based techniques

to learn features at different levels of granularity. Lastly, They use neural networks

paring with lexical analysis and recursive neural networks paring with syntactic analy-

sis. The data that they used consist of eight real world Java system which are ANTLR

4, Apache Ant 1.9.6, ArgoUML 0.34, CAROL 2.0.5, dnsjava 2.0.0, Hibernate 2, JDK

1.4.2, and JHotDraw 6. In precision results, Greedy perform better performance than

AST-based with almost 100% of both file-level and method-level in eight Java system.

2.3.4 Dataset for Evaluating Code Clone Detection Techniques

Svajlenko et al. [34] presented the benchmark, called BigCloneBench, of known

true and false clones from IJaDataset, which is a big data inter-project Java repository

and demonstrated how the benchmark could be used to measure the recall and precision

of clone detection techniques. BigCloneBench built by mining for code snippets. It is

Arammongkolvichai, Ausavaserenont, Vichaisri Background / 20

a segment of code stored as (l, s, e) format by l represents the source file, s represents

the start line, and e represents the end line. The methodology is that it first selects the

target functionality; for example, a binary search. Then creates search heuristic to iden-

tify possible implementation followed by forming a specification, sample snippet, and

search heuristic. After that, the search heuristic is performed for every snippet to find

the candidate snippets. The last step is to tag all candidate snippets, which snippet is true

or false positives by manual. A set of candidate snippets which can implement the target

functionality were tagged as true positives, and candidate snippets that do not implement

the target functionality were tagged as a false positive. True clone pairs calculate from

(s+p)(s+p1)/2 by s stands for sample snippets of particular target functionality and p

stands for true positive snippets. False clone pairs calculate by sample snippets of target

functionality multiply with false positives snippets. The result from 10 functionalities

with 60,000 snippets can detect approximate 6,000,000 true clone pairs and 260,000 false

clone pairs. Besides, the benchmark can also measure recall and precision.

2.4 Comparison to Related Work

As discussed in the Literature Review, there are several existing clone detec-

tion tools including Software Clone Rate, iClones, iClones + Filter, Oreo, and Sonar.

Machine Learning Filter (ML Filter), Machine Learning Engine (ML engine), Web Ap-

plication and Clone Type Detecting are the function of code clone detection tools. As

report by the existing tool comparison table (Table 2.1), each tool is capable of perform-

ing different functions.

The fist one from Koschke et al.[30] is able to detect clone type 1,2, and 3 using

machine learning. iClones [11] does not use the machine learning but it also detect clone

type 1,2, and 3. iClones + Filter [32] is similar to iClones but it apply the machine

learning. Oreo[31] is only one existing tool that can detect type 4 clone using machine

learning. The last existing tool is Sonar which has web to show the visualization of clone

result. Our clone detection tool, Merry, is able to detect Type 1,2, and 3 using machine

learning. Moreover, Merry tool provide the web application for user.

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/21

Table 2.1: Comparison with Existing Tools

Tool/Technique SyntacticFeature SemanticFeature ML Filter ML Engine Web UI Type 1 Type 2 Type 3 Type 4
iClones (Gode et al.) [11] - - - - - -
Koschke et al. [30] - - - -
iClones+Filter (Aram-
mongkolvichai et al.) [32]

- - - -

Oreo (Saini et al.) [31] - - -
Sonar [29] - - - - -
CCLearner (Li et al.) [33] - - -
Merry -

(=fully function, =function with limitations)

Arammongkolvichai, Ausavaserenont, Vichaisri Analysis and Design / 22

CHAPTER 3
ANALYSIS AND DESIGN

Analysis and Design chapter illustrates the system design of the project from the

overview to the detailed steps in each process.

3.1 System Architecture Overview

Figure 3.1: System Architecture

System Architecture (Figure 3.1) shows the overall of our web-based code clone

detection tools using machine learning, which is called Merry. There are various func-

tions inside the system which consists of training phase and production phase.

In the “training phase”, the starting process is an analysis of the clone database

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 23

as training data. The database which was used in the project is BigCloneBench database.

It is the largest and the most reliable clone database. After all training data are prepared,

the training data was sent to the clone detection engine for training the model. That is

when the training phase finishes.

The second phase is the “production phase”. First, users have to log in to the

system with their GitHub account to analyze their repository that they want to detect

the clone. In the meanwhile, the system also collect the clone detection history into the

database.

3.2 Use Case Analysis

Figure 3.2: Use case Diagram

The use case diagram (Figure 3.2) represents about users interact with the project.

In this project, our users are separated into two kinds. First is normal users that want

to detection clone in their project. Our system will provide such features as login with

GitHub, selecting a project to detect clones, viewing clone detection history, and viewing

system log(for themselves). Most of data like user’s repositories come fromGitHub after

Arammongkolvichai, Ausavaserenont, Vichaisri Analysis and Design / 24

users give permission.A clone report and system log come from our system. Another

kind of a user is admin. admin can also view system log. However, system log of admin

will be overall of users.

3.3 Structure Chart

Structure Chart (Figure 3.3) represents all modules in the Merry system. There

are 4 main modules consists of data preparation, model training, clone detection, and

report generation. Moreover, the first 3 main modules also have the sub modules. Data

Preparation includes 4 sub modules which are parsing the source code, creating the

method dictionary, selection clone pairs, and creating training data. Model training made

up of 3 sub processes which are training data tokenization, extracting metrics, and train-

ing model. The last module is clone detection which consists of getting the source code

in repos files, parsing method, mapping method pairwise, tokenization, extracting clone

metrics, and clones classification.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 25

Figure 3.3: Structure Chart

Arammongkolvichai, Ausavaserenont, Vichaisri Analysis and Design / 26

3.4 System Analysis

System Analysis of the project was represented by data flow diagram level 0,

level 1, and level 2.

3.4.1 Context Diagram

According to context diagram(Figure 3.4), there are 3 external entities that get

involved to theMerry system. BCB or BigCloneBench database send clones ground trust

and source code files to the system. User send the clone detection request to the user then

the system automatically send API request to GitHub. After that GitHub send the repos

to the Merry system. Finally, User will receive the clones report and visualization.

3.4.2 Data Flow Diagram Level 1

Data Flow Diagram Level 1(Figure 3.5) show the all the flow inside our system

starting from receive source code files and cloneGround-truth data to prepare the training

data for train the machine learning model that use in clone detection process. After the

model is trained the system is ready to detect clones. When get the clones detection

request from user, system will sent API request to GitHub for repository that user want

to analyze clones. Then the system will generate visualization and report for the clones

result.

3.4.3 Data Flow Diagram Level 2

Prepare Data Process

Preapare data process(Figure 3.6) start with parsing the source code from files

BCB database into list of methods to create the method dictionary for easily to get the

ground-truth clone pairs and non-clone pairs for generate training data.

Train Model Process

Themodel training process(Figure 3.7) is starting from the training data tokeniza-

tion into list of token for extract code syntactic metrics to use as the features of the model.

After that train the model with all features that already gather.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 27

Detect Clones Process

Detect Clones Process(Figure 3.8) start from get all Java source files in the repos-

itory then parse all files to get all methods by JavaParser before pairwise all methods.

Then tokenize each pair in the list to extract the code syntactic metrics to classify clones.

A
ram

m
ongkolvichai,A

usavaserenont,V
ichaisri

A
nalysisand

D
esign

/28

Figure 3.4: Context Diagram

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/29

Figure 3.5: Data Flow Diagram Level 1

Figure 3.6: Prepare Data Process

A
ram

m
ongkolvichai,A

usavaserenont,V
ichaisri

A
nalysisand

D
esign

/30

Figure 3.7: Train Model Process

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/31Figure 3.8: Detect Clones Process

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 32

CHAPTER 4
IMPLEMENTATION

In this section, there are 3 parts divided by project components which include

clone detection engine part, web application part, and data collection part.

4.1 Building ML Code Clone Detection Engine

This step (as shown in Figure 4.1) is the step to train machine learning models. It

includes data collection and preparation, code metrics extraction, ML model selection,

and training.

4.1.1 Data Collection and Preparation

Figure 4.1: Training process

Data set

We used BigCloneBench [34] (BCB) which is clone detection benchmark. The

benchmark is a large data set of clones that tagged as true and false clone pairs and

popular in the clone detection approach. It is divided into 2 parts, which are Java source

code files and code clone database.

Java Source Code Files: As shown in Table 4.1, BCB have 40,528 Java source

files. There are 10 folders separated by their functionality starting from folder#2 to

folder#11.

Code Clone Database: BCB contains over six million clone pairs with 10

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 33

functionalities stored in the PostgreSQL database. Thus, we wrote SQL statements to

get the clone pairs dataset. The BigCloneBench database (Figure 4.2), which will be

used as training data, has 7 tables. The 3 mains tables are clones, functions, and

false_positives. After evaluation and analysis of the BigCloneBench structure, we

found that the clone has been given the similarity score in range [1,0]. Basically, clones

have 4 types [4], as discussed in Section 2. However, BCB [33] have separated clones

into even more fine-grained levels of 6 categories as follows:

• Type-1 (T1) has similarity score equal to 1 and syntactic type is 1

• Type-2 (T2) has similarity score equal to 1 and syntactic type is 2

• Very strong type-3 (VST3) has similarity in range [0.9,1)

• Strongly type-3 (ST3) has similarity in range [0.7,0.9)

• Moderately type-3 (MT3) has similarity in range [0.5,0.7)

• Weakly type-3 or type-4 (WT3+4) has similarity in range [0,0.5)

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 34

Figure 4.2: BigCloneBench Structure

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/35

Table 4.1: BigCloneBench Data Summary

Folder Functionality No. of Source Files LOC True Clone Pairs False Clone PairsT1 T2 VST3 ST3 MT3 WT3+4
2 Download From Web 10,372 1,984,327 1,553 9 22 1,412 2,715 410,611 38,838
3 Secure Hash 4,600 812,629 632 587 525 2,760 24,923 871,717 4,564
4 Copy File 22,113 4,676,552 13,805 3,116 1,210 4,666 24,199 4,725,438 204,108
5 Decompress zip archive 56 3,527 0 0 0 0 1 34 56
6 Connect to FTP Server 472 83,068 9 0 14 50 191 49,161 4,202
7 Bubble Sort Array 1,037 299,525 43 4 21 212 1,752 13,538 5,432
8 Execute update and rollback 131 18,527 3 7 5 0 2 259 78
9 Initialize Java Eclipse Project 669 107,832 0 0 0 0 0 55 1,272
10 Setup SGV Event Handler 1,014 286,416 0 0 285 925 0 245 0
11 Setup SGV 64 6,736 122 10 1 6 97 8,828 24

Total 40,528 8,279,139 16,185 3,787 2,083 10,031 55,106 6,158,975 262,465

Table 4.2: Amount of Training Data

True Clone Pairs (22,663) False Clone Pairs
T1 T2 VS3 ST3 22,66313,750 3,104 1,207 4,602

Table 4.3: Amount of Testing Data

True Clone Pairs (4,724) False Clone Pairs
T1 T2 VS3 ST3 18,8962,383 557 307 1,477

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 36

Creating Training data

We followed the methods of creating code clone training data from BCB in the

study of Li et al. [33]. We select the true clone pairs in folder#4 contains the largest

amount of clone pairs including almost five million clone pairs. Similar to Li et al.’s

study, we used clone data from folder#4 to train the model. The criteria are as follows:

1. Clone type 1, 2, and 3

2. Clone type 3 must be only very strong type 3 which has similarity in range [0.9,1)

or strongly type 3 which has similarity in range [0.7,0.9)

3. Clone pairs must have gap between start line and end line more than 6 lines

The total number of clone pairs is 22,663 pairs. For false clone or non-clone, the total

of false clone pairs in folder#4 is 197,354 pairs. We randomly pick those pairs to be

training data in an equal amount as true clones (22,663 pairs). The detail of the training

data is shown in Table 4.2.

Creating Testing data

Again, we followed the method in Li et al. [33] to create testing data. We used

all folder, except the folder#4 which has already been used for creating the training set,

as the test set. The total number of clone pairs is 1,531,000 pairs. For cloned code, we

randomly selected clones based on the proportion of each clone type in the BCB data

using stratified sampling. Stratified sampling is the method to select the data from the

proportion in each category group [38]. For false clones or non-clones, we randomly

selected the clone pairs to account for 80 percent of the test data. We select cloned pairs

and non-cloned pairs at the ratio of 20% to 80% respectively because it reflects the real-

world statistics of clones in software projects [4]. The detail of the test data is shown in

Table 4.3.

4.1.2 Code Metrics Extraction

We use codemetrics as features to train machine learningmodels to detect clones.

The metrics are divided into syntactic code metrics and semantic code metrics.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 37

Syntactic Code Metrics

Inspired by the previous work by Koschke et al. [30] and Arammongkolvichai et

al. [32] , we invented 12 syntactic code metrics to be features of the machine learning

model, as shown in Table 4.4. Syntactic code metrics design to gather different char-

acteristics of a method pair. For instance, Number of Token (TokenNo) metric shows

the number of total tokens in each clone pair, File name similarity score (SimilarFile-

NameScore) metric shows either the method occur in the same file or in different files

but with the same file names, or in files with totally different file, or Diffience of line of

code (DiffLOC) shows how much line of code are difference in each clone pair.

Table 4.4: Syntactic Code Metrics

No. Metric Description
1 TokenNo Difference of number of tokens
2 UniqueTokenNo Difference of number of unique tokens
3 IdentifierNo Difference of number of Identifiers
4 UniqueIdentifierNo Difference of number of unique Identifiers
5 OperatorNo Difference of number of operators
6 UniqueOperatorNo Difference of number of unique operators
7 TokenTypesDiversity Difference of number of unique token types
8 SimilarFileNameScore File names similarity score
9 SimilarMethodNameScore Method names similarity score
10 SimilarReturnType Same return type or not
11 DiffLOC Difference of lines of code

Semantic Metrics

We applied vector from code2vec [27] to be parts of machine learning features

to detect challenging clones by method semantic. First, we extract methods to Java files

from source code using Java Parser then give that Java files to code2vec for predicting

the semantic vector (Figure 4.2).

Figure 4.3: code2Vec Process

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 38

4.1.3 ML Model Selection

On the training part, we train themodel usingWeka as ourMachine Learning tool.

We selected and trained 3 models including Decision Tree (REPTree), Random Forest,

and Support Vector Machine (SVM) using Sequential Minimal Optimization (SMO) by

using metrics that extract from 22K of true clone pairs and 22k of false clone pairs from

BCB as training data.

Decision Tree (REPTree)

REPTree algorithm is an algorithm that uses information gain from data set fea-

tures as the splitting criteria to construct a decision tree as an example shown in Figure

4.4, and prunes it with reduced error pruning. we use the Weka REPTree default setting

of this model which are minimum number of instances per leaf equal to 2 and an unlim-

ited maximum depth of tree to train our model [39]. We decide to use the Decision Tree

as our first machine learning model because it is the simplest classification model and

much easier to understand than the other classification algorithms.

Figure 4.4: An Example of a Decision Tree [1]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 39

Random Forest

Random Forest algorithm is an algorithm that builds several decision trees from

random data samples and then gets the prediction from each of them before eventually

selects the optimal result by voting. In figure 4.5 illustrates how the random forest algo-

rithm work starting from generating several decision trees from data. Each tree predicts

its result before using the majority voting for the final result. The Weka Random For-

est default setting of this algorithm that we use to train our model is using 100 trees in

the random forest, unlimited maximum depth of tree to train, a minimum number of in-

stances per leaf is equal to 1, and use 1 as the seed of random generator [40]. This is

the second machine learning algorithm that we select to use in our tools because it can

manage the missing values and maintain a significant portion of the data accuracy. In

addition, this algorithm worked well on previous software engineering research [41].

Figure 4.5: Random Forest Simplified

Support Vector Machine (SVM)

Support Vector Machines (SVM) is a supervised learning models in machine

learning, that mostly use to solve binary classification problems by using its complex

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 40

classification algorithms. Figure 4.6 demonstrates how SVM works with an example.

Let’s the black dot and white dot in the figure 4.6 are 2 kinds of data with labels.The SVM

classification algorithms will calculate the best hyperplane (the best line in this 2D graph

) that best separate each label of data which is H3 in figure 4.6 and use this hyperplane as

the decision boundary to classify data. we select this machine learning model to be one

of our model because it is the model that work well on 2-group classification problem

which is match with our tool to classify clones and non-clones in the software project.

H1 H2 H3

X1

X2

Figure 4.6: How SVM classify the data [2]

Support Vector Machine using Sequential Minimal Optimization (SVM us-

ing SMO)

Because SVM training is extremely complex, requires complicate quadratic pro-

gramming, and takes time. So, we use Sequential Minimal Optimization (SMO) which

is the widely used algorithm to solve the complexity and reducing training time during

the training Support Vector Machine model to help us calibrate options that use to train

the Support Vector Machine model [42]. We decide to include this machine learning

classification algorithms to improve the performance and training time of SVM that can

capture very complex relationships between datapoint.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 41

Figure 4.7: Detection process

4.2 Using Trained ML Models for Clone Detection

Figure 4.7 shows the step of howMerry detect clones in a software project. In this

detection step, we parse methods from the input software project then pair all methods

wisely (n×(n−1)
2

pairs) before extract both syntactic and semantic metrics from each pair

to predict which a pair is clone or not by the trained model. When executingMerry in the

detection mode, the user can select whether to use both syntactic and semantic metrics,

only syntactic metrics, or only semantic metrics. Moreover, users can also select which

model will be used on that execution from our 3 trained models. After Merry engine

detected clones, it writes the clone results directly to the database (i.e., MongoDB) for

visualizing the result nicely and easy to understand on the Merry web application.

4.3 Building a Web application

The creation of web application for improving user experience consists of 2 parts

which are front-end and back-end.

4.3.1 Front-end

Hypertext Markup Language (HTML) is the language that we used to build the

Merry web application. CSS and Bootstrap also applied to the web application for mak-

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 42

ing the website more beautiful and user friendly. In addition, we also have jQuery that

allows the website to receive data and send it back-end via fetch.

Listing 4.1: Connection with GitHub

<a class="nav-link"
href="https://github.com/login/oauth/authorize?client_id=[CLIENT_ID]
&redirect_uri=[REDIRECT_URI]/oauth/redirect">Login with GitHub

From Listing 4.1, This source code is the source code that redirects the user to

login with their GitHub account by using OAuth URI for authorization through GitHub

API.

4.3.2 Back-end

Node.js was applied in back-end part by using 2 modules. The first one is Ex-

press [43] which is used for sending and receiving data between the front-end and the

back-end. Another module is child_process for executing the Merry engine executable

and execute the other necessary commands on the website. Moreover, it connects with

GitHub via GitHub API and reads/writes data to/from MongoDB.

GitHub API

Merry web application connects with GitHub to retrieve the user’s information,

such as authentication and repository. We use the GitHub OAuth app, which is the ser-

vice that is provided by GitHub. The OAuth stands for an open-standard authorization

protocol. It usually uses for a third-party website to grant user information or access from

the user without making users directly login on the third-party website.[44] GitHub user

can create their OAuth app for using information from GitHub on their website.

Listing 4.2: Connection with GitHub

// The req.query object has the query params that
// were sent to this route. We want the code param
const requestToken = req.query.code
axios({

// make a POST request
method: 'post',
// to the Github authentication API, with the client ID, client secret
// and request token

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 43

url: "https://github.com/login/oauth/access_token?client_id=${clientID}
&client_secret=${clientSecret}&code=${requestToken}",
// Set the content type header, so that we get the response in JSOn
headers: {

accept: 'application/json'
}

}).then((response) => {
// Once we get the response, extract the access token from
// the response body
accessToken= response.data.access_token;
//const username = response.data.username
// redirect the user to the welcome page, along with the access token
res.redirect(`/welcome.html?access_token=${accessToken}`)

})

From Listing 4.2, This is an example source code of connection with GitHub in

Node.js. After login with the GitHub username and password, GitHub will respond to

the request token back to the Merry server. Then, the Merry server will use the client ID

and the client secret of the GitHub OAuth app combined with the request token to get

the access token. The access token is a key that can be subsequently used to request data

from GitHub.

MongoDB

Merry web application uses MongoDB to store the results in a database and

display the results to the user. The MongoDB stores 2 collections. The first one is

analyedRepoInfo which contains the username, repository’s name of the user, and

date/time when the user detects clones. Another one is result, which consists of the

detection detail of clone pairs. The detail of those 2 collections is shown in Figure 4.8

Listing 4.3: Write data to MongoDB

MongoClient.connect(dburl, {
useNewUrlParser: true,
useUnifiedTopology: true}, function(err, db)
{

if (err) throw err;
var dbo = db.db("MerryDB");
dbo.collection("analysedRepoInfo").insertOne(obj, function(err, res) {

if (err) throw err;
console.log("document inserted");

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 44

db.close();
});

});

From Listing 4.3, This is the source code that write data to MongoDB. First, It

connects to the database using the URL of MongoDB. Then, data name “obj” is inserted

to the collection name “analysedRepoInfo” within the database name “MerryDB”.

Listing 4.4: Read data from MongoDB

MongoClient.connect(dburl, {
useUnifiedTopology: true,
useNewUrlParser: true}, function(err, db)
{

if (err) throw err;
var dbo = db.db("MerryDB");
//Sort the result by latest date:
dbo.collection('analysedRepoInfo').aggregate([

{ $sort : { Date : -1 } },
{ $limit: 1 },
{ $project: { _id: { $toString: "$_id" }}},
{ $lookup:
{

from: 'Result',
localField: '_id',
foreignField: 'ExecutionID',
as: 'cloneResult'

}
}]).toArray(function(err, result)

{
if (err) throw err;
console.log(JSON.stringify(result));
res.json(result)
db.close();

});
});

FromListing 4.4, This is the source code that read the latest data fromMongoDB.

First, this source code will sort the latest result using command sort and limit. Then,

toString will change the type of id from objectid to string. Next, a lookup will search id

that matches with ExecutionID.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 45

Figure 4.8: Structure of the two collections in the MongoDB database

User Interface of the Merry Web Applications

The Merry web applications consists of 6 pages as follows:

1. Home page (see Figure 4.9) contain menu bar, title, and URL form. A menu bar

contain with Merry’s logo on the left and Login with GitHub button on the right.

A URL form will get GitHub URL for users that don’t want to keep information

in system log.

Figure 4.9: Home page

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 46

2. Login page (Figure 4.10) will come up when user click ’Login with GitHub’ but-

ton on the right. It come from GitHub API that connect with Merry system.

Figure 4.10: Login page

3. Repos page (Figure 4.11) will appear when users completed the log in process.

The repos from GitHub of user account will ready to detect clones.

Figure 4.11: Repo page

4. Result page(Figure 4.12) shows all clone pairs that Merry can detect from user’s

repos when user click the ‘Click to Analyze’(green button).

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/47

Figure 4.12: Result page

Arammongkolvichai, Ausavaserenont, Vichaisri Implementation / 48

5. History page (Figure 4.13) contain result, date and time, and repository name that

user has been analyzed.

Figure 4.13: History page

Figure 4.14: Setting page

6. Setting page (Figure 4.14) uses for setting the features of Merry engine including

size filter, syntactic metrics, and semantic metrics. All of features be able to select

on or off.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 49

CHAPTER 5
EVALUATION RESULTS

In this chapter, we discuss the results of our experiments to evaluate the perfor-

mance of the Merry Clone Detection Tool.

5.1 Evaluation of Merry Clone Detection Engine using BCB

This section shows the evaluation of the Merry clone detection tool on data in

the BCB database, which is the largest clone ground-truth on Java language that contains

around 6 million pairs of true clone. Evaluating this ground-truth makes us be able to

compute precision, recall, and f1-score of our approach.

5.1.1 Methodology

To evaluate our Merry engine, we use the test data containing 4,724 true clone

pairs and 18,896 false clone pairs from all folders in BCB except folder#4 that we already

used as the training data to train the model. The reason we use this amount of clone pairs

is in real software projects usually have clones around 20 percent [4], so we decided to

make the testing data similar to real software projects.

Table 5.1: Merry execution parameters
Parameters Values Description

-model

decisiontree Use Decision Tree as the model on the execution.
randomforest Use Random Forest as the model on the execution.
svm Use Support Vector Machine as the model on the execution.

smo Use Support Vector Machine using Sequential Minimal
Optimization as the model on the execution.

-syn on Use syntactic metrics as machine learning features on the execution.

off Don't use syntactic metrics as machine learning features
on the execution.

-sem on Use semantic metrics as machine learning features on the execution.

off Don't use semantic metrics as machine learning features
on the execution.

Table 5.1 shows the list of Merry’s parameters that we use to run our experiments

with values and description of each parameter.

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 50

5.1.2 Error Measures

We use the well-known error measures in the information retrieval field which

are precision, recall, and F1-score to measure Merry clone detection tool. For easier to

understand these measurement, Figure 5.1 demonstrates 4 importance terms as follows:

• True positive: the elements that actually are true and predicted true

• False positive: the elements that actually are false but predicted as true.

• False negative: the elements that actually are true but predicted as false.

• True negative: the elements that actually are false and predicted false.

Figure 5.1: Terminology of the confusion matrix [3]

Precision measures the percentage of correctness from elements that was pre-

dicted true as show in Figure 5.2. It can be calculated by using this equation.

Precision =
True Positive

True Positive+ False Positive

Recall measures the percentage of completeness from all elements that are actu-

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 51

ally true as shown in Figure 5.2. It can be calculated by using this equation.

Recall =
True Positive

True Positive+ False Negative

Figure 5.2: Precision and Recall measurement [3]

F1-Score measures a harmonic mean (average) of Precision and Recall. It can

be calculated by using this equation.

F1-Score = 2 · Precision · Recall
Precision+ Recall

5.1.3 Evaluation Results

Table 5.2 shows the result of our experimental testing by comparing Precision,

Recall, and F1-Score of each model on three different combinations of metrics (syntactic

and semantic, only syntactic, only semantic) with the baseline of Randomization model

(a simple model that randomly classifies a pair of code as cloned or non-cloned).

Figure 5.3 demonstrates the difference of precision when runningMerry with De-

cision Tree Model, Random Forest Model, Support Vector Machine (SVM), and SVM

using SMO Model compared with the precision of Randomization model. As the graph

show, Merry with any model gives better precision than the randomized model. In ad-

dition, we also observe that most of the time, using both syntactic metrics and semantic

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 52

Table 5.2: Experimental result on sampled BCB dataset

Model Metrics Precision Recall F1-Score
Randomization (baseline) 0.20 0.49 0.28

Decision Tree
Syntactic + Semantic 0.89 0.86 0.87
Syntactic 0.95 0.72 0.86
Semantic 0.68 0.87 0.76

Random Forest
Syntactic + Semantic 0.97 0.86 0.91
Syntactic 0.97 0.80 0.87
Semantic 0.70 0.87 0.78

SVM
Syntactic + Semantic 0.97 0.85 0.91
Syntactic 0.97 0.79 0.87
Semantic 0.62 0.90 0.73

SVM using SMO
Syntactic + Semantic 0.98 0.89 0.93
Syntactic 0.97 0.69 0.81
Semantic 0.63 0.90 0.74

Model

Pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

Random Merry with
Decision Tree

Merry with
RandomForest

Merry with SVM Merry with SVM
using SMO

Syntactic + Semantic Syntactic Semantic Random

Precision

Figure 5.3: Detection process

metrics perform equal to or better than using only syntactic or semantic features for pre-

cision.

Figure 5.4 demonstrates the difference of recall when running Merry with De-

cision Tree Model, Random Forest Model, SVM, and SVM using SMO Models with

the recall of Randomization model as the baseline on the testing data. From the graph,

Merry, with any model giving better recall than the Randomization model, just like pre-

cision. Moreover, we also observe that using both syntactic metrics and semantic metrics

perform better than using only syntactic metrics for recall of the result.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 53

Model

Re
ca

ll

0.00

0.25

0.50

0.75

1.00

Random Merry with
Decision Tree

Merry with
RandomForest

Merry with SVM Merry with SVM
using SMO

Syntactic + Semantic Syntactic Semantic Random

Recall

Figure 5.4: Detection process

Model

F1
-S

co
re

0.00

0.25

0.50

0.75

1.00

Random Merry with
Decision Tree

Merry with
RandomForest

Merry with SVM Merry with SVM
using SMO

Syntactic + Semantic Syntactic Semantic Random

F1-Score

Figure 5.5: Detection process

Figure 5.5 demonstrates the difference of F1-score when running Merry with

Decision Tree Model, Random Forest Model, SVM, and SVM using SMOModels with

the f1-score of Randomization model as the baseline on the testing data. As shown in

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 54

the graph, Merry runs with any model giving a better f1-score than the Randomization

model, just like precision. Interestingly, we found that using semantic metrics perform

the best for the f1-score.

5.1.4 Discussion

We found that Merry running with all the four models performs better than the

baseline Randomization model, and the best Merry’s model that gives the best result

using F1-score is Support Vector Machine using Sequential Minimal Optimization or

SVM using SMO. Moreover, using only syntactic metrics not perform well in terms of

recall. On the other hand, using only semantic metrics also not perform well in terms of

precision.

5.2 Evaluation of Merry Clone Detection Engine on Real Software Projects

For this testing on real software projects, we want to evaluate how effective the

Merry clone detection tool when users use it to detect clones in their software project.

5.2.1 Methodology

To evaluation of Merry Clone Detection Engine with SVM using SMOmodel on

Real Software Project we run Merry on 3 projects including the JUnit4 [45] which is the

open-source software on GitHub (collected on 17th April 2020), Natty [46] (collected on

17th April 2020), and our project Merry. After the Merry clone detection tool finished

running on software projects, we found that the main source code of software projects

contain 187 clone pairs. Then we manually validate 187 clone pairs by look into those

pairs one by one. Each of the three members in the team decides which pairs are clone

or non-clone by each person’s decision. After that, we decide if the result is a true clone

pair by the majority of the decisions. Natty and Merry were found a little of clone pairs

because they are small projects while JUnit was found 187 clone pairs. For the precision

measure, on Natty and ourMerry clone detection tool performs quite well while on JUnit,

we get the precision around 0.4. From our manual validation experience, we found that

JUnit contains less non-challenging clones and many challenging clones.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 55

Table 5.3: Merry's result on real software project

Project LOC #methods No. clone pairs TP FP Precision Runtime(second)
JUnit4 7550 1529 187 77 110 0.41 552
Natty 1761 146 9 7 2 0.77 99
Merry 931 102 8 6 2 0.75 115

5.2.2 Evaluation Result

This section demonstrate the result of Merry clone detection tool when run on

real software projects (JUnit4, Natty, and Merry) including the example of challenging

clone and false clone from real software projects.

Table 5.3 show the result of real software project that are run on Merry clone

detection tool. Natty and Merry were found a little of clone pairs because they are small

projects while JUnit was found 187 clone pairs. For the precision measure, on Natty and

our Merry clone detection tool performs quite well while on JUnit, we get the precision

around 0.4. From our manual validation experience, we found that JUnit contains less

non-challenging clones and many challenging clones.

Listing 5.1: Example of challenge true clone

static public Test createTest(Class<?> theClass, String name) {
Constructor<?> constructor;
try {

constructor = getTestConstructor(theClass);
} catch (NoSuchMethodException e) {

return warning("Class " + theClass.getName() + " has no public
↪→ constructor TestCase(String name) or TestCase()");

}
Object test;
try {

if (constructor.getParameterTypes().length == 0) {
test = constructor.newInstance(new Object[0]);
if (test instanceof TestCase) {

((TestCase) test).setName(name);
}

} else {
test = constructor.newInstance(new Object[] { name });

}
} catch (InstantiationException e) {

return (warning("Cannot instantiate test case: " + name + " (" +

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 56

↪→ Throwables.getStacktrace(e) + ")"));
} catch (InvocationTargetException e) {

return (warning("Exception in constructor: " + name + " (" +
↪→ Throwables.getStacktrace(e.getTargetException()) + ")"));

} catch (IllegalAccessException e) {
return (warning("Cannot access test case: " + name + " (" +

↪→ Throwables.getStacktrace(e) + ")"));
}
return (Test) test;

private void addTestsFromTestCase(final Class<?> theClass) {
fName = theClass.getName();
try {

getTestConstructor(theClass);
} catch (NoSuchMethodException e) {

addTest(warning("Class " + theClass.getName() + " has no public
↪→ constructor TestCase(String name) or TestCase()"));

return;
}
if (!Modifier.isPublic(theClass.getModifiers())) {

addTest(warning("Class " + theClass.getName() + " is not public"));
return;

}
Class<?> superClass = theClass;
List<String> names = new ArrayList<String>();
while (Test.class.isAssignableFrom(superClass)) {

for (Method each : MethodSorter.getDeclaredMethods(superClass)) {
addTestMethod(each, names, theClass);

}
superClass = superClass.getSuperclass();

}
if (fTests.size() == 0) {

addTest(warning("No tests found in " + theClass.getName()));
}

}

Listing 5.1 show the example of true clone that is one challenge clone from JU-

nit4. This true clone pair is challenge because both of them perform pretty same func-

tionality which adding the new test but both of them are syntactically difference and have

difference inputs.

Listing 5.2: Example of false clone

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 57

protected void runChild(final FrameworkMethod method, RunNotifier notifier) {
Description description = describeChild(method);
if (isIgnored(method)) {

notifier.fireTestIgnored(description);
} else {

Statement statement = new Statement() {

@Override
public void evaluate() throws Throwable {

methodBlock(method).evaluate();
}

};
runLeaf(statement, description, notifier);

}
}

public Result run(Runner runner) {
Result result = new Result();
RunListener listener = result.createListener();
notifier.addFirstListener(listener);
try {

notifier.fireTestRunStarted(runner.getDescription());
runner.run(notifier);
notifier.fireTestRunFinished(result);

} finally {
removeListener(listener);

}
return result;

}

Listing 5.2 show the example of false clone that report from JUnit4 [45]. We think that

this false clone was reported because both of the source have almost similar method

name and almost same amount line of code.

5.3 Evaluation of Merry Web Application by Users

This evaluation is the user testing to evaluate that the Merry clone detection tool

that is Web Application based is more convenient than the existing command-line based

clone detection tools or not.

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 58

5.3.1 Methodology

To evaluate the web application, we have created the Google form for gathering

the opinions from users. Moreover, we have created a video that contains the basic

concept of code clone and a demonstration of how to use Merry and Simian [8]. Merry

is our web-based that provides a user interface. Simian is a command-line based code

clone detection tool. There are 2 forms for Merry and Simian [8]. Each participant

watches only one video and answers, only one form to avoid bias. There are 7 questions

in Google form below:

1. How much experience in programming that you have?

2. Are you familiar with code clones (duplicated code)?

3. How much code clones (duplicated code) is your concern when you develop soft-

ware?

4. If this Simian/Merry tool will be applied to one of your software project, how

likely will you use it?

5. Did you find the Simian/Merry tool easy to understand (how to run, how to inter-

pret results)?

6. Did you find the Simian/Merry tool easy to use (environment needed to run to the

tool and see the results)?

7. Any other comments on your impression on the Merry tool?

The questionnaire can be found in APPENDIX.

5.3.2 Evaluation Results

From the result of the questionnaires, we found that users want to evaluate users

who evaluate the Merry clone detection tool willing to apply the tool in their software

project more than users who evaluate Simian clone detection tool [8] (existing command-

line based tool). Moreover, most users who evaluate the Merry clone detection tool

evaluate that the tool is easy to use and easy to understand the result. In contrast, users

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 59

who evaluate the Simian clone detection tool mostly evaluate that the tool is difficult to

use and difficult to understand the result. The details are shown in Figure 5.6-Figure 5.11.

Figure 5.6: Question 1

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 60

Figure 5.7: Question 2

Figure 5.8: Question 3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 61

Figure 5.9: Question 4

Figure 5.10: Question 5

Arammongkolvichai, Ausavaserenont, Vichaisri Evaluation Results / 62

Figure 5.11: Question 6

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 63

CHAPTER 6

CONCLUSIONS

This chapter concludes and discusses our project and the results. There are three

sections consist of conclusion, problems and limitations, and future work.

6.1 Conclusion

Merry is a web-based code clone detection tool that use machine learning tech-

niques. We aim to accurately detect clones and improve user experience by making

Merry tool running on a web application. Merry can be divided into 2 parts. The first

part is the Merry engine. We trained 4 machine learning models that are decision tree

(REPTree), random forest, support vector machine (SVM), and Support Vector Machine

using Sequential Minimal Optimization (SVM using SMO). We evaluated the perfor-

mance ofMerry by using BigCloneBench [34]. The evaluation results show that Merry’s

clone detection precision, recall, and F1-score are high, which means the Merry engine

performs well on the BCB database. Another part is the Merry web application. Merry

web application is directly connected with GitHub to make it more user friendly. Ac-

cording to the user study, the Merry web application is found to be easier to use and more

convenient than the command line based tool, Simian.

6.2 Problems and limitations

One of the current version limitations is the tool supports only Java language.

Even our syntactic and semnatic source codemetrics can be able to apply to any language,

this version of the Merry clone detection tool includes only a Java parser and a Java

tokenizer. Therefore, now it can detect only Java language clones.

Code2vec run-time performance is one of our problems and limitations. Because

code2vec is designed to analyze only one source code at a time. Nonetheless, we use

it to create semantic metrics for every method that we parse from all java files in the

software project, it causes the slow run-time.

Arammongkolvichai, Ausavaserenont, Vichaisri Conclusions / 64

The precision and recall that we evaluated Merry on the BCB database might

not reflect its performance on real software projects. For example, JUnit4 shows the

limitations of the tool. JUnit contains less Type-1 and Type-2 clones that can cause the

ratio of the difficult Type-3 clone pairs.

Another limitation is the current version of MongoDB does not support big docu-

ment size. The maximum of the MongoDB document size is limited at 16 megabytes. It

causes theMerry web application not be able to show the visualization of a huge software

project because of its massive number of clones that exceeds 16 megabytes.

6.3 Future work

In the future, we plan to improve Merry to be able to detect clones in other lan-

guages by importing and implementing the function to be able to parse and tokenize other

languages more than just Java.

Second, we aim to improve the code2vec run-time by re-implement it to be able

to run in several threads at a time to improve the run-time performance of code2vec for

making the Merry clone detection tool run faster.

In terms of precision and recall, we aim to trainmultiple machine learningmodels

by clone types and use each model to detect each type of clones. This may improve the

performance of precision and recall by reducing the false positive in the challenging

clones.

To solve the MongoDB limitation, we need to adjust the Merry web application

to query a part of MongoDB document at a time (i.e., divide them into pages). This will

ensure that document is under 16 megabytes and can show on the visualized page.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 65

REFERENCES

[1] “Decision tree learning”, Wikimedia Foundation; Apr 2020, [Online]. Available:

https://en.wikipedia.org/wiki/Decision_tree_learning.

[2] Foundation W.. “Support-vector machine”;, Online; accessed 18 April 2020, [On-

line]. Available: https://en.wikipedia.org/wiki/Support-vector_machine.

[3] Wikimedia. “Precision and recall”; Mar 2020, Online; ac-

cessed 18 April 2020, https:// en.wikipedia.org/ wiki/ Preci-

sion_and_recallDefinition_(information_retrieval_context).

[4] Roy CK., Cordy JR., Koschke R., “Comparison and evaluation of code clone de-

tection techniques and tools: A qualitative approach”, Science of computer pro-

gramming. 2009;74(7):470–495.

[5] Bellon S., Koschke R., Antoniol G., Krinke J., Merlo E., “Comparison and evalu-

ation of clone detection tools”, IEEE Transactions on software engineering;.

[6] Roy CK., Cordy JR., “An empirical study of function clones in open source soft-

ware”, In: 2008 15th Working Conference on Reverse Engineering. IEEE; 2008.

p. 81–90.

[7] Roy CK., Cordy JR., “NICAD: Accurate detection of near-miss intentional clones

using flexible pretty-printing and code normalization”, In: 2008 16th iEEE inter-

national conference on program comprehension. IEEE; 2008. p. 172–181.

[8] Simian T., “Simian tool”, URL http://www redhillconsulting com au/products/

simian;.

[9] MarcusA., Maletic JI., “Identification of high-level concept clones in source code”,

In: Proceedings 16th Annual International Conference on Automated Software En-

gineering (ASE 2001). IEEE; 2001. p. 107–114.

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Precision_and_recall##Definition_(information_retrieval_context)
https://en.wikipedia.org/wiki/Precision_and_recall##Definition_(information_retrieval_context)

Arammongkolvichai, Ausavaserenont, Vichaisri References / 66

[10] Li Z., Lu S., Myagmar S., Zhou Y., “CP-Miner: Finding copy-paste and related

bugs in large-scale software code”, IEEE Transactions on software Engineering.

2006;32(3):176–192.

[11] Göde N., Koschke R., “Incremental clone detection”, In: 2009 13th European

Conference on SoftwareMaintenance and Reengineering. IEEE; 2009. p. 219–228.

[12] Kamiya T., Kusumoto S., Inoue K., “CCFinder: a multilinguistic token-based code

clone detection system for large scale source code”, IEEETransactions on Software

Engineering. 2002;28(7):654–670.

[13] Kamiya T., “The official CCFinderX website”, URL http://www ccfinder net/

ccfinderx html Last accessed November. 2008;.

[14] Baxter ID., Yahin A., Moura L., Sant’Anna M., Bier L., “Clone detection us-

ing abstract syntax trees”, In: Proceedings. International Conference on Software

Maintenance (Cat. No. 98CB36272). IEEE; 1998. p. 368–377.

[15] SimScan T., “URL http://www. blue-edge. bg/simscan”, Last accessed November.

2008;.

[16] Jiang L., Misherghi G., Su Z., Glondu S., “Deckard: Scalable and accurate tree-

based detection of code clones”, In: 29th International Conference on Software

Engineering (ICSE’07). IEEE; 2007. p. 96–105.

[17] Davey N., Barson P., Field S., Frank R., Tansley D., “The development of a soft-

ware clone detector”, International Journal of Applied Software Technology. 1995;.

[18] Krinke J., “Identifying similar code with program dependence graphs”, In: Pro-

ceedings EighthWorking Conference on Reverse Engineering. IEEE; 2001. p. 301–

309.

[19] GabelM., Jiang L., Su Z., “Scalable detection of semantic clones”, In: Proceedings

of the 30th international conference on Software engineering; 2008. p. 321–330.

[20] Komondoor R., Horwitz S., “Using slicing to identify duplication in source code”,

In: International static analysis symposium. Springer; 2001. p. 40–56.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 67

[21] Rouse M.. “What is Web Application (Web Apps) and its Benefits”, TechTarget;

2019, [Online]. Available: https://searchsoftwarequality.techtarget.com/definition/

Web-application-Web-app.

[22] Conallen J., “Modeling Web application architectures with UML”, Communica-

tions of the ACM. 1999;42(10):63–70.

[23] “GitHub”; August 2019 [cited 10 November 2019], [Online]. Available: https://

github.com/.

[24] “The most popular database for modern apps”. MongoDB [cited 1 April 2020];

[Online]. Available: https://www.mongodb.com/.

[25] “WEKA”. Weka 3 - Data Mining with Open Source Machine Learning Software in

Java [cited 1 April 2020];[Online]. Available: https://www.cs.waikato.ac.nz/ ml/

weka/.

[26] “JavaParser”. JavaParser [cited 1 April 2020]; [Online]. Available: http:// java-

parser.org/.

[27] Alon U., Zilberstein M., Levy O., Yahav E., “code2vec: Learning distributed

representations of code”, Proceedings of the ACM on Programming Languages.

2019;3(POPL):1–29.

[28] “CODE2VEC”. code2vec [cited 1 April 2020]; [Online]. Available: https://

code2vec.org/.

[29] “Metric Definitions | SonarQube Docs”; August 2019 [cited 11 November

2019], [Online]. Available: https://docs.sonarqube.org/latest/user-guide/metric-

definitions/.

[30] Koschke R., Bazrafshan S., “Software-clone rates in open-source programs written

in C or C++”, In: 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER). vol. 3. IEEE; 2016. p. 1–7.

[31] Saini V., Farmahinifarahani F., Lu Y., Baldi P., Lopes CV., “Oreo: Detection of

clones in the twilight zone”, In: Proceedings of the 2018 26th ACM Joint Meeting

https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app
https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app
https://github.com/
https://github.com/
https://www.mongodb.com/
https://www.cs.waikato.ac.nz/~ml/weka/
https://www.cs.waikato.ac.nz/~ml/weka/
http://javaparser.org/
http://javaparser.org/
https://code2vec.org/
https://code2vec.org/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/

Arammongkolvichai, Ausavaserenont, Vichaisri References / 68

on European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering. ACM; 2018. p. 354–365.

[32] Vara A., Rainer K., Chaiyong R., Morakot C., Thanwadee S., “Improving Clone

Detection Precision using Machine Learning Techniques”, In: Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. IWESEP; 2019. .

[33] Li L., Feng H., Zhuang W., Meng N., Ryder B., “CCLearner: A deep learning-

based clone detection approach”, In: 2017 IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME). IEEE; 2017. p. 249–260.

[34] Svajlenko J., Roy CK., “Evaluating clone detection tools with bigclonebench”,

In: 2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE; 2015. p. 131–140.

[35] Sajnani H., Saini V., Svajlenko J., Roy CK., Lopes CV., “SourcererCC: Scaling

code clone detection to big-code”, In: Proceedings of the 38th International Con-

ference on Software Engineering; 2016. p. 1157–1168.

[36] Cordy JR., Roy CK., “TheNiCad clone detector”, In: 2011 IEEE 19th International

Conference on Program Comprehension. IEEE; 2011. p. 219–220.

[37] WhiteM., TufanoM., VendomeC., PoshyvanykD., “Deep learning code fragments

for code clone detection”, In: 2016 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE; 2016. p. 87–98.

[38] “Stratified sampling”, Wikimedia Foundation; April 2020, [Online]. Available:

https://en.wikipedia.org/wiki/Stratified_sampling [cited 1 April 2020].

[39] “REPTree”; December 2019 [cited 1 April 2020], [Online]. Available: https://

weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html.

[40] “RandomForest”; December 2019 [cited 1 April 2020], [Online]. Available:

https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html.

https://en.wikipedia.org/wiki/Stratified_sampling
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 69

[41] Choetkiertikul M., Dam HK., Tran T., Ghose A., “Predicting delays in software

projects using networked classification”, In: 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE; 2015. p. 353–364.

[42] “RandomForest”. SMO. December 2019 [cited 1 April 2020];[Online]. Available:

https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMO.html.

[43] Expressjs. “expressjs/express”; 2020, Online; accessed 1 April 2020, [Online].

Available: https://github.com/expressjs/express.

[44] “OAuth”, Wikimedia Foundation; Apr 2020, [Online]. Available: https://

en.wikipedia.org/wiki/OAuth.

[45] JUnit. “JUnit4”;, Online; accessed 18 April 2020, [Online]. Available: https://

junit.org/junit4/.

[46] Joestelmach. “joestelmach/natty”;, Online; accessed 18 April 2020, [Online].

Available: https://github.com/joestelmach/natty.

https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMO.html
https://github.com/expressjs/express
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/OAuth
https://junit.org/junit4/
https://junit.org/junit4/
https://github.com/joestelmach/natty

Arammongkolvichai, Ausavaserenont, Vichaisri Biographies / 70

BIOGRAPHIES

NAME Mr. Vara Arammongkolvichai

DATE OF BIRTH 24 June 1998

PLACE OF BIRTH Nonthaburi, Thailand

INSTITUTIONS ATTENDED Saint Gabriel’s College, 2015:

High School Diploma

Mahidol University, 2020:

Bachelor of Science (ICT)

NAME Mr. Weekit Ausavaserenont

DATE OF BIRTH 11 September 1997

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Saint Gabriel’s College, 2015:

High School Diploma

Mahidol University, 2020:

Bachelor of Science (ICT)

NAME Miss. Wannaporn Vichaisri

DATE OF BIRTH 19 June 1998

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Suksanari School, 2015:

High School Diploma

Mahidol University, 2020:

Bachelor of Science (ICT)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 71

APPENDIX A
MANUAL CLONE VALIDATION RESULTS

Junit4 Manual Validation Result
Total = 187 clone pairs True Positive = 77 pairs False Positive = 110 pairs

Clone
Pair

Number
File Path 1

Start
line
1

End
line
1

File Path 2
Start
line
2

End
line
2

Judge 1
(Vara)

Judge 2
(Wannaporn)

Judge 3
(Weekit)

1
junit4/src/main/java/org/junit/
experimental/theories/
PotentialAssignment.java

17 47 junit4/src/main/java/org/junit/
internal/management/
ReflectiveThreadMXBean.java

48 69 0 0 0

2
junit4/src/main/java/org/junit/
internal/builders/
AllDefaultPossibilitiesBuilder.java

27 43 junit4/src/main/java/org/junit/
internal/runners/SuiteMethod.java

27 40 0 0 0

3
junit4/src/main/java/org/junit/
internal/builders/
AllDefaultPossibilitiesBuilder.java

27 43 junit4/src/main/java/org/junit/
internal/builders/
AnnotatedBuilder.java

80 91 1 1 1

4
junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

219 249 junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

351 366 0 1 0

5
junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

219 249 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 1 0 0

6
junit4/src/main/java/org/junit/rules/
TestWatchman.java

49 63 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

234 245 1 1 1

7
junit4/src/main/java/junit/runner/
BaseTestRunner.java

155 174 junit4/src/main/java/junit/runner/
BaseTestRunner.java

276 297 0 0 1

8
junit4/src/main/java/org/junit/
runners/ParentRunner.java

406 423 junit4/src/main/java/org/junit/
runners/ParentRunner.java

454 470 0 0 0

9
junit4/src/main/java/org/junit/
runners/ParentRunner.java

406 423 junit4/src/main/java/org/junit/
internal/runners/
JUnit4ClassRunner.java

85 99 1 1 1

10
junit4/src/main/java/org/junit/
runners/ParentRunner.java

406 423 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 1 1 1

0 means false or non-clone

1 means true or clone

11
junit4/src/main/java/org/junit/
internal/management/
ReflectiveRuntimeMXBean.java

42 58 junit4/src/main/java/org/junit/
runners/ParentRunner.java

529 542 1 0 1

12
junit4/src/main/java/junit/textui/
TestRunner.java

152 187 junit4/src/main/java/org/junit/
runners/ParentRunner.java

477 510 0 0 0

13
junit4/src/main/java/org/junit/
runners/Parameterized.java

455 470 junit4/src/main/java/org/junit/
runners/ParentRunner.java

454 470 0 1 1

14
junit4/src/main/java/org/junit/runner/
notification/
SynchronizedRunListener.java

117 128 junit4/src/main/java/org/junit/
runners/model/TestClass.java

315 328 1 1 1

15
junit4/src/main/java/org/junit/runner/
notification/
SynchronizedRunListener.java

117 128 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

37 48 1 1 0

16 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

60 82 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

106 126 0 1 1

17
junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

60 82 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

57 84 1 1 1

18
junit4/src/main/java/junit/
framework/
ComparisonCompactor.java

21 32 junit4/src/main/java/org/junit/
ComparisonFailure.java

95 106 1 1 1

19
junit4/src/main/java/junit/
framework/
ComparisonCompactor.java

21 32 junit4/src/main/java/org/junit/
internal/
ArrayComparisonFailure.java

50 65 0 0 0

20
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

56 71 junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

73 88 1 1 1

21
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

56 71 junit4/src/main/java/org/junit/
experimental/categories/
CategoryValidator.java

43 55 1 1 1

22
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

56 71 junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

22 37 1 1 1

0 means false or non-clone

1 means true or clone

23
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

56 71 junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

39 54 1 1 1

24
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

56 71 junit4/src/main/java/org/junit/
internal/builders/
AnnotatedBuilder.java

101 115 0 0 0

25
junit4/src/main/java/org/junit/
internal/runners/
JUnit38ClassRunner.java

102 127 junit4/src/main/java/junit/framework/
TestSuite.java

49 74 0 1 0

26
junit4/src/main/java/org/junit/
internal/runners/
JUnit38ClassRunner.java

102 127 junit4/src/main/java/org/junit/
runners/parameterized/
BlockJUnit4ClassRunnerWithParam
eters.java

59 94 0 0 0

27
junit4/src/main/java/org/junit/
experimental/max/MaxCore.java

123 143 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 0 0

28 junit4/src/main/java/junit/
framework/TestSuite.java

49 74 junit4/src/main/java/junit/runner/
BaseTestRunner.java

95 142 1 1 1

29
junit4/src/main/java/junit/
framework/TestSuite.java

49 74 junit4/src/main/java/junit/framework/
TestSuite.java

121 146 1 1 0

30
junit/runners/
BlockJUnit4ClassRunner.java

91 105 junit4/src/main/java/org/junit/
internal/runners/
JUnit4ClassRunner.java

85 99 1 1 0

31
junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

91 105 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 1 1 0

32
junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

91 105 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 0 0 0

33
junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

91 105 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 1 0 0

0 means false or non-clone

1 means true or clone

34
junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

91 105 junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

116 127 0 0 1

35
junit4/src/main/java/org/junit/
runners/ParentRunner.java

325 338 junit4/src/main/java/junit/textui/
TestRunner.java

112 123 0 0 0

36
junit4/src/main/java/org/junit/
runners/ParentRunner.java

325 338 junit4/src/main/java/junit/runner/
BaseTestRunner.java

253 264 0 0 1

37
junit4/src/main/java/org/junit/
runners/ParentRunner.java

325 338 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 0 1 1

38
junit4/src/main/java/org/junit/rules/
TemporaryFolder.java

232 251 junit4/src/main/java/org/junit/runner/
manipulation/Orderer.java

28 48 0 0 0

39 junit4/src/main/java/org/junit/runner/
FilterFactories.java

21 33 junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

47 69 0 0 0

40
junit4/src/main/java/junit/extensions/
ActiveTestSuite.java

39 54 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 1 1 1

41
junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

119 146 junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

170 188 0 1 0

42
junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

119 146 junit4/src/main/java/org/junit/
internal/runners/statements/
ExpectException.java

15 37 1 1 0

43
junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

119 146 junit4/src/main/java/org/junit/
internal/runners/
JUnit38ClassRunner.java

149 168 0 1 0

44
junit4/src/main/java/org/junit/
experimental/theories/internal/
Assignments.java

110 123 junit4/src/main/java/org/junit/
experimental/categories/
CategoryFilterFactory.java

36 50 1 1 1

45
junit4/src/main/java/org/junit/
experimental/theories/internal/
Assignments.java

110 123 junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

351 366 1 1 1

46 junit4/src/main/java/org/junit/
internal/runners/TestClass.java

72 85 junit4/src/main/java/org/junit/
runners/model/TestClass.java

63 74 0 0 0

0 means false or non-clone

1 means true or clone

47
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

72 85 junit4/src/main/java/org/junit/
runners/model/TestClass.java

244 258 0 0 1

48
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

72 85 junit4/src/main/java/org/junit/
runners/model/TestClass.java

82 97 0 0 0

49
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

72 85 junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

144 158 1 1 1

50
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

72 85 junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 0 0 1

51
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

72 85 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 0 0

52 junit4/src/main/java/org/junit/
runners/ParentRunner.java

301 312 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

234 245 1 1 1

53
junit4/src/main/java/org/junit/
runners/ParentRunner.java

301 312 junit4/src/main/java/org/junit/rules/
ExpectedException.java

255 266 1 0 1

54
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

125 142 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

88 102 1 1 0

55
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

125 142 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 1 0

56
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

125 142 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 1 1 0

57
junit4/src/main/java/org/junit/rules/
ErrorCollector.java

88 100 junit4/src/main/java/org/junit/rules/
ErrorCollector.java

48 59 1 1 0

58
junit4/src/main/java/org/junit/
ComparisonFailure.java

118 129 junit4/src/main/java/org/junit/
ComparisonFailure.java

95 106 0 0 1

59 junit4/src/main/java/junit/textui/
TestRunner.java

134 146 junit4/src/main/java/junit/textui/
TestRunner.java

112 123 0 0 0

60
junit4/src/main/java/org/junit/
internal/runners/ClassRoadie.java

51 67 junit4/src/main/java/junit/framework/
TestCase.java

138 153 0 0 1

61
junit4/src/main/java/org/junit/
internal/runners/ClassRoadie.java

51 67 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

128 144 1 1 1

0 means false or non-clone

1 means true or clone

62
junit4/src/main/java/junit/textui/
TestRunner.java

112 123 junit4/src/main/java/junit/runner/
BaseTestRunner.java

303 320 0 0 0

63
junit4/src/main/java/junit/textui/
TestRunner.java

112 123 junit4/src/main/java/org/junit/rules/
TestWatcher.java

96 108 0 0 0

64
junit4/src/main/java/junit/textui/
TestRunner.java

112 123 junit4/src/main/java/org/junit/runner/
notification/RunNotifier.java

170 182 0 0 0

65
junit4/src/main/java/junit/textui/
TestRunner.java

112 123 junit4/src/main/java/org/junit/
runners/ParentRunner.java

454 470 0 0 0

66
junit4/src/main/java/junit/textui/
TestRunner.java

112 123 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 1 1 0

67 junit4/src/main/java/junit/textui/
TestRunner.java

112 123 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 1 0 0

68
junit4/src/main/java/junit/
framework/JUnit4TestAdapter.java

68 80 junit4/src/main/java/org/junit/rules/
TestWatcher.java

96 108 0 1 0

69
junit4/src/main/java/junit/
framework/JUnit4TestAdapter.java

68 80 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

88 99 0 0 0

70
junit4/src/main/java/junit/
framework/JUnit4TestAdapter.java

68 80 junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

116 127 1 1 0

71
junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

247 264 junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

170 188 0 1 0

72
junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

247 264 junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

214 237 0 1 1

73
junit4/src/main/java/org/junit/runner/
manipulation/Ordering.java

88 99 junit4/src/main/java/org/junit/runner/
manipulation/Ordering.java

31 45 0 0 0

74 junit4/src/main/java/org/junit/
runners/model/TestClass.java

63 74 junit4/src/main/java/org/junit/
runners/model/TestClass.java

244 258 1 0 0

75
junit4/src/main/java/org/junit/
runners/model/TestClass.java

63 74 junit4/src/main/java/org/junit/
runners/model/TestClass.java

82 97 0 0 0

0 means false or non-clone

1 means true or clone

76
junit4/src/main/java/org/junit/
runners/model/TestClass.java

63 74 junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 0 0 0

77
junit4/src/main/java/org/junit/
runners/model/TestClass.java

63 74 junit4/src/main/java/org/junit/
experimental/categories/
CategoryValidator.java

43 55 1 1 1

78
junit4/src/main/java/org/junit/
runners/model/TestClass.java

63 74 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 1 0

79
junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

49 62 junit4/src/main/java/org/junit/
experimental/results/FailureList.java

16 27 0 0 0

80
junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

49 62 junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

204 217 1 1 1

81
junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

49 62 junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

116 127 0 0 0

82
junit4/src/main/java/org/junit/
validator/AnnotationsValidator.java

60 76 junit4/src/main/java/org/junit/
validator/
AnnotationValidatorFactory.java

23 37 0 0 0

83
junit4/src/main/java/org/junit/
validator/AnnotationsValidator.java

60 76 junit4/src/main/java/org/junit/
experimental/categories/
CategoryValidator.java

43 55 1 1 1

84
junit4/src/main/java/org/junit/
validator/AnnotationsValidator.java

60 76 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 1 0

85
junit4/src/main/java/org/junit/
validator/AnnotationsValidator.java

60 76 junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

351 366 0 0 1

86
junit4/src/main/java/org/junit/
validator/AnnotationsValidator.java

60 76 junit4/src/main/java/org/junit/
internal/runners/rules/
RuleMemberValidator.java

167 185 0 1 0

87
junit4/src/main/java/org/junit/runner/
Computer.java

26 44 junit4/src/main/java/org/junit/
internal/ComparisonCriteria.java

96 107 0 1 0

88 junit4/src/main/java/org/junit/runner/
Computer.java

26 44 junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

104 121 0 1 0

0 means false or non-clone

1 means true or clone

89
junit4/src/main/java/org/junit/
ComparisonFailure.java

95 106 junit4/src/main/java/org/junit/
Assert.java

110 122 0 0 0

90
junit4/src/main/java/org/junit/
ComparisonFailure.java

95 106 junit4/src/main/java/org/junit/
internal/ComparisonCriteria.java

96 107 1 0 0

91
junit4/src/main/java/org/junit/
ComparisonFailure.java

95 106 junit4/src/main/java/org/junit/
internal/
ArrayComparisonFailure.java

50 65 0 0 0

92
junit4/src/main/java/org/junit/rules/
TestWatcher.java

96 108 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

88 99 0 0 0

93
junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

106 126 junit4/src/main/java/org/junit/
internal/runners/statements/
ExpectException.java

15 37 1 1 1

94 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

106 126 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

57 84 1 1 0

95
junit4/src/main/java/org/junit/
runners/model/TestClass.java

244 258 junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 0 0 0

96
junit4/src/main/java/org/junit/
runners/model/TestClass.java

244 258 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 1 1 1

97
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

73 88 junit4/src/main/java/org/junit/
experimental/categories/
CategoryValidator.java

43 55 1 1 1

98
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

73 88 junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

22 37 1 1 1

99
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

73 88 junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

39 54 1 1 1

100
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

73 88 junit4/src/main/java/org/junit/
internal/builders/
AnnotatedBuilder.java

101 115 0 0 0

0 means false or non-clone

1 means true or clone

101
junit4/src/main/java/org/junit/
internal/requests/FilterRequest.java

33 44 junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

153 168 0 0 0

102
junit4/src/main/java/org/junit/
internal/requests/FilterRequest.java

33 44 junit4/src/main/java/org/junit/
experimental/results/FailureList.java

16 27 0 0 0

103
junit4/src/main/java/org/junit/
internal/requests/FilterRequest.java

33 44 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 1 0 1

104
junit4/src/main/java/org/junit/
runners/RuleContainer.java

71 85 junit4/src/main/java/org/junit/
runners/RuleContainer.java

55 66 0 0 0

105
junit4/src/main/java/org/junit/
internal/runners/SuiteMethod.java

27 40 junit4/src/main/java/junit/framework/
TestSuite.java

284 297 1 0 0

106 junit4/src/main/java/org/junit/
internal/runners/SuiteMethod.java

27 40 junit4/src/main/java/org/junit/
experimental/max/MaxCore.java

105 121 0 1 0

107
junit4/src/main/java/org/junit/
runners/model/TestClass.java

82 97 junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 0 1 0

108
junit4/src/main/java/org/junit/
runners/model/TestClass.java

82 97 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 0 0

109
junit4/src/main/java/org/junit/
runners/model/TestClass.java

82 97 junit4/src/main/java/org/junit/
experimental/theories/
ParameterSignature.java

107 124 1 1 0

110
junit4/src/main/java/org/junit/
runners/model/TestClass.java

82 97 junit4/src/main/java/junit/framework/
TestCase.java

160 185 0 0 0

111
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

190 202 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

234 245 1 0 0

112
junit4/src/main/java/org/junit/runner/
manipulation/Ordering.java

55 79 junit4/src/main/java/org/junit/runner/
manipulation/Orderer.java

28 48 0 1 0

113 junit4/src/main/java/org/junit/rules/
TestWatcher.java

53 76 junit4/src/main/java/org/junit/rules/
TestWatcher.java

55 74 1 1 1

114
junit4/src/main/java/org/junit/rules/
TestWatcher.java

53 76 junit4/src/main/java/org/junit/
internal/runners/statements/
ExpectException.java

15 37 1 1 0

0 means false or non-clone

1 means true or clone

115
junit4/src/main/java/org/junit/runner/
notification/RunNotifier.java

170 182 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 0 0 0

116
junit4/src/main/java/org/junit/
internal/builders/
AnnotatedBuilder.java

80 91 junit4/src/main/java/org/junit/
runners/parameterized/
BlockJUnit4ClassRunnerWithParam
eters.java

190 202 1 0 1

117
junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

170 188 junit4/src/main/java/org/junit/
internal/runners/statements/
FailOnTimeout.java

214 237 0 1 0

118
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

268 282 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 1 0 0

119
junit4/src/main/java/org/junit/
experimental/max/MaxHistory.java

139 152 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

37 48 0 0 0

120 junit4/src/main/java/org/junit/
experimental/max/MaxCore.java

168 180 junit4/src/main/java/org/junit/
experimental/max/MaxCore.java

105 121 0 0 0

121
junit4/src/main/java/org/junit/
experimental/max/MaxCore.java

168 180 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

70 82 0 0 0

122
junit4/src/main/java/org/junit/
runners/model/
NoGenericTypeParametersValidator.j
ava

24 35 junit4/src/main/java/org/junit/
runners/parameterized/
TestWithParameters.java

55 70 1 0 0

123
junit4/src/main/java/org/junit/rules/
TestWatcher.java

55 74 junit4/src/main/java/org/junit/
internal/runners/statements/
ExpectException.java

15 37 1 1 1

124
junit4/src/main/java/org/junit/rules/
TestWatcher.java

55 74 junit4/src/main/java/org/junit/rules/
ExternalResource.java

46 67 1 1 1

125
junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

146 157 junit4/src/main/java/org/junit/
internal/runners/ClassRoadie.java

69 80 1 1 1

126
junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

146 157 junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

39 55 0 0 0

0 means false or non-clone

1 means true or clone

127
junit4/src/main/java/org/junit/
runners/ParentRunner.java

454 470 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 0 0 0

128
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

234 245 junit4/src/main/java/org/junit/rules/
ExpectedException.java

255 266 1 0 0

129
junit4/src/main/java/org/junit/
internal/TextListener.java

59 73 junit4/src/main/java/org/junit/
internal/TextListener.java

80 92 1 1 0

130
junit4/src/main/java/org/junit/
internal/ComparisonCriteria.java

96 107 junit4/src/main/java/org/junit/
internal/
ArrayComparisonFailure.java

50 65 1 1 0

131
junit4/src/main/java/org/junit/
validator/
AnnotationValidatorFactory.java

23 37 junit4/src/main/java/org/junit/
experimental/categories/
CategoryFilterFactory.java

36 50 0 0 0

132
junit4/src/main/java/org/junit/
validator/
AnnotationValidatorFactory.java

23 37 junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

351 366 0 0 0

133
junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

99 110 junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

144 158 0 0 0

134
junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

99 110 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

144 157 0 1 0

135
junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

99 110 junit4/src/main/java/org/junit/
runners/Parameterized.java

321 335 1 0 0

136
junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

99 110 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 1 1 1

137
junit4/src/main/java/org/junit/
internal/runners/statements/
ExpectException.java

15 37 junit4/src/main/java/org/junit/
internal/management/
ReflectiveThreadMXBean.java

48 69 0 1 1

138
junit4/src/main/java/org/junit/
runners/model/
FrameworkMethod.java

144 158 junit4/src/main/java/org/junit/
experimental/categories/
CategoryValidator.java

43 55 0 0 0

0 means false or non-clone

1 means true or clone

139
junit4/src/main/java/org/junit/
runners/model/
MultipleFailureException.java

86 103 junit4/src/main/java/org/junit/rules/
ErrorCollector.java

48 59 0 0 1

140
junit4/src/main/java/org/junit/
runners/model/
MultipleFailureException.java

86 103 junit4/src/main/java/org/junit/
experimental/results/FailureList.java

16 27 0 0 1

141
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 junit4/src/main/java/org/junit/
runners/Parameterized.java

321 335 1 0 0

142
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 junit4/src/main/java/junit/framework/
TestSuite.java

284 297 0 0 0

143
junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 1 1 0

144 junit4/src/main/java/org/junit/
internal/runners/TestClass.java

42 57 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 0 1 0

145
junit4/src/main/java/org/junit/
experimental/categories/
CategoryValidator.java

43 55 junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 0 1 0

146
junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

39 55 junit4/src/main/java/org/junit/
experimental/results/FailureList.java

16 27 0 0 0

147
junit4/src/main/java/org/junit/
internal/runners/MethodRoadie.java

39 55 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 0 0 1

148
junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

22 37 junit4/src/main/java/org/junit/
experimental/theories/internal/
SpecificDataPointsSupplier.java

39 54 1 1 1

149
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

144 157 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

88 102 0 1 1

150
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

144 157 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 0 1 1

151
junit4/src/main/java/org/junit/
internal/management/
ManagementFactory.java

24 41 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 1 1 0

0 means false or non-clone

1 means true or clone

152
junit4/src/main/java/org/junit/rules/
ExternalResource.java

46 67 junit4/src/main/java/org/junit/rules/
ExternalResource.java

48 65 1 1 1

153
junit4/src/main/java/org/junit/rules/
ExternalResource.java

46 67 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 1 1 0

154
junit4/src/main/java/org/junit/rules/
ExternalResource.java

46 67 junit4/src/main/java/org/junit/
internal/runners/statements/
RunAfters.java

23 40 1 1 1

155
junit4/src/main/java/org/junit/
runners/Parameterized.java

321 335 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

88 102 1 1 1

156
junit4/src/main/java/org/junit/
runners/Parameterized.java

321 335 junit4/src/main/java/org/junit/
experimental/theories/
ParameterSignature.java

107 124 1 1 0

157 junit4/src/main/java/org/junit/
runners/Parameterized.java

321 335 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 0 1 0

158
junit4/src/main/java/org/junit/
runners/ParentRunner.java

388 404 junit4/src/main/java/org/junit/
experimental/theories/
ParameterSignature.java

107 124 0 0 0

159
junit4/src/main/java/org/junit/
runners/parameterized/
BlockJUnit4ClassRunnerWithParam
eters.java

114 144 junit4/src/main/java/org/junit/
runners/parameterized/
BlockJUnit4ClassRunnerWithParam
eters.java

59 94 1 1 0

160
junit4/src/main/java/org/junit/
runners/ParentRunner.java

429 452 junit4/src/main/java/org/junit/
internal/runners/
JUnit38ClassRunner.java

149 168 1 0 0

161
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

88 102 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

104 118 1 1 1

162
junit4/src/main/java/org/junit/rules/
ExternalResource.java

48 65 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 0 0 0

163
junit4/src/main/java/org/junit/rules/
ExternalResource.java

48 65 junit4/src/main/java/org/junit/
internal/runners/statements/
RunAfters.java

23 40 1 1 1

0 means false or non-clone

1 means true or clone

164
junit4/src/main/java/org/junit/
internal/runners/
JUnit4ClassRunner.java

85 99 junit4/src/main/java/junit/framework/
JUnit4TestAdapterCache.java

44 63 0 0 0

165
junit4/src/main/java/org/junit/
internal/runners/
JUnit4ClassRunner.java

85 99 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 1 1 1

166
junit4/src/main/java/org/junit/rules/
TestWatchman.java

46 65 junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 1 1 1

167
junit4/src/main/java/org/junit/
runners/Parameterized.java

442 453 junit4/src/main/java/org/junit/
runners/Parameterized.java

397 408 0 0 0

168
junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

88 99 junit4/src/main/java/org/junit/
internal/
AssumptionViolatedException.java

91 110 0 1 0

169
junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

88 99 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

37 48 1 1 1

170
junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

88 99 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

70 82 1 1 1

171
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 0 0 1

172
junit4/src/main/java/org/junit/
experimental/theories/Theories.java

230 248 junit4/src/main/java/org/junit/
internal/runners/statements/
RunAfters.java

23 40 1 0 0

173
junit4/src/main/java/org/junit/
experimental/results/FailureList.java

16 27 junit4/src/main/java/org/junit/
internal/requests/
MemoizingRequest.java

13 26 1 0 1

174
junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 junit4/src/main/java/org/junit/
experimental/theories/
ParameterSignature.java

107 124 1 0 0

175
junit4/src/main/java/org/junit/
runners/model/TestClass.java

278 300 junit4/src/main/java/junit/framework/
TestCase.java

160 185 0 0 0

0 means false or non-clone

1 means true or clone

176
junit4/src/main/java/org/junit/
experimental/theories/
PotentialAssignment.java

29 45 junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

116 127 1 0 0

177
junit4/src/main/java/org/junit/runner/
JUnitCore.java

131 143 junit4/src/main/java/org/junit/
runners/ParentRunner.java

361 374 0 1 1

178
junit4/src/main/java/org/junit/
experimental/theories/
ParameterSignature.java

107 124 junit4/src/main/java/org/junit/
internal/runners/rules/
RuleMemberValidator.java

167 185 0 0 1

179
junit4/src/main/java/org/junit/
runners/model/TestClass.java

315 328 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

37 48 0 1 0

180
junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

47 69 junit4/src/main/java/org/junit/runner/
manipulation/Filter.java

104 121 1 1 1

181
junit4/src/main/java/org/junit/
experimental/categories/
Categories.java

351 366 junit4/src/main/java/org/junit/
experimental/max/MaxCore.java

105 121 0 0 0

182
junit4/src/main/java/junit/runner/
BaseTestRunner.java

253 264 junit4/src/main/java/org/junit/
runners/ParentRunner.java

529 542 0 0 1

183
junit4/src/main/java/junit/runner/
BaseTestRunner.java

253 264 junit4/src/main/java/org/junit/
runners/
BlockJUnit4ClassRunner.java

116 127 0 1 0

184
junit4/src/main/java/org/junit/
internal/Throwables.java

85 106 junit4/src/main/java/org/junit/
internal/Throwables.java

130 154 1 1 1

185
junit4/src/main/java/org/junit/
internal/TextListener.java

80 92 junit4/src/main/java/junit/textui/
ResultPrinter.java

78 92 1 1 1

186
junit4/src/main/java/org/junit/
runners/Parameterized.java

397 408 junit4/src/main/java/org/junit/
runners/ParentRunner.java

529 542 0 0 0

187
junit4/src/main/java/org/junit/
internal/
AssumptionViolatedException.java

91 110 junit4/src/main/java/org/junit/
experimental/results/
ResultMatchers.java

70 82 0 0 0

0 means false or non-clone

1 means true or clone

Natty Manual Validation Result
Total = 9 clone pairs True Positive = 7 pairs False Positive = 2 pairs

0 means false or non-clone

1 means true or clone

Clone
Pair

Number
File Path 1

Start
line
1

End
line
1

File Path 2
Start
line
2

End
line
2

Judge 1
(Vara)

Judge 2
(Wannaporn)

Judge 3
(Weekit)

1
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

207 236 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

334 380 0 1 1

2
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

207 236 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

551 581 1 0 1

3
nattyw-otest/main/java/com/
joestelmach/natty/Parser.java

186 250 nattyw-otest/main/java/com/
joestelmach/natty/Parser.java

260 326 1 1 0

4
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

289 314 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

169 194 1 0 1

5
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

289 314 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

243 271 1 1 1

6
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

169 194 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

243 271 1 1 1

7
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

169 194 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

80 108 1 1 1

8
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

334 380 nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

551 581 1 0 0

9
nattyw-otest/main/java/com/
joestelmach/natty/
WalkerState.java

446 524 nattyw-otest/main/java/com/
joestelmach/natty/Parser.java

79 159 0 0 0

Merry Manual Validation Result
Total = 8 clone pairs True Positive = 6 pairs False Positive = 2 pairs

0 means false or non-clone

1 means true or clone

Clone
Pair

Number
File Path 1

Start
line
1

End
line
1

File Path 2
Start
line
2

End
line
2

Judge 1
(Vara)

Judge 2
(Wannaporn)

Judge 3
(Weekit)

1

MerryEngine/JavaExtractor/
JPredict/src/main/java/
JavaExtractor/Visitors/
FunctionVisitor.java

25 40 MerryEngine/JavaExtractor/
JPredict/src/main/java/
JavaExtractor/Visitors/
FunctionVisitor.java

42 55 0 0 0

2 MerryEngine/src/main/java/
MethodPair.java

87 105 MerryEngine/src/main/java/
MethodPair.java

72 85 0 1 1

3 MerryEngine/src/main/java/
MethodPair.java

87 105 MerryEngine/src/main/java/
MethodPair.java

107 121 1 0 1

4
MerryEngine/src/main/java/
JavaMethodParser.java

34 58 MerryEngine/src/main/java/
JavaMethodParser.java

61 84 0 1 1

5
MerryEngine/src/main/java/
JavaMethodParser.java

34 58 MerryEngine/src/main/java/
JavaMethodParser.java

88 112 0 1 0

6
MerryEngine/JavaExtractor/
JPredict/src/main/java/
JavaExtractor/
ExtractFeaturesTask.java

36 52 MerryEngine/JavaExtractor/
JPredict/src/main/java/
JavaExtractor/
ExtractFeaturesTask.java

54 67 1 0 1

7
MerryEngine/src/main/java/
JavaMethodParser.java

61 84 MerryEngine/src/main/java/
JavaMethodParser.java

88 112 1 1 1

8
MerryEngine/src/main/java/
MethodPair.java

72 85 MerryEngine/src/main/java/
MethodPair.java

107 121 1 1 1

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	 1
	 2
	 3
	 4
	 5
	 6
	REFERENCES
	BIOGRAPHIES
	APPENDIX A

