
TEDDY: AN AUTOMATED TOOL FOR DETECTION AND

SUGGESTION OF PYTHONIC IDIOM USAGE

เทด็ดีÊ เครืÉองมือสาํหรับการตรวจจบัและแนะนาํการใชง้านสาํนวนรหสัภาษาไพธอน

BY
MR. PURIT PHAN-UDOM 5988023
MR. NARUEDON WATTANAKUL 5988053
MS. TATTIYA SAKULNIWAT 5988098

ADVISOR
DR. CHAIYONG RAGKHITWETSAGUL

CO-ADVISOR
ASST. PROF. DR. THANWADEE SUNETNANTA

A Senior Project Submitted in Partial Fullfillment of
the Requirement for

THE DEGREE OF BACHELOR OF SCIENCE
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Faculty of Information and Communication Technology
Mahidol University

2019

ACKNOWLEDGEMENTS

We would like to give gratitude to everyone who has been involved with the de-

velopment and the success of this project and thank them for their assistance throughout

the entire period of this project. Dr. Chaiyong Ragkhitwetsagul, our senior project ad-

visor, Asst. Prof. Dr. Thanwadee Sunetnanta, our Co-advisor, and Dr. Pisit Paiwattana,

for the help in the technical part of the project. We would also like to thank the Faculty

of Information and Communication Technology, instructors, staff, members for the sup-

port given to us. Lastly, we would also like to thank our families for giving us support

while making this project. The project would not have been this successful without those

mentioned and their support that was offered.

Mr. Purit Phan-udom

Mr. Naruedon Wattanakul

Ms. Tattiya Sakulniwat

Faculty of ICT, Mahidol Univ. Senior Project / iii

TEDDY:ANAUTOMATEDTOOLFORDETECTIONANDSUGGESTIONOFPYTHONIC
IDIOM USAGE

MR. PURIT PHAN-UDOM 5988023 ITCS/B
MR. NARUEDON WATTANAKUL 5988053 ITCS/B
MS. TATTIYA SAKULNIWAT 5988098 ITCS/B

B.Sc.(INFORMATION AND COMMUNICATION TECHNOLOGY)

PROJECT ADVISOR: DR. CHAIYONG RAGKHITWETSAGUL

ABSTRACT

In the present day, software development has been one of the main focuses for

Thailand 4.0 with the aim to integrate Technology and Industrialization. In this field,

many programming languages are being used and each language has its unique format

called coding idioms. For example, in Java, some of the coding idioms are not appli-

cable to Python programming. When programmers switch between many programming

languages, there might be some unfamiliarity that cause the produced program to drop

in quality, or difficult to read and understand.

With the problems stated above, we had the idea of creating a software, named

“Teddy”, that helps in checking the quality during development of Python programs.

Teddy helps programmers detect coding idioms within their source codes and report

the usage of those idiomatic code snippets. Teddy is designed to offer two modes of

operation - prevention and detection mode. The prevention mode supports real-time

idiomatic code detection during code review time in pull requests, while the detection

mode runs a thorough scan of idiomatic and non-idiomatic code over historical commits.

A series of tests and evaluation has been performed, using real software projects

to assess the performance level of the implemented tool. It has been found that Teddy

has high precision for detecting idiomatic and non-idiomatic Python code usage. The

visualization can provide developers insightful information regarding the evolution of

idiomatic and non-idiomatic Python code in their project. This will eventually allow

the programmers understand more about idiomatic Python usage and also help naive

programmers in their learning of Python language.

KEYWORDS: PYTHON, CODING IDIOMS, AUTOMATED ANALYSIS

74 P.

Faculty of ICT, Mahidol Univ. Senior Project / iv

เทด็ดีÊ เครืÉองมือสาํหรับการตรวจจบัและแนะนาํการใชง้านสาํนวนรหสัภาษาไพธอน

นาย ภูริช พนัธ์ุอุดม 5988023 ITCS/B

นาย นฤดล วฒันกลู 5988053 ITCS/B

นางสาว ทตัติยา สกลุนิวฒัน์ 5988098 ITCS/B

วท.บ. (เทคโนโลยสีารสนเทศและการสืÉอสาร)

อาจารยที์Éปรึกษาโครงการ: ดร. ชยัยงค์ รักขิตเวชสกลุ

บทคดัยอ่

ปัจจุบนัการเขียนซอฟตแ์วร์เป็นหนึÉงในการตอบรับนโยบาย Thailand 4.0 ทีÉ มี เป้าหมาย
ในการพฒันาประเทศโดยการประยกุต์ใช้เทคโนโลยีกบัธุรกิจและอุตสาหกรรมภาคส่วนต่าง ๆ ของ
ชาติ ซึÉง มีภาษาทีÉ ใช้ในการเขียนซอฟตแ์วร์ต่าง ๆ อยู่หลายภาษา แต่ละภาษานัÊนจะมีรูปแบบการ
เขียนทีÉแตกต่างกนัเรียกวา่ สาํนวนรหสั หรือ coding idiom ซึÉ งบางครัÊ งสาํนวนรหสับางชุดจะมีรูป
แบบเฉพาะตวัของแต่ละภาษาโปรแกรม ยกตวัอยา่งเช่นการเขียนซอฟตแ์วร์ดว้ยภาษาโปรแกรมเชิง
วตัถุ ในภาษาจาวาอาจมีสาํนวนรหสับางรูปแบบทีÉไม่เหมาะสมสาํหรับการใชก้บัการเขียนซอฟตแ์วร์
ในภาษาไพธอน ดว้ยความรู้ทีÉจาํกดัของผูพ้ฒันาโปรแกรมหรือผูที้Éกาํลงัเรียนรู้ภาษาโปรแกรมใหม่
อาจจะทาํให้เกิดความผดิพลาดของผูพ้ฒันาซอฟตแ์วร์หรือจากการไม่คุน้ชินในการเปลีÉยนจากภาษา
โปรแกรมหนึÉงไปอีกภาษาหนึÉง จุดบกพร่องจากการเขียนโปรแกรมดงักล่าวส่งผลให้ซอฟตแ์วร์นัÊน
ขาดสเถียรภาพและถูกลดทอนในดา้นประสิทธิภาพ รวมถึงในดา้นความปลอดภยัของการปฏิบติัการ
ของซอฟตแ์วร์นัÊน ๆ

จากปัญหาทีÉได้กล่าวมาขา้งตน้ ทางทีมพฒันาจึงมีความตอ้งการทีÉจะสร้างเครืÉองมือในการ
ช่วยเหลือการตรวจสอบและประเมินคุณภาพการเขียนโปรแกรมดว้ยภาษาไพธอนพร้อมทัÊงแนะนาํ
รูปแบบทีÉเหมาะสมโดยอตัโนมติั ซอฟตแ์วร์ดงักล่าวมีชืÉอวา่ Teddy โดย Teddy นัÊนจะสามารถช่วย
ให้ผู ้เขียนซอฟตแ์วร์ดว้ยภาษาไพธอนสามารถตรวจสอบเพืÉอคน้หาปัญหาจากการเขียนโปรแกรม
และนาํเสนอตวัอยา่งทีÉถูกตอ้งให้นกัพฒันาโปรแกรมเขา้ใจรูปแบบการเขียนทีÉถูกวธีิ ทาํให้การเขียน
ซอฟตแ์วร์นัÊนเป็นไปไดอ้ยา่งมีประสิทธิภาพมากขึÊน โดย Teddy นัÊนไดถู้กออกแบบให้มีระบบการ
ทาํงานแบ่งเป็น 2 แบบ ไดแ้ก่ แบบทีÉ 1 (แบบป้องกนั - prevention mode) ในรูปแบบการทาํงาน
นัÊน Teddy จะทาํการหาการใช้ coding idiom ในเวลาจริงจาก pull request ทีÉเกิดขึÊนใหม่ และแบบ
ทีÉ 2 (แบบตรวจจบั - detection mode) จะทาํการคน้หาการใช้ coding idiom จากทุกเวอร์ชัÉนตัÊงแต่
อดีตจนถึงล่าสุดของซอฟแวร์โปรเจคดงักล่าว

Faculty of ICT, Mahidol Univ. Senior Project / v

เพืÉอทาํการทดสอบและประเมินประสิทธิภาพของเครืÉองมือทีÉได้พฒันา ได้มีการใช้โปรเจค
ซอฟแวร์จริงในการวดัระดบัการทาํงาน จากผลการทดสอบนัÊนพบวา่ Teddy สามารถตรวจจบั
การใช้ coding idiom ดว้ยความแม่นยาํทีÉ สูง แผนภาพทีÉ ถูกสร้างขึÊนจากเครืÉองมือนัÊนจะช่วยให้ผู ้
พฒันาทราบถึงขอ้มูลเชิงลึกเกีÉยวกบัการพฒันาของโคด้ภาษาไพธอนทัÊงแบบ idiomatic และ non-

idiomatic ภายในโปรเจคนัÊน ๆ โดยทีÉผูพ้ฒันาเองก็จะสามารถเขา้ใจเกีÉยวกบั idiom ภาษาไพธอน
ใหดี้ยิÉงขึÊนและยงัช่วยในการเรียนรู้เกีÉยวกบัภาษาไพธอนอีกดว้ย ยวกบัภาษาไพธอน

74 หนา้

vi

CONTENTS

Page

ACKNOWLEDGMENTS ii

ABSTRACT iii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF LISTINGS xi

1 INTRODUCTION ... 1

1.1 MOTIVATION... 1

1.2 PROBLEM STATEMENT.. 2

1.3 OBJECTIVE OF PROJECT.. 3

1.4 SCOPE OF THE PROJECT .. 3

1.5 TARGET USERS ... 4

1.6 REPORT STRUCTURE... 4

2 BACKGROUND ... 5

2.1 DEFINITION AND KEYWORDS ... 5

2.2 FUNDAMENTALS .. 6

2.2.1 PYTHON PROGRAMMING LANGUAGE....................... 6

2.2.2 PYTHONIC IDIOMS OR IDIOMATIC PYTHON CODE..... 6

2.2.3 CODE CLONES .. 7

2.3 RELATED WORK.. 12

2.3.1 ON THE USAGE OF PYTHONIC IDIOMS 12

2.3.2 DIGGIT: AN AUTOMATED CODE REVIEW TOOL 12

2.3.3 TOXIC CODE SNIPPETS ON STACK OVERFLOW.......... 13

2.4 TOOLS AND METHODS .. 13

2.4.1 GITHUB .. 13

2.4.2 PROBOT.. 14

2.4.3 SMEE.IO.. 14

vii

2.4.4 ELASTICSEARCH .. 14

2.4.5 VERSION CONTROL SYSTEM..................................... 15

2.4.6 SIAMESE... 15

3 ANALYSIS AND DESIGN ... 17

3.1 SYSTEM ARCHITECTURE .. 17

3.1.1 DETECTION MODE .. 17

3.1.2 PREVENTION MODE.. 18

3.2 USE CASE DIAGRAM ... 19

3.3 DATA FLOW DIAGRAM.. 20

3.3.1 LEVEL 0 .. 20

3.3.2 LEVEL 1 .. 21

3.4 COMPARISON TO RELEVANT TOOLS.................................... 25

4 IMPLEMENTATION .. 26

4.1 IPS AND NIPS PREPARATION.. 26

4.2 SIAMESE CONFIGURATIONS.. 28

4.3 PREVENTION MODE .. 29

4.3.1 TECHNIQUESANDTOOLS INVOLVED INTHE IMPLE-

MENTATION .. 29

4.3.2 IMPLEMENTATION DETAIL.. 29

4.3.3 REQUIREMENTS ... 33

4.4 DETECTION MODE .. 33

4.4.1 TECHNIQUESANDTOOLS INVOLVED INTHE IMPLE-

MENTATION .. 34

4.4.2 IMPLEMENTATION DETAIL.. 34

4.4.3 IP AND NIP VISUALIZATION 35

4.5 USER INTERFACE .. 39

5 EVALUATION AND DISCUSSION ... 40

5.1 DETECTION MODE: IDIOM DETECTION ACCURACY 40

5.1.1 METHODOLOGY ... 40

5.1.2 RESULTS AND DISCUSSION 43

5.2 DETECTION MODE: TEST ON A REAL SOFTWARE PROJECT.. 46

viii

5.3 PREVENTION MODE: USER STUDY 49

6 CONCLUSION ... 50

6.1 CONCLUSION.. 50

6.2 PROBLEMS AND LIMITATIONS .. 50

6.3 FUTURE WORK ... 51

APPENDIX A 53

APPENDIX B 61

REFERENCES 71

BIOGRAPHIES 74

ix

LIST OF TABLES

Page

Table 4.1: Types of IPs and NIPs studied in this project 27

Table 4.2: Key parameters of Siamese configuration 29

Table 4.3: Table showing mapping between the marker and type of IPs/NIPs 36

Table 5.1: Table summarizing the contents inside evaluation data set 41

x

LIST OF FIGURES

Page

Figure 1.1: Comparison between Idiomatic and Non-idiomatic Python coding style

in with open case study .. 2

Figure 2.1: Program dependency graph representation of Java bubble sort code ... 10

Figure 2.2: Abstract syntax tree representation of Java bubble sort code 11

Figure 2.3: Siamese architecture [1] ... 16

Figure 3.1: System Architecture of the project .. 17

Figure 3.2: Simplified View of Detection Mode .. 18

Figure 3.3: Simplified View of Prevention Mode .. 18

Figure 3.4: Use Case Diagram of Teddy System ... 20

Figure 3.5: Data Flow Diagram Level 0 of Teddy System in Prevention Mode 21

Figure 3.6: Data Flow Diagram Level 0 of Teddy System in Detection Mode 22

Figure 3.7: Data Flow Diagram Level 1 of Teddy System in Prevention Mode 23

Figure 3.8: Data Flow Diagram Level 1 of Teddy System in Detection Mode 24

Figure 3.9: Feature Comparison Between Teddy and Other Relevant Tools 25

Figure 4.1: JSON Structure used by GitHub... 30

Figure 4.2: JSON Structure used by Teddy .. 31

Figure 4.3: API response used by GitHub .. 31

Figure 4.4: Teddy’s automated comment into a GitHub pull request 33

Figure 4.5: Overview of the sample visualization .. 37

Figure 4.6: The zoomed view of the sample visualization................................ 38

Figure 4.7: User Interface for Teddy Tool .. 39

Figure 5.1: Table of Siamese’s parameter tuning experiment and the resulting error

measures... 45

Figure 5.2: Visualization of IP and NIP usage in GitHub project Flask............... 47

Figure 5.3: ZoomedVersion of Visualization of IP and NIP usage in GitHub project

Flask.. 48

xi

LIST OF LISTINGS

Page

Listing 2.1: Java implementation of bubble sort algorithm............................... 10

Listing A.1: List of IP dictionary comprehension code snippets 53

Listing A.2: List of IP enumerate code snippets ... 54

Listing A.3: List of IP file reading statement code snippets 55

Listing A.4: List of IP list comprehension code snippets.................................. 55

Listing A.5: List of IP if statement code snippets .. 56

Listing A.6: List of IP string formatting code snippets 57

Listing A.7: List of IP set code snippets ... 58

Listing A.8: List of IP tuple code snippets .. 58

Listing A.9: List of IP variable swapping code snippets................................... 59

Listing A.10: List of IP code formatting code snippets...................................... 60

Listing B.1: List of NIP dictionary comprehension code snippets 61

Listing B.2: List of NIP enumerate code snippets ... 62

Listing B.3: List of NIP file reading statement code snippets 63

Listing B.4: List of NIP list comprehension code snippets 63

Listing B.5: List of NIP if statement code snippets 65

Listing B.6: List of NIP string formatting code snippets 66

Listing B.7: List of NIP set code snippets ... 67

Listing B.8: List of NIP tuple code snippets.. 68

Listing B.9: List of NIP variable swapping code snippets 69

Listing B.10: List of NIP code formatting code snippets 70

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 1

CHAPTER 1
INTRODUCTION

This chapter introduces the overview of this senior project report. It includes the

motivation of the project, the problem statements we tackle, the objectives of the project,

the scope of the project, and the project’s users respectively. Lastly, the report structure

is laid out for which each chapter contains the corresponding contents.

1.1 Motivation

Nowadays, Python is one of the most commonly used programming languages

worldwide [2]. The Python developers include those who are already settled in the com-

munity, the new ones who just start learning how to program, and the experienced ones

from other languages that are transitioning to Python. Each of them have different styles

of writing code.

The programmers who are strongly familiar with Python write code in a so-called

“Pythonic” way, which is a well-accepted way of writing and proved to be readable and

efficient. The naive programmers who just start writing programs may write in the most

simple ways as possible. The proficient programmers, who are transitioning from other

languages to Python, have a chance of using writing styles that are practical in their old

programming language syntax, but unorthodox in Python language.

When programmers write programs in Python language and do not adopt id-

iomatic Python way of writing, it may cause the program to be inefficient or difficult to

read by the Python community. One example of such usage is f = open('file.txt')

and f.close() as displayed in Figure 1.1. These statements within the program can

cause problems when programmers forget the to add in f.close(). On the contrary, the

proper Pythonic idiom for this scenario would be with open() as f: instead, which

would make the program lose performance [3].

In the software development cycle, using Pythonic way of writing code within the

development phase gives the code reviewers a better understanding of the program and

Phan-udom P., Wattanakul N., Sakulniwat T. Introduction / 2

Figure 1.1: Comparison between Idiomatic and Non-idiomatic Python coding style in
with open case study

a smoother work flow. This is in regards that experienced reviewers would have a better

understanding if the codes provided are Pythonic. If there is a software program which

can assist the use of Idiomatic Python coding style, the number of higher-readable Python

code should be produced and also the effort of the Python code reviewers are reduced.

With the reasoning above, we have had the idea of creating “Teddy” as a software

that would help in the detection and prevention of misusing idiomatic Python coding

styles in software. The users of the software would be able to check their code quality

in terms of idomatic coding style. The tool also helps the new programmers to learn and

understand what their flaws are when using Python as a programming language. We,

as the developers of Teddy, believe that Teddy can enhance the standards for Python

language and give the developers in Thailand more understanding of Python, which is a

worldwide and one of the most widely-used programming languages.

1.2 Problem Statement

This project tackles the following problems in nowadays software development:

1. There are only a few studies on Pythonic idioms during the evolution of a software

project.

2. Many naive Python programmers and transitioned experienced programmers from

other languages to Python are not aware of idiomatic Python coding style. They

also do not know when and how to use them in their day-to-day programming

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 3

tasks.

3. The manual process of source code reviews by experts takes a lot of time and

becomes a tedious routinely tasks.

While coding with Python, many programmers are not aware of idiomatic Python

coding style, where it is actually considered to be a significant factor to the readability

and efficiency of the program. The unawareness can potentially lead to certain problems

such as unnecessary computational resource consumption, and functional flaws in the

software program. By having a software that can guide the use of idiomatic coding

style, source codes will be using the same format and give other developers the same

understanding of the code written.

1.3 Objective of project

This project aims to create a software to satisfy the following objectives.

1. To create a software program that can detect idiomatic Python code with high

accuracy.

2. To analyze source codes retrieved from an online source calledGitHub and provide

real-time results on idiomatic and non-idiomatic code statements.

3. To visualize the detected idiomatic Python code usage with a friendly graphical

user interface.

1.4 Scope of the project

The scope of this work is as follow:

1. The proposed tool and techniques allow the users to detect Python idioms within

the source codes automatically.

2. The proposed tool allows the users to see information from GitHub through the

software user interface.

3. The proposed tool is able to be integrated with GitHub and provide a full analysis

report.

Phan-udom P., Wattanakul N., Sakulniwat T. Introduction / 4

4. The proposed tool is designed to work with Python source files only.

5. The proposed tool relies on GitHub API, and hence it only supports GitHub as the

data source.

1.5 Target Users

The project provides numerous benefits within the programming field. Thus, our

target users consist of programmers varying in their field of work. Our project would

also provide benefits in the educational field. The tool would allow teachers and students

to gain benefits in understanding idiomatic Python coding style. By giving an accurate,

fast and automated code review, programmers would be able to obtain a preliminary

review on their codes before sending it to a reviewer. Teachers would be able to have

students use the tool to gain a better understanding in the usage of idiomatic coding sytle

in Python.

1.6 Report Structure

This document consists of six chapters in total. Chapter 1 is this Introduction

chapter. It includes the motivation, problem statement, objective, scope and target users

of our project, and the report structure. Next, Chapter 2 discusses the background con-

cepts, related works, and tools and methods involved in this project. Chapter 3 then

explains the design aspects of our works, with the system architecture, use case dia-

gram and data flow diagram. Chapter 4 is the detail of our implementation, followed by

Chapter 5 being the result of testing and evaluation. Lastly, Chapter 6 summarizes and

conclude the work on this project.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 5

CHAPTER 2
BACKGROUND

With this project aiming to create a software for detecting and analyzing the usage

of idiomatic Python coding style, the understanding of related fundamental concepts is

important. This chapter discusses the key topics related to the project, which include

definitions and keywords, fundamentals, related work, and tools and methods.

2.1 Definition and Keywords

1. Software Program: A software program refers to a set of computer instructions

that is designed to carry out certain tasks, which may or may not receive input or

interact with human as the user of the program.

2. Source Code: Source code refers to a sequence of valid textual commands that can

be compiled or assembled into an executable software program. Source code is

written using a human-readable programming language.

3. Idiomatic Coding Style or Coding Idiom: Coding idiom is the way to express

or write the programming code differently from the traditional syntax of the lan-

guage and let this methodology produces its own particular function. Like human

language, the real context of a certain phrase cannot be interpreted directly by in-

dividual words. For example, in English, “a piece of cake” means something that

is very easy which cannot be translated directly as an actual piece of cake. The

explanation also works for coding idioms, sometimes what may have written code

to perform a specific function in a short style that is allowed by the programming

language syntax. For example, in C, to write increment of a variable, the devel-

oper can declare the statement i=i+1 which can be written in idiomatic C code as

i++.

4. Idiomatic Python (IP) Code: Python code written to execute particular function

by following the principles of Python language that are well-accepted in the com-

Phan-udom P., Wattanakul N., Sakulniwat T. Background / 6

munity [4].

5. Non-Idiomatic Python (NIP) Code: Python code to perform a specific function

that is syntactically correct but do not follow the idiomatic way of writing.

6. Online Repository (or Repository): An online repository refers to a website which

provide online storage, sharing andmanaging of source codes as a service. GitHub

is a famous example of online repository hosting website with its built-in git

version control system.

2.2 Fundamentals

This section explains the concepts and background knowledge in relation to the

project.

2.2.1 Python Programming Language

Python is a high-level programming language first appeared in 1990 [5]. It is

widely used in many fields of information technology research, such as deep learning,

distributed computing, multimedia processing etc. In last 10 years, Python has been

one of 10 most popular programming languages in the world, now ranked at number 2

[6]. Python language is an open-source code with its set of comprehensive libraries and

add-on packages that facilitate different operations for different applications.

Python is practical withmany programming paradigms - procedural, object-oriented,

and functional. The design of Python syntax commands focuses on the inclusion of “sig-

nificant white space”. Unlike other languages where the presence of white space is ig-

nored or looked over, white space such as indentation signifies a grouping of code, called

a block, that is executed within an encapsulating declaration - function, conditional, it-

eration.

2.2.2 Pythonic Idioms or Idiomatic Python Code

Theword Pythonic is defined as an idea or piece of codewhich closely follows the

most common idioms of the Python language [4], rather than implementing code using

concepts common to other languages while the term idiom, in general, means groups

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 7

of words or phrases that have particular meaning that cannot be directly translate from

each word. When putting everything together, we can assume that Pythonic idiom is

the way to write a set of code to execute particular function by following the principle

of Python language. The example of comparison between idiomatic Python code and

non-idiomatic is shown in Figure 1.1 as with open is one of the most popular idiom

used referenced from the study of Alexandru et al. [7]. As it is stated in the paper, top 3

most used Pythonic idioms from 1000 GitHub repository are list comprehension with

the usage of 866 repositories, with statement with the usage of 848 repositories, and

decorator with the usage of 765 repositories.

2.2.3 Code Clones

Code clone refers to a code fragment - a sequence of source codes - being similar

to another code fragment by some given definition. The two similar code fragments then

form a “clone pair”. Clones occur as the result of programmers reusing or reproducing

source codes from external sources, and apply those codes to their own programs [8].

Four different types of clones have been defined, in other words the definitions of

how two code fragments are regarded as similar. Type-1 clones are identical code frag-

ments which different are only in white spaces, layouts and comments. Type-2 clones

extends from the Type-1 plus additional variation in identifiers, literals, and types. Type-

3 takes into account Type-1 and Type-2 with added, changed, or removed statements.

Lastly, Type-4 are syntactically different code fragments which yield the same compu-

tational results.

Consequential issues may follow code cloning without caution and knowledge

about the duplicated solutions. Often the original code fragment contains flaw or errors.

Once the buggy source code is duplicated, so are the errors and bugs inside. The widely

spread errors are now difficult to contain or correct, even when the original copy gets rid

of the mistake. Another problem of code cloning is that the copied codes may violate the

copyright or license of the program. As the result code clone detection and prevention

now plays significant role in quality control of software development.

The process of code clone detection follows a sequence of steps. Pre-processing

is the first step for which any uninterested code segments would be removed, and defini-

Phan-udom P., Wattanakul N., Sakulniwat T. Background / 8

tion of comparison unit is set. Next, the transformation step, is when the pre-processed

codes are converted into some intermediate representation other than the original tex-

tual format, including extraction and normalization. The transformed code is then fed

into a comparison algorithm as for the match detection step. After this, the list of re-

sulting clone pairs is formatted to align with original textual code, passed through post-

processing and filtering by manual analysis or automated heuristics, and aggregation that

combines clone pairs into clone classes.

Of all the clone detection tools, many techniques and technical approaches are

implemented. Four outlining groups of approaches are

1. Textual: The source codes undergo little to no transformation before the actual

comparison takes place. Often the raw source codes are used directly to find clone

pairs.

2. Lexical: Also known as“token-based technique”, the comparing source codes are

converted into “tokens” first, using tokenizer and normalizer modules. Then the

identical sub-sequence of tokens are scanned where matching units are returned

as clones. This technique is more sensitive to minors changes in white spaces and

formatting.

3. Syntactic: A parser is used to convert source codes into parse tree, or “abstract

syntax trees” (ASTs). The generated trees are then processed to search for clones

by either 1) tree matching (finding similar sub-trees) or 2) structural metrics (com-

parison of metric vectors).

4. Semantic: For the semantic approach, the source code is represented as a program

dependency graph (PDG). The nodes suggest expression or statement, while edges

are control and data dependencies. Discovery of clones is by looking for “isomor-

phic sub-graphs” - sub-graphs containing the same number of nodes connected in

the same way - from two comparing PDGs.

In Listing 2.1 is a snippet of Java code, bubble sort implementation. From the

raw source code, demonstration of its abstraction as others forms are shown. Figure 2.1

depicts the program dependency graph representation, where each node is connected by

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 9

two types of dependency edge - data and control. From Figure 2.2, the source code is

converted into an abstract syntax tree.

Phan-udom P., Wattanakul N., Sakulniwat T. Background / 10

Listing 2.1: Java implementation of bubble sort algorithm

public int[] BubbleSort(int[] ar) {
int temp;
for (int i = ar.length-1; i > 0; i--) {

for (int j = 0; j < i; j++) {
if (ar[j] > ar[j+1]) {

temp = ar[j];
ar[j] = ar[j+1];
ar[j+1] = temp;

}
}

}
return ar;

}

Entry

temp = 0 for (i = ar.length; i > 0; i--) return ar

for (j = 0; j < i; j++)

if(ar[j] > ar[j+1])

temp = ar[j] ar[j] = ar[j+1] ar[j+1] = temp

int[] ar

Data dependence

Control dependence

Figure 2.1: Program dependency graph representation of Java bubble sort code

In addition to above, some clone detection tools utilize characteristics of two or

more approaches mentioned, which is considered to be a hybrid combination. However

such trend is rather unpopular.

Since our work is centered around IP detection, therefore it is logically relevant

that the code clone detection pipeline is borrowed, then appropriately adopted into the

detection of coding idioms.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 11

Bu
bb

le
So

rt(
)

as
si

gn
fo

r
re

tu
rn

va
ria

bl
e

na
m

e:
 te

m
p

br
an

ch
va

ria
bl

e
na

m
e:

 a
r

fo
r

co
nd

iti
on

bo
dy

as
si

gn
co

m
pa

re
 o

p:
>

bi
na

ry
 o

p:
 -

va
ria

bl
e

na
m

e:
 i

co
ns

ta
nt

va
lu

e:
 1

va
ria

bl
e

na
m

e:
 i

co
ns

ta
nt

va
lu

e:
 0

va
ria

bl
e

na
m

e:
 i

co
ns

ta
nt

va
lu

e:
ar

.le
ng

th
as

si
gn

co
m

pa
re

 o
p:

<
bi

na
ry

 o
p:

 +

va
ria

bl
e

na
m

e:
 j

co
ns

ta
nt

va
lu

e:
 1

va
ria

bl
e

na
m

e:
 j

va
ria

bl
e

na
m

e:
 i

va
ria

bl
e

na
m

e:
 j

co
ns

ta
nt

va
lu

e:
 0

br
an

ch
br

an
ch

bo
dy

co
m

pa
re

 o
p:

>

co
nd

iti
on

br
an

ch

va
ria

bl
e

na
m

e:
 a

r[j
]

va
ria

bl
e

na
m

e:
 a

r[j
+1

]
as

si
gn

as
si

gn
as

si
gn

if-
bo

dy

va
ria

bl
e

na
m

e:
 te

m
p

va
ria

bl
e

na
m

e:
 a

r[j
]

va
ria

bl
e

na
m

e:
 a

r[j
]

va
ria

bl
e

na
m

e:
 a

r[j
+1

]
va

ria
bl

e
na

m
e:

 a
r[j

+1
]

va
ria

bl
e

na
m

e:
 te

m
p

co
ns

ta
nt

va
lu

e:
 0

co
nd

iti
on

Figure 2.2: Abstract syntax tree representation of Java bubble sort code

Phan-udom P., Wattanakul N., Sakulniwat T. Background / 12

2.3 Related Work

This section discusses the works closely related to the research of this project.

2.3.1 On the Usage of Pythonic Idioms

Pythonic way of coding is not yet particularly defined. In the book “Zen of

Python” by Tim Peters [9], it is mentioned as the obvious way to do the preferable cod-

ing style. On the other hand, in the paper Usage of Pythonic Idioms stated that Pythonic

is the idiomatic style for developing Python [7]. The researcher divided the experiment

into two parts: interviewing Python developers on understanding the concept of IP and

the usage of IP over 1000 GitHub repository.

The result of the second part of the approach shows the popularity and improve-

ment of performance or readability of idioms used in the selected 1000 projects. The re-

searcher of the paper listed and classified the idioms that are used in those 1000 projects

and also make the collection in the website [10]. The information would be the founda-

tion for our tool to detect the usage of IP in the searched projects.

2.3.2 Diggit: An Automated Code Review Tool

Code reviewing can be seen as a common practice in many software development

teams, this would also include the reviewing from communities as well. Code reviewing

thus became a core practice within the software development cycle. With code reviewing

becoming apparent, sometimes there are problems when many codes are being edited in

different areas. Developers would use online version control services such as GitHub to

control these problems.

Although GitHub can be seen as an answer to the coding review problems with a

large number of contributors, the problem of verifying and going through the edits made

still be considered tedious. Thus the solution that Diggit used is to have the GitHub Bot

communicate directly with GitHub to gain access to changes or interactions made to the

codes that are hosted on the GitHub service which allows the manipulation and viewing

from an automated system.

With help from the GitHubAPI, Diggit created a system that has a version control

system in which it checks using association rules when activities have been made on the

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 13

GitHub repository [11]. It then helps in the phase where code reviewers check on the

edits made within the code and make the process faster. Our project would be using the

same method as Diggit, which is using an automated system to interact with a GitHub

repository during a pull request and access the information within the pull request.

2.3.3 Toxic Code Snippets on Stack Overflow

With software development being used in many fields, and with the more pro-

grammers starting to be reliant on the usage of online platforms, such as Stack Overflow

[12]. The code snippets that are found on such platforms are considered by many to be

usable, but in reality there are many flaws, outdated methods or even licensing prob-

lems contained within the snippets [13]. These outdated or codes with flaws can then be

classified as toxic code snippets which are generally unwanted within the source codes.

Toxic code snippets are commonly seen posted in online forums, mostly in the

commonly used platform Stack Overflow. With the most of these snippets not coming

directly from Stack Overflow, but copied from other locations such as an open source

software [13]. Even when there are many toxic code snippets located in Stack Overflow

and it is considered to be dangerous to use, users themselves acknowledge it’s existence

and are aware of these snippets [13].

In the research of Toxic code snippets on Stack Overflow, focuses on the usage

of codes that are considered to be harmful, while bearing some similarities to our project

that focus on the usage of harmful codes within Python.

2.4 Tools and Methods

2.4.1 GitHub

GitHub [14] is an online platformwhich allows its users to be able to interact with

it’s online storage called a repository. The repositories are used to store source codes.

Users is able to view, edit and give contributions to those repositories as a community.

With over 40 million developers [15] on GitHub in the statistics collected on September

30, 2019 and the increasing trend of creating new repositories with 44 percent [16] more

than year 2018 totaling in over 100 million repositories as of August 2019 [15], thus we

choose GitHub to be our main repository.

Phan-udom P., Wattanakul N., Sakulniwat T. Background / 14

With GitHub having it’s own version control system called git and introduced

it during the time when source code version control was not known and used. GitHub

started to attract attention when the system allowed users to be able to work remotely

and have a version control system in which allows ease of access to the developers.

2.4.2 Probot

Probot [17] is a framework created to help give users flexible access to the usage

of GitHub Apps by using Node.js. The framework aims to help users in using GitHub

Apps by handling hard to understand webhooks and GitHub’s tedious authentication

system. With an understandable and easy to write style of coding it allows users to gain

an understanding relatively fast.

2.4.3 Smee.io

Smee.io [18] is a webhook service provider, which was created by the Probot

development team to allow users to create webhooks connecting to GitHub and sends

those information back to the users. A webhook is an access point which allows other

systems to receive certain information from another through HTTP access. Smee.io can

be used in a scenario such as when a system requests to gain access to information on

pull requests from GitHub. The system would connect to the Smee.io webhook, which

monitors the activity on GitHub and relays information to the system.

2.4.4 Elasticsearch

Elasticsearch [19] is a distributed, RESTful search and analytics engine, and a

data storage itself, that relies on Apache Lucene infrastructure and library [20]. The

exchange of user’s queries and results is through REST API commands. It provides

the schema-less JSON document formatting for the retrieved documents, through HTTP

web service.

Inside Elasticsearch, data is stored as JSON documents. Documents which are

related to each other are grouped as an “index”. First, the raw data is parsed, normal-

ized and pre-formatted prior to being indexed. Its ultilization of “full-text search” using

“inverted-index” - a data structure where for every unique word there is a corresponding

list of documents where the word appears in. And because Elasticsearch simultaneously

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 15

updates the inverted-index as new documents are being indexed, therefore the search-

able delay after indexing is very small, almost in real-time.

2.4.5 Version Control System

A version control system (VCS) is software tool capable of managing changes,

usually done by a team of programmers, to the source code over time [21]. AVCS has the

ability to keep track modifications, compare two versions of the same pieces code from

two different times, and revert or merge versions of source code. A series of versions,

where one is the result of modifying a preceding version, forms what is called a branch.

Master Branch

Master branch is the permanent primary branch for every source code whom a

version control system is applied to. Source code with VCS is required to have at least

this one branch. The master branch represents the root mainstream, where every version

has passed testing, and all the source codes are in stable, ready-to-deploy state. Version

updates on this branch should be not frequent as the experimental or testing stage will

occur in developing branch(s).

Developing Branch

Developing branch is a secondary branch that diverts from a pre-existing root

branch, tracking version changeswithin its own branch independent from the root branch.

The purpose of it is to “containerize” a developing or ongoing activity from the more

stabilized branches, or other unrelated branches. Once the development or changes of a

developing branch ended, the final content can then be merged into the root branch or

master branch, through a “pull request”.

2.4.6 Siamese

Developed by Ragkhitwetsagul C. and Krinke J., “Siamese” is a code clone

search tool with high degree of scalability via multiple code representation [1]. The tool

is written in Java and supports clone detection of Java and Python languages. It works

with Elasticsearch 2.2.0 to index and retrieve source codes needed to perform clone de-

tection process. Siamese is capable of detecting Type-1, Type-2, Type-3 and Type-4 by

Phan-udom P., Wattanakul N., Sakulniwat T. Background / 16

transforming raw source code into intermediate representation format as tokens, using

parser, normalizer and tokenizer for respective programming language. The tool does

not provide a graphic interface and can only be controlled via command-line interface.

Figure 2.3 depicts the architecture of Siamese program, incorporating the small steps

from indexing and retrieval, to outputting the results of clone search.

Figure 2.3: Siamese architecture [1]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 17

CHAPTER 3
ANALYSIS AND DESIGN

This chapter covers the analysis and design which covers the explanation of sys-

tem architecture, use case diagram, and data flow diagrams (level 0 and level 1).

3.1 System Architecture

The software aims achieve two different processes with similar tasks as seen in

Figure 3.1. The tasks would be the ability to detect IP within a source code and analyze

thosewithin the source codewith a database containing tokenized IP.While themain goal

is the same, the two different process will act differently during the data collection and

processing, with the first being Detection mode and the latter called Prevention mode.

Activity Logs

Smee.io

Prevention Mode Detection Mode

Source Code

Teddy

Pull Request

JSON Request

Code Reviewer

JSON

JSON

Siamese

Probot

GitHub API

GitHub Auto-comment

JSON Response

Elasticsearch 2.2.0

Search()

Result()

Developer

GitHub

Pull Request

Commit and Push

Figure 3.1: System Architecture of the project

3.1.1 Detection Mode

In detection mode, we will access the source code within a repository in GitHub

and acquire the source code to run on our software. The source code will be sent directly

to Teddy through Siamese to only send important IP for Teddy to analyze. After that it

Phan-udom P., Wattanakul N., Sakulniwat T. Analysis and Design / 18

will be sent to a graphical user interface to show the users on what problems have been

detected regarding IP.

Source Code

JSON

AnalysisUser Interface
Result

Siamese

Figure 3.2: Simplified View of Detection Mode

3.1.2 Prevention Mode

In prevention mode, the software will be designed to be active at all times and

run on a real-time analysis. The prevention mode is also divided into two major parts

which are the communication part with GitHub and the analysis part.

Activity Logs

Smee.io

Pull Request

Siamese

JSON

Analysis
JSON

User Interface
Result

Figure 3.3: Simplified View of Prevention Mode

Communication with GitHub

In the first part will be the modules that works with external services outside of

Teddy. Whenever GitHub has any activities there will be information sent to Smee.io,

Teddywould target whenever there are information sent regarding pull requests and parse

only the updated code snippets.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 19

Analysis within Teddy

After the code snippets are extracted, Probot will send the code snippets as JSON

files to Siamese. Siamese will then compare the code snippets and use it to obtain related

tokenized Pythonic iddioms within the database. Finally at the Analysis and User Inter-

face, users will be able to see the what parts of the snippets are Non-idiomatic Python

code.

3.2 Use Case Diagram

In the use case diagram, Teddy interacts with three external actors and entities -

GitHub, Developer, and Code Reviewer. There are three use cases.

First, Retrieving Source Code, is when the developer gets the wanted repository

from GitHub (both for the prevention and protection mode). GitHub is the secondary

actor that receives the request from Teddy, and in return gives back the clone (contents)

of that repository.

Next, after Teddy complete its function of IP detection or prevention, both De-

veloper and Reviewer can view its results. In detection mode, the developer and code

reviewers see the result of Python idiom usage within the entire chunk of source codes.

In Prevention Mode, on the other hand, Teddy uses code snippet inside the pull request

as the input and analyze for idiom usage within the snippet. Then, developer and code

reviewers can see the analysis result of the snippet done by Teddy.

Phan-udom P., Wattanakul N., Sakulniwat T. Analysis and Design / 20

Figure 3.4: Use Case Diagram of Teddy System

3.3 Data Flow Diagram

3.3.1 Level 0

In preventionmode, Figure 3.5, the data comes from three external entity: GitHub

which is the repository, Code Reviewer, and Developer of the project. Once the devel-

oper chooses the source code to be used in the tool,the request for source code will be

sent to the repository, then the pull request log and the source code will be sent to the

system. After the pull request is analyzed by the system, the pull request analysis will be

sent to the code reviewer. Spontaneously, the pull request analysis and the source code

will be used in the system to analyze the result. After the system gets all of the result, it

will generate the report and sends the report to the code reviewer and the developer.

In detection mode, Figure 3.6, the external entities are only GitHub and Devel-

oper. Firstly, the developer would enter the GitHub URL to let Teddy send the URL to

receive the repository. Then, Teddy extracts all of the commits to use in the last step.

Finally, after getting the commits, Teddy would generate the visualization with IPs and

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 21

Figure 3.5: Data Flow Diagram Level 0 of Teddy System in Prevention Mode

NIPs and send them back to the developer.

3.3.2 Level 1

The inner part of prevention mode composes of four main processes: 1. Get

source code from repository 2. Extract code snippet 3. Search idiom 4. Generate report.

Firstly, for the get source code from repository process, the external entity would select

the repository to be cloned in the system. The request for the source code would be sent

out to the repository and the pull request log and source code will be sent back to the

system. Then, they will be passed to the extract code snippet process which analyze the

sent elements and deliver it as pull request analysis to the outside of the system. One

more product of the process which is the JSON snippet, along with the source code, will

be sent to the search idiom process which is done by the automated system. The system

will send the JSON snippet as JSON query to search the idiom in the idiom database

which will be resulted in the form of relevant JSON result. After the search, the result

will be generated into the full detailed report and sent back to the external entity outside

of the system.

For detection mode, the inner part of the system consists of three main processes:

1. Get GitHub repository 2. Extract GitHub commits 3. Generate visualization. For the

first step, the systemwould receive GitHubURL as an input from the external entity, then

pass the URL to GitHub to access to GitHub repository. After that, the second procedure

starts. The system would obtain commits from the repository and pass to the part that

Phan-udom P., Wattanakul N., Sakulniwat T. Analysis and Design / 22

Figure 3.6: Data Flow Diagram Level 0 of Teddy System in Detection Mode

has responsibility on the visualization. Finally, the system will generate the visualization

in the form of HTML page based on the information extracted from the commits.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 23

Figure 3.7: Data Flow Diagram Level 1 of Teddy System in Prevention Mode

Phan-udom P., Wattanakul N., Sakulniwat T. Analysis and Design / 24

Figure 3.8: Data Flow Diagram Level 1 of Teddy System in Detection Mode

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 25

3.4 Comparison to Relevant Tools

As seen in Figure 3.9, we have compared Teddy against two other tools that

achieve similar objectives. Our criteria that is used to compare and show distinct features

include IP, automated review, GitHub integration, and a standalone user interface. The

criteria were chosen based on the importance in regards to the objective of this project

and the relevancy to the features that our tool can provide.

Pythonic Idioms Automated Review

Diggit Automated
Code Review
Chatley	R.,	Jones	L.,	
(2018)

GitHub Integration Standalone UI

https://smartbear.com

Figure 3.9: Feature Comparison Between Teddy and Other Relevant Tools

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 26

CHAPTER 4
IMPLEMENTATION

This chapter contains the implementation of this project which will be divided

into four sections: IPs and NIPs preparation, the prevention mode, the detection mode,

and the user interface.

4.1 IPs and NIPs Preparation

From the literature review, we decided to collect each type of idioms from the

references that we have found. Then, we extract as many distinct coding patterns of

both IPs ad NIPs as we can from examples that each source presents. After complete

collecting, we rearrange the code patterns into separated different documents for each

type of idiom to use later in pattern matching procedure with Siamese.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 27

Table 4.1: Types of IPs and NIPs studied in this project

Type Name Description Amount
IP dictionary

comprehension
Declaration of dict variable and assigning its
elements in a single statement

7

IP enumerate for-loop iteration using enumerate function 8
IP file reading

statement
Using with open() as ... to open a file 5

IP list
comprehension

Declaration of list data type and assignment
of elements in a single statement

7

IP if statement Using implicit truthfulness for if condition
statement

11

IP string
formatting

Concatenation of multiple string formatting
statements, use of .format() with
placeholder(s) in a static string

3

IP set Using set data type to create a unique collection 4
IP tuple Unpacking data for multiple assignment at once 4
IP variable

swapping
Using tuple to swap values between two or more
variables

4

IP code
formatting

Proper use of indentation for code blocks and
writing one statement per one line

2

NIP dictionary
comprehension

Separate declaration and for-loop element
assignment of a dict variable

6

NIP enumerate for-loop iteration without enumerate 6
NIP file reading

statement
File opening without using with open() as
...

5

NIP list
comprehension

Separate declaration and for-loop element
assignment of a list variable

8

NIP if statement direct comparison of variable with True, False,
or None

12

NIP string
formatting

Sequence of one string formatting commands
per one line, using '+' to concatenate static string
and variable(s) together, or using '%' as string
variable placeholder

7

NIP set Using for-loop to create a unique collection of
item

4

NIP tuple Explicitly assigning variables with elements in
a collection

4

NIP variable
swapping

Using a temporary variable to swap two
variables' values

4

NIP code
formatting

Using ';' to put more than one statement in a
single line

2

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 28

4.2 Siamese Configurations

Siamese allows for flexible customization of its search configuration with many

different parameters in the configuration. From the array of over 50 individual parame-

ters available for adjusting, the following are key parameters that are major factor to the

result of this study.

From Table 4.2, there are three key parameters included. They are originally

designed to work with code clone detection, in which we have applied them to the NIP/

IP detection in particular.Value assigned to each of them has significant effect to the

outcome of IPs/NIPs search results. Details regarding how the configuration’s values

are set for Siamese to perform at the best possible degree is included in Chapter 5.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 29

Table 4.2: Key parameters of Siamese configuration

Name Description Value Options

Clone similarity
computation
method

Used to select the method of
computing the numerical sim-
ilarity value between a query
method and an index method

none,
fuzzywuzzy,
tokenratio

Multi-
representation
similarity thresh-
old

The percentage value that rep-
resent the threshold of the
computed clone similarity for
four type of code representa-
tion (Type 1, Type 2, Type 3
and Type 4)

0% - 100%

Multi-
representation
n-gram size

The length of consecutive to-
kens that form into a tuples to
generate multi-representation
formats (Type 2, Type 3, and
Type 4) of the original code

At least 1

4.3 Prevention Mode

Prevention mode, one of the core features of this project, allows users to be able

to get instant feedback of IPs and NIPs found in their pull requests from an automated

process. The process would involve the usages of GitHub’s API and Bots to help show

the results to the users.

4.3.1 Techniques and Tools Involved in the Implementation

1. GitHub API - An API provided by GitHub that is used to communicate and han-

dle activities within GitHub, these API’s can be used to read the activities in a

repository and make changes within the GitHub repository.

2. Node,js - Used as a server handler for Teddy, Node will handle receiving activities

fromGitHub and sending it to Siamese, it would also handle the usage of GitHub’s

API.

3. Siamese - Handles the usage of IPs and NIPs. It would send suggestions back to

NodeJs to be passed onto GitHub.

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 30

4.3.2 Implementation Detail

Prevention mode can be split into 4 major parts which has specific functions

needed tomake the whole pipeline working. First, whenever activities happen onGitHub

a system has to be designed to intercept those activities and sent for analysis. The second

part is designing a way for the activities to be accepted into our system and parse only

certain parts of the activities which include the commit ID and the edits content. Next, the

activities would be sent to Siamese in which Siamese would use the edits content to scan

for IP and NIP code fragments, and retrieve recommendation data for each NIP fragment

found. Lastly, the system would then send back a response containing the components,

which are the File name and suggestions of Idiomatic Python back to GitHub.

Figure 4.1: JSON Structure used by GitHub

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 31

Figure 4.2: JSON Structure used by Teddy

Communication Between GitHub and Smee.io

In the first phase, we target information from GitHub, in which whenever an

activity happens on GitHub there would be logs generated to keep track on what happens.

GitHub allows the integration of Bots and Webhooks to interact with these information.

Smee.io was chosen as the candidate to be theWebhook between our Probot and GitHub.

Thus, Probot with Smee.io was used to receive important data from GitHub, such as the

Repository, UserID, and PullRequestID. The data would then sent to Teddy as a JSON

file with GitHub’s generic structure.

Figure 4.3: API response used by GitHub

Extracting data from Smee.io

Once the JSON has been received from Smee.io, Probot would comb through

the JSON file and obtain necessary information, such as the commit id, files editted and

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 32

edits made. The information would then be parsed to only contain certain information

according to our JSON structure Figure 4.2. The JSONwould then be sent off to Siamese

for further processing.

Siamese and Idiom Matching

ASpring Boot framework was integrated into Siamese which is originally a com-

mand line tool without anymodule to support HTTP requests. By having datamodel Java

class files that replicate the structure of GitHub JSON object (Figure 4.1), SiameseX, as

a Spring Boot Application, can handle an incoming HTTP POST request containing the

commit content in JSON format. The structure of the received JSON and sample values

of each field can be seen in Figure 4.2. Then, the values from edit attributes, where

the actual code changes of the pull request’s commits is located, are extracted and put

together as a query that is used to match with IPs and NIPs within the search index,

i.e., the idiom database. Inside the index contains 113 code snippets of different IP and

NIP types, including the recommendation correcting pattern for each NIP. If there is a

match between an NIP from the query and a NIP sample in the index, the corresponding

correcting pattern for that NIP type is retrieved from the index and included as part of

response’s payload.

Response and Commenting on a Pull Request

SiameseX sends back a response containing the original pull request information

it received with similar JSON structure and the added NIP correction recommendation

patterns - an additional attribute added to the “chunk” structure inside the JSON object.

Finally, Siamese sends the serialized form of JSON response object back to Probot. Dur-

ing this, Probot creates a direct connection to the GitHub API, then makes a comment

and a pass-check directly to the pull request as in Figure 4.4.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 33

Figure 4.4: Teddy's automated comment into a GitHub pull request

4.3.3 Requirements

As many tools created, there are requirements that need to be met for the tool to

operate and function properly. Here are the requirements needed for this tool to function.

1. A private/public GitHub Repository

2. The GitHub user called “TeddyMuict” must be added as a collaborator in the

Repository

3. The GitHub Bot “Teddy” must be installed into the project.

4. The Bot “Teddy” must have permissions to comment on pull request.

4.4 Detection Mode

The detection mode works by providing a visualization of usage of IPs and NIPs

across historical versions of source code of a GitHub repository. This is for the code

developers to gain quick perception of how the software project has developed in terms

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 34

of usage of IPs and NIPs, and make changes to their codes accordingly to improve code

readability and performance.

4.4.1 Techniques and Tools Involved in the Implementation

Implementation of detection modes is done by incorporating a set of tools and

techniques which are available, and adjust them to accommodate the application.

1. GNU Bash [22] - Because detection mode itself consists of several self-sustained

modules and components with little to none built-in interactive functions to relay

the data with other modules, bash script has been used in order to manage the

sequence of modules’ execution and direct the flow of data that occurs within the

detection mode.

2. git vcs [23] - git version control system is needed as detection mode runs as

offline program. Therefore, to be able to retrieve the online repository data from

GitHub, git command lines are used for cloning and controlling versions of the

software project.

3. Siamese [1] - Siamese is implemented as a search engine that looks for IPs and

NIPs within the cloned software repository, and report the search results in form

of csv files. Its query is a set of pre-selected IP and NIP sample code snippets.

4. Bokeh [24] - Bokeh, an interactive visualization library for Python, is used to

produce the final visualization of IPs and NIPs in detection mode. The format is

that of a html file.

4.4.2 Implementation Detail

As briefly mentioned earlier, GNU bash commands are necessary to connect the

individual modules that makes up detection mode together, and direct the flow of data in

proper manner. Thus all the commands to execute each module are written in the script.

First, a git command is executed to clone a selected repository (the URL must

be provided as an argument when executing the script). The specified repository is then

cloned and located at where the script is. Next, the script utilizes git checkout to

revert the version of the repository to its first commit version as the iteration begins.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 35

Next, for each commit version in the iteration, the script trigger the execution

of siamese.jar which handles the indexing of the cloned repository (of that commit

version) into the running Elasticsearch, and query that index with a prepared set of PIs

andNIPs code snippets. Once Siamese completes the querying process, the search results

is written into a .csv file.

After Siamese completes it process for one iteration of a commit version, the

script instructs the version of the repository to be shifted to the next version. This step

is repeated until Siamese finishes searching for the latest commit version of the cloned

repository.

With one search result file generated for one commit version, the visualization

module then takes all of the .csv files as input to further processing for the visualization.

Finally, an interactive visualization plot of IPs and NIPs is produced and put in a local

.html file.

4.4.3 IP and NIP Visualization

The visualization is done by contribution of the tool Python Bokeh 2.0.1 in the

form of scatter plot represents the occurrences of both IP and NIP in each file in every

commit in a Python project from GitHub.

The red legend is the representative of NIP while the green one is for IP. The

different marker of the plot also used for identifying each type of idiom we have chosen

to visualize which will be detailed as mapping between the markers and the idioms as in

Table 4.3.

Figure 4.5 illustrates overview of the visualization of Teddy’s detection mode.

The x-axis represents the commit ID of the project while the y-axis represents the file

name of each files including in the project. The green legend of the scatter plot illustrates

the IP and the red legend is for NIP.

The zoomed version of the visualization is shown in Figure 4.6. From the fig-

ure, it can be seen that the scatter plot has different markers which represents each type

of idioms. In our case study, we have the idiom in total for 10 types including: dictio-

nary comprehension, enumerate, file reading statement, list comprehension, if statement,

string formatting, code formatting, set, tuple, and variable swapping.

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 36

Table 4.3: Table showing mapping between the marker and type of IPs/NIPs

IPs/NIPs Marker symbol
Dictionary Comprehension # (Circle)
Enumerate △ (Triangle)
File Reading Statement □ (Square)
List Comprehension ◇ (Diamond)
If Statement 7 (Hex)
String Formatting ∗ (Asterisk)
Code Formatting ⊗ (Circle Cross)
Set × (Cross)
Tuple ▽ (Inverted Triangle)
Variable Swapping ⊠ (Square Cross)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 37

Fi
gu
re

4.
5:

O
ve
rv
ie
w
of

th
e
sa
m
pl
e
vi
su
al
iz
at
io
n

Phan-udom P., Wattanakul N., Sakulniwat T. Implementation / 38

Fi
gu
re

4.
6:

Th
e
zo
om

ed
vi
ew

of
th
e
sa
m
pl
e
vi
su
al
iz
at
io
n

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 39

4.5 User Interface

Figure 4.7 shows the user interface which has been designed for minimal inter-

action with full usability, users will not have to navigate through settings as most of the

process will be automated. The user interface will be divided into two sections, Detection

and Prevention. In the Detection mode, users will simply have to put in the repository

link and everything else will be automated as explained in Section 4.4, once the process

is done, a new page would pop up showing the results. As for the Prevention mode, users

will have to follow the instructions, which require them to allow “TeddyMuict” into their

repository as a collaborator and Install “TeddyBot”, the rest after that is automated and

runs immediately when a pull request is created as explaiend in Section 4.3.

Figure 4.7: User Interface for Teddy Tool

Phan-udom P., Wattanakul N., Sakulniwat T. Evaluation and Discussion / 40

CHAPTER 5
EVALUATION AND DISCUSSION

This chapter will focus on the Testing and User Evaluations of Teddy tool includ-

ing the detection mode on synthetic dataset to evaluate its detection precision and recall,

the detection mode on real software project (Flask), and the planned user study.

5.1 Detection Mode: Idiom Detection Accuracy

5.1.1 Methodology

Before Teddy could be run on a real software project, an evaluation experiment

was conducted to verify its performance and make sure it can correctly return results

as desired, or that there is any adjustments to be made if otherwise. A set of syntactic

unbiased data set was created, with some objective error measures which are used to

carry out the assessment.

Evaluation Dataset

To make a ground-truth data set for evaluation of Teddy, a collection of Python

code has been prepared accordingly. In order to assure that there is no bias in the testing

set, the prepared code has been from third-party sources - mainly the GitHub repository

of Flask, Tensorflow and Manim.

Within the data set consists of three groups of Python code files, as shown in

Table 5.1. The first group - the normal code - is the group of Python codes that do not

pertain parts relevant to being classified as neither NIP nor IP. There are a total of 30

files for this group. The second group - the IP group - represents 20 snippets of IP code

(one snippet per one file), each of which is sampled from the three open-source Python

projects, as well as other online sources. And the third group - the NIP group - consists

of 20 NIP code snippets (one snippet per one file) that are also picked from the similar

sources as the IP group.

To be able to systematically extract IP and NIP snippets from hundreds of source

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 41

code files, representative regular expressions are created for each of the IP and NIP type.

Then, a tool called CCGrep [25] is employed to use those expressions as search inputs

to obtain possible IP/NIP codes in the actual software repository files. The given results,

however, has to undergo manual filter once more.

Among 20 IP and NIP code files, 2 samples for each of IP and NIP types are

included. In total, with the normal codes, there are 70 Python files in this ground-truth

testing data set.

Table 5.1: Table summarizing the contents inside evaluation data set

File group Description Number of files
Normal code Python codes without any IP or NIP

statements
30

IP code Python codes with IP statements 20
NIP code Python codes with NIP statements 20

Total 70

Experimental Framework

As detection mode aims to find and label different IP and NIP code snippets

within historical versions of a software repository, the experiment has been designed to

simulate one iteration of such scenario. A set of IP and NIP code snippets, 55 IP snippets

and 58 NIP snippets, have been prepared and used to query for IP and NIP code inside

the ground-truth data set.

The focus is to optimize and adjust the search parameters of Siamese search en-

gine so that it can accurately find and match the IP and NIP codes in the query with those

in the data set. The following error measures are used as assessing benchmarks for one

particular parameter setting.

Error Measures

• Mean Average Precision (MAP) - The mean average precision is the mean value

of average precision values over all the queries. The average precision is com-

puted from different recall level, i.e., each time a relevant document is found. It is

defined as

Phan-udom P., Wattanakul N., Sakulniwat T. Evaluation and Discussion / 42

MAP(Q) =
1∣Q∣ ∣Q∣

∑
j=1

1∣mj∣ ∣mj∣
∑
k=1

Precision(Rjk) (5.1)

where Q is the set of the queries {q1, q2, ..., q∣Q∣}, mj is the set of relevant results

for a query qj , Rjk is the set of ranked retrieved items from the first-ranked item

until a relevant document dk, and Precision(X) is the function to compute normal

precision for X .

• Query Recall (QR) - Query recall is the measure to evaluate how complete is the

number of relevant items retrieved in respect to the subset of queries whose results

are not empty (called “returned queries”). QR for a set of returned queries r is

defined as:

QR =
1∣r∣ ∣r∣

∑
i=1

∣RRIi∣∣TRIi∣ (5.2)

where RRIi is the set of retrieved relevant items and TRIi the set of all relevant

items for the i-th returned query, respectively.

For this particular evaluation, the total number of relevant items (TRIi) inside the

data set is two for every IP/NIP query. Therefore, the possible values of recall for

a single query can either be 0 (∣RRIi∣ = 0), 0.5 (∣RRIi∣ = 1), or 1 (∣RRIi∣ =
2). After summing all the recalls of every returned query, the final QR is then

computed by averaging the summed amount by the number of returned queries∣r∣.
• Overall Recall (OR) - Overall recall is the measure to evaluate how complete is

the number of relevant items retrieved in respect to the entire set of query R:

QR =
1∣R∣ ∣R∣

∑
i=1

∣RRIi∣∣TRIi∣ (5.3)

where RRIi is the set of retrieved relevant items and TRIi the set of all relevant

items for the i-th query, respectively.

In contrast to the error measure QR, OR also takes into account the queries which

are not returned any result, in other words having empty list of results. For exam-

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 43

ple, provided that there are a total of 113 individual IP and NIP snippet queries,

if 88 of them are returned with non-empty list of results, the error measure QR is

computed using the set of 88 returned queries while OR also considers the remain-

ing 25 queries which have empty results.

• Mean Reciprocal Rank (MRR) - The mean reciprocal rank is the average of the

reciprocal ranks of results for a sample of queries Q:

MRR =
1∣Q∣ ∣Q∣

∑
i=1

1

ranki
(5.4)

where ranki refers to the rank position of the first relevant document for the i-th

query. In our implementation, the reciprocal rank of a query (equivalent to a row in

the csv output file) is the multiplicative inverse of the rank of the first true-positive

match between the IP/NIP of the query and IP/NIP of the data set. The reciprocal

rank of each individual row is added together and averaged by the number of rows

in that file.

5.1.2 Results and Discussion

The results from running the experiment underwent thorough manual analysis

and evaluation of the author, using the error measures previously mentioned. With a

vast array of adjustable parameters in Siamese’s search engine configuration, the margin

of variance for error measures is from as low as 0.04 to the best case’s of 1.

After several trial-and-errors with different settings over 40 variations, it has been

observed and concluded that the following group of tests, in Figure 5.1, has the best

overall results across the four error measures used.

From the table, only the similarity computation method and multi-representation

similarity thresholds are the independent variables of interest while the other remaining

settings are fixed as controlled variables. For each of 3 different multi-representation

similarity threshold permutations - set1 (50-40-30-20), set2 (40-40-40-40), and set3 (0-

0-0-0) - two sub-variations between clone similarity computation method of tokenratio

and fuzzywuzzy were tested.

Phan-udom P., Wattanakul N., Sakulniwat T. Evaluation and Discussion / 44

It can be observed that the two different clone similarity computation methods

contribute to different aspects of the search quality. By taking a close look at QR and OR

measures, the tests which applied fuzzywuzzy for clone similarity computation threshold

have higher values comparing to their tokenratio counterpart in the same experiment set.

They also have larger set of returned queries as well. In exchange for lower recall, the

tests with tokenratio setting gain much higher MAP andMRR values comparing to those

of fuzzywuzzy.

An unexpected finding was also made from set3 experiments. It is clear that

despite all of multi-representation similarity threshold being set to zero (0-0-0-0), there

are still some “unreturned” queries (querywith empty result) with tokenratio as similarity

threshold computing method, thus making the recall less than 1.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 45

Fi
gu
re

5.
1:

Ta
bl
e
of

Si
am

es
e's

pa
ra
m
et
er

tu
ni
ng

ex
pe
rim

en
ta
nd

th
e
re
su
lti
ng

er
ro
rm

ea
su
re
s

Phan-udom P., Wattanakul N., Sakulniwat T. Evaluation and Discussion / 46

5.2 Detection Mode: Test on a Real Software Project

After an optimal setting for NIP and IP searching was discovered from the ex-

periment, an actual software GitHub repository was run with Teddy’s detection mode

to inspect and verify the functionality. The selected repository was Flask, a lightweight

Python WSGI web application framework. The repository’s master branch was cloned

and the tool iterated through its 3,887 commits (as of April 16, 2020) from first to last.

Figure 5.2 shows the final visualization output of NIPs and IPs usage found in different

version of the project.

From the figure, we can see that most of the files in the project use only IPs or

NIPs in their code without changing in to it’s counterpart all along the commits while

few files use both styles. However, there is some file, for example app.py, that improve

their style of writing at later commits which can be seen that the scatter plot starts to turn

green in the later commits while on the other hand, flask-07-upgrade.py has trend of

changing the code from IPs into NIPs.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 47

Fi
gu
re

5.
2:

V
is
ua
liz
at
io
n
of

IP
an
d
N
IP

us
ag
e
in

G
itH

ub
pr
oj
ec
tF

la
sk

Phan-udom P., Wattanakul N., Sakulniwat T. Evaluation and Discussion / 48

Fi
gu
re

5.
3:

Zo
om

ed
Ve

rs
io
n
of

V
is
ua
liz
at
io
n
of

IP
an
d
N
IP

us
ag
e
in

G
itH

ub
pr
oj
ec
tF

la
sk

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 49

5.3 Prevention Mode: User Study

A plan was made to conduct a user study on Teddy’s prevention mode at Pronto

Company with the target user in the sample size of 7 software developers. The research

procedure starts with making the participants do the pre-test which involves their back-

ground knowledge of IPs and NIPs. Then, we, the researchers, would go in their com-

pany and set up the Teddy software for the participants. The participants would be given

time to use the tool between 2 to 4 weeks to make sure they are familiar and keen enough

to use the tool efficiently. At the end of the usage period, the participants have to do the

test again (post-test). Moreover, we would interview them in additional to receive their

comments about the tool.

Unfortunately, due to inconvenient situation that happened at the company, we

were not able to deliver our tool and carry out the user study with the developers as

planned. The cancellation of user study is also attributed to the situation of novel COVID-

19 virus, making any other alternative means or options very unlikely to succeed. Thus,

we did not include the user study result for the Teddy tool in this report

Phan-udom P., Wattanakul N., Sakulniwat T. Conclusion / 50

CHAPTER 6

CONCLUSION

This chapter will summarize the research and discuss the limitations, including

the future directions of this project.

6.1 Conclusion

The main goal of this project is to give programmers a tool that can help them to

analyze their code in a GitHub repository. We create an automated tool called Teddy that

can detect the usage of idiomatic Python code during the development (code review time)

and over historical commits. Teddy integrates several tools and techniques including

GitHub integration (GitHubAPI, Probot, Smee.io), idiomatic code detection (SiameseX)

and idiomatic code visulaization (Bokeh library).

The Teddy tool contains two modes of usage. The first mode is prevention mode,

in which the tool works actively to give response to the user at real-time during pull

requests. The other mode is detection mode, in which the tool gives feedback from

going back to the start of the project and analyze the IPs and NIPs usage over all the

projet’s commits.

We evaluate the Teddy tool on synthetic idiomatic code dataset and a real software

project. Using Mean Average Precision (MAP), Query Recall, Overall Recall, Mean

Reciprocal Rank (MRR) to evaluate, we found that Teddy gives relatively high precision

for idiomatic and non-idiomatic Python code detection. Moreover, the evaluation on

Flask, a real Python project, shows that Teddy can visualize the usage of IPs and NIPs

over 3,000 commits.

This Teddy tool is a valuable addition to nowadaysmodern software development

and can be plugged-in to GitHub seamlessly. We hope that the tool will be useful for Thai

programmers and other programmers around the world.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 51

6.2 Problems and Limitations

For the prevention mode with the tool being able to handle a large number of

incoming queries, the load time for handling multiple requests can be seen, as the tool

can only handle 1 request at a time.

Fromusing only one synthetic data set (due to time constraint in creating a ground-

truth base from an actual soft repository) to test the tool, the level of performance, both

precision and recall, is subject to vary for difference application on difference software

projects. Also, regarding CCGrep, the tool offers little varieties of regular expression

characters that used in the process of creating the synthetic testing data set, causing many

of the sampled IPs and NIPs to be imprecise.

With the current performance of Teddy, despite its high precision, the tool is not

able to identify the remaining PI and NPI code snippets as many, therefore resulting in

very low recall. One possible explanation is that with the semantic nature of idiomatic

Python codes, it is inefficient to capture the pattern with principle of code clone detec-

tion. The tool also has a problem when being left inactive for a while causing it to stop

functioning until a request has been made several times. For the visualization, the lim-

itation is that it is not flexible enough to manipulate the plot and the data in the plot.

The plot can only handled by Java Script while the data is nearly impossible to adjust

throughout the plot which means that the data must be ready and completed to be plotted.

6.3 Future Work

In the future we aim to have the tool be integrated into GitHub repositories with-

out any problem regarding wait time and handling multiple queries. We also intend to

expand the number of NIPs and IPs types to be included in Teddy’s functionality to sup-

port wider scope of coding style and idioms. There are alsomany other unexploredminor

settings of Siamese (and SiameseX) that remains potential key factors to the accuracy

and recall of the search retrieval mechanism.

Since the unfortunate event of the company and COVID-19 prohibiting us from

doing the user studies, our future work is to make it successfully tested with the expected

target user groups in order to hear comments from real user experiences and get feedback

to develop our tool to reach a higher level of efficiency.

Phan-udom P., Wattanakul N., Sakulniwat T. Conclusion / 52

Due to the limitation of pattern matching tool and time to study about each type

of IPs and NPIs, we would like to expand our research coverage on this issue in future so

that the tool can cover and detect more varieties and types of usage of Python idioms. In

addition, we would like to try more flexible and adjustable visualization tool that would

liberate the form of our visualization into more interactive way.

Moreover, if our tool can present the relationship between the appearing and

disappearing Python codes in the project, it would be more beneficial for the user to

track their usage of code.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 53

APPENDIX A
IP CODE SNIPPETS

Listing A.1: List of IP dictionary comprehension code snippets

def i1():
emails = {user.name: user.email for user in users if user.email}

def i2():
dict_compr = {k: k**2 for k in range(10000)}

def i3():
new_dict_comp = {n:n**2 for n in numbers if n%2 == 0}

def i4():
dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f':6}
dict1_tripleCond = {k:v for (k,v) in dict1.items() if v>2 if v%2 == 0

↪ if v%3 == 0}
print(dict1_tripleCond)

def i5():
nested_dict = {'first':{'a':1}, 'second':{'b':2}}
float_dict = {outer_k: {float(inner_v) for (inner_k, inner_v) in

↪ outer_v.items()} for (outer_k, outer_v) in nested_dict.items()}
print(float_dict)

def i6():
Initialize the `fahrenheit` dictionary
fahrenheit = {'t1': -30,'t2': -20,'t3': -10,'t4': 0}
Get the corresponding `celsius` values and create the new

↪ dictionary
celsius = {k:(float(5)/9)*(v-32) for (k,v) in fahrenheit.items()}
print(celsius_dict)

def i7():
mcase = {'a':10, 'b': 34, 'A': 7, 'Z':3}
mcase_frequency = { k.lower() : mcase.get(k.lower(), 0) + mcase.get(k

↪ .upper(), 0) for k in mcase.keys() }

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix A / 54

Listing A.2: List of IP enumerate code snippets

def i8():
for i, x in enumerate(l):

...

def i9():
try:

x = next(i for i, n in enumerate(l) if n > 0)
except StopIteration:

print('No positive numbers')
else:

print('The index of the first positive number is', x)

def i10():
ls = list(range(10))
for index, value in enumerate(ls):

print(value, index)

def i11():
a = [3, 4, 5]
for i, item in enumerate(a):

print i, item

def i12():
for i, val in enumerate(array):

#do stuff with i
#do stuff with val

def i13():
for index, element in enumerate(my_container):

print (index, element)

def i14():
my_list = ['apple', 'banana', 'grapes', 'pear']
for c, value in enumerate(my_list, 1):

print(c, value)

def i15():
my_list = ['apple', 'banana', 'grapes', 'pear']
counter_list = list(enumerate(my_list, 1))
print(counter_list)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 55

Listing A.3: List of IP file reading statement code snippets

def i16():
with open('file.txt') as f:

for line in f:
print line

def i17():
with open(path, "rb") as f:

result = do_something_with(f)
print("Got result: {}".format(result))

def i18():
with open('file.ext') as f:

contents = f.read()

def i19():
with open("welcome.txt") as file:

data = file.read()
do something with data

def i20():
with open(path_to_file, 'r') as file_handle:

for line in file_handle:
if raise_exception(line):

print('No! An Exception!')

Listing A.4: List of IP list comprehension code snippets

def i21():
result_list = [el for el in range(10000000)]

def i22():
[print(i) for i in wordList]

def i23():
new_list = [n**2 for n in numbers if n%2==0]

def i24():
ls = [element for element in range(10) if not(element % 2)]

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix A / 56

def i25():
valedictorian = max([(student.gpa, student.name) for student in

↪ graduates])

def i26():
a = [3, 4, 5]
b = a
a = [i + 3 for i in a]

def i27():
return [[float(a_ij) for a_ij in a_i]

for a_i in matrix_of_anything]

Listing A.5: List of IP if statement code snippets

def i28(countNotMax):
if countNotMax:

Some code here

def i29():
if itemListEmpty():

return "List is empty"

def i30(es):
if !recreateIndex:

es.connect()

def i31():
if !gitHubRepo():

for doc in index.getDoc:
doc.setLicense(null)

def i32():
num = input("Enter weight: ")
if !num:

print("No input found")
else

print("Processing your input")

def i33():
name = 'Tom'
is_generic_name = name in ('Tom','Dick','Harry')

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 57

def i34():
num = 2
prime_less_than_10 = num in (5,3,2,7)
return prime_less_than_10

def i35():
char = input("Enter a character A-Z")
if char in ('A','E','I','O','U')

print("Input is an vowel")

def i36():
if itemListEmpty():

return "List is empty"

def i37():
if name:

print(name)
print(address)
count++

def i38(sentence):
if(sentence.endswith('?'))

return 'Interrogative sentence'
else

return 'Informative sentence'

Listing A.6: List of IP string formatting code snippets

def i39(Store):
output = 'ID: {s.branch_ID}, City: {s.city}, Manager: {s.manager}'.format(s=

↪ Store)
return output

def i40(self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

person = Person("John", 36, 'M')
return 'Name: {p.name}\nAge: {p.age}\nGender: {p.gender}'.format(person=

↪ p1)

def i41():
book_info = ' The Three Musketeers: Alexandre Dumas'

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix A / 58

formatted_book_info = book_info.strip().upper().replace(':', ' by').
↪ append(', ISBN:')

Listing A.7: List of IP set code snippets

def i42():
student_nationality = ['Thai','Malaysian','Thai','Vietnamese','Vietnamese','

↪ Vietnamese','Singaporean','Laos','Cambodian','Cambodian','Chinese']
unique_nationality = set(student_nationality)

def i43():
staff_name = ['Catherine','Bryan', 'Kevin', 'Frank', 'Emily', 'Steven', '

↪ George', 'Hallen', 'Sasha', 'Nathan', 'Edward', 'Phillip', '
↪ Scarlet', 'Robert']

staff_year_of_birth = [1997, 1960, 1971, 1982, 1990, 1995, 1994, 1960,
↪ 1983, 1997, 1996, 1960, 1981, 1982]

unique_year_of_birth = set(staff_year_of_birth)

def i44():
max_temp = [35.6, 34.7, 34.7, 36.1, 36.4, 36.8, 36.2, 36.2, 35.1, 35.0]
min_temp = [27.1, 27.0, 26.8, 26.8, 27.0, 27.5, 27.2, 27.2, 26.9, 26.7]
unique_max_temp = set(max_temp)
unique_min_temp = set(min_temp)

def i45():
grade = ['A','B','B','B','C','D','F','C','C','D','A']
unique_grade = set(grade)

Listing A.8: List of IP tuple code snippets

def i46():
list_from_comma_separated_value_file = ['dog', 'Fido', 10]
(animal, name, age) = list_from_comma_separated_value_file

def i47():
catherine_info = ['Catherine', 1960, 'Australian', 'F', 165, 50, 'Trainee

↪ ']
class Staff:

name = ''
year-of-birth = 0
nationality = ''

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 59

gender = ''
height = 0
weight = 0
position = ''

cat = Staff()
(cat.name, cat.year-of-birth, cat.nationality, cat.gender, cat.height,

↪ cat.position) = catherine_info

def i48{):
DOB_numbers = [11,27,1,9,1996]
(h,m,D,M,Y) = DOB_numbers
return '%i:%i %i-%i-%i' % (h,m,D,M,Y)

def i49():
blood_groups = ['A','B','O','B']
class Person:

blood = 'X'
p1,p2,p3,p4 = Person()
(p1.blood,p2.blood,p3.blood,p4.blood) = blood_groups

Listing A.9: List of IP variable swapping code snippets

def i50():
seat_A1 = 'Mike Wazowski'
seat_A2 = 'James Sullivan'
(seat_A1, seat_A2) = (seat_A2, seat_A1)

def i51(var_A, var_B):
(var_A, var_B) = (var_B, var_A)

def i52():
english = 4.0
math = 3.5
(english, math) = (math, english)

def i53(arr):
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1]:

(arr[j], arr[j+1]) = (arr[j+1], arr[j])

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix A / 60

Listing A.10: List of IP code formatting code snippets

def i54():
if file_name == "-":

module = types.ModuleType("input_scenes")
code = "from manimlib.imports import *\n\n" + sys.stdin.read()
try:

exec(code, module.__dict__)
return module

except Exception as e:
print(f"Failed to render scene: {str(e)}")
sys.exit(2)

else:
module_name = file_name.replace(os.sep, ".").replace(".py", "")
spec = importlib.util.spec_from_file_location(module_name, file_name)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module

def i55():
self.set_cairo_context_path(ctx, vmobject)
self.apply_stroke(ctx, vmobject, background=True).apply_fill(ctx,

↪ vmobject).apply_stroke(ctx, vmobject)
return self

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 61

APPENDIX B
NIP CODE SNIPPETS

Listing B.1: List of NIP dictionary comprehension code snippets

def n1():
emails = {}
for user in users:

if user.email:
emails[user.name] = user.email

def n2():
d = {}
for k in range(10000):

d[k] = k**2

def n3():
for n in numbers:

if n%2==0:
new_dict_for[n] = n**2

def n4():
dict1_tripleCond = {}
for (k,v) in dict1.items():

if (v>=2 and v%2 == 0 and v%3 == 0):
dict1_tripleCond[k] = v

print(dict1_tripleCond)

def n5():
nested_dict = {'first':{'a':1}, 'second':{'b':2}}
for (outer_k, outer_v) in nested_dict.items():

for (inner_k, inner_v) in outer_v.items():
outer_v.update({inner_k: float(inner_v)})

nested_dict.update({outer_k:outer_v})
print(nested_dict)

def n6():
fahrenheit = {'t1':-30, 't2':-20, 't3':-10, 't4':0}

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix B / 62

#Get the corresponding `celsius` values
celsius = list(map(lambda x: (float(5)/9)*(x-32), fahrenheit.values()))
#Create the `celsius` dictionary
celsius_dict = dict(zip(fahrenheit.keys(), celsius))
print(celsius_dict)

Listing B.2: List of NIP enumerate code snippets

def n7():
for i in range(len(l)):

x = l[i]
try:

x = next(i for i, n in enumerate(l) if n > 0)
except StopIteration:

print('No positive numbers')
else:

print('The index of the first positive number is', x)

def n8():
x = next(n for n in l if n > 0)
except StopIteration:

print('No positive numbers')
else:

print('The first positive number is', x)

def n9():
ls = list(range(10))
index = 0
while index < len(ls):

print(ls[index], index)
index += 1

def n10():
Add three to all list members.
a = [3, 4, 5]
b = a #a and b refer to the same list object
for i in range(len(a)):

a[i] += 3 #b[i] also changes

def n11():
for i in range(len(array)):

#do stuff with i
#do stuff with array[i]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 63

def n12():
index = 0
for element in my_container:

print (index, element)
index+=1

Listing B.3: List of NIP file reading statement code snippets

def n13():
f = open('file.txt')
a = f.read()
print a
f.close()

def n14():
f = open(path, "rb")
result = do_something_with(f)
f.close()
print("Got result: {}".format(result))

def n15():
f = open('file.ext')
try:
contents = f.read()

finally:
f.close()

def n16():
file = open("welcome.txt")
data = file.read()
print data
file.close()

def n17():
file_handle = open(path_to_file, 'r')
for line in file_handle.readlines():

if raise_exception(line):
print('No! An Exception!')

Listing B.4: List of NIP list comprehension code snippets

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix B / 64

def n18():
result_list = []
for el in range(10000000) :

result_list.append(el)

def n19():
for i in range(len(wordList)) :

print(wordList[i])
i += 1

def n20():
ls = []
for element in range(10):

if not (element%2):
ls.append(element)

def n21():
new_list = []
for n in numbers:

if n%2==0:
new_list.append(n**2)

def n22():
list = [1, 3, 5, 7, 9]
while i < length:

print(list[i])
i += 1

def n23():
ls = list(filter(lambda element: not(element % 2), range(10)))

def n24():
a = [3, 4, 5]
b = a
for i in range(len(a)):

a[i] += 3

def n25(matrix_of_anything):
n = len(matrix_of_anything)
n_i = len(matrix_of_anything[0])
new_matrix_of_floats = []
for i in xrange(0, n):

row = []

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 65

for j in xrange(0, n_i):
row.append(float(matrix_of_anything[i][j]))

new_matrix_of_floats.append(row)
return new_matrix_of_floats

Listing B.5: List of NIP if statement code snippets

def n26(countNotMax):
if countNotMax == True:

Some code here

def n27():
if itemListEmpty() == True:

return "List is empty"

def n28(es):
if recreateIndex == False:

es.connect()

def n29():
if gitHubRepo() == False:

for doc in index.getDoc:
doc.setLicense(null)

def n30():
num = input("Enter weight: ")
if num == None:

print("No input found")
else
print("Processing your input")

def n31():
name = 'Tom'
if name == 'Tom' or name == 'Dick' or name == 'Harry':

is_generic_name = True

def n32():
num = 2
if num = 5 or num = 3 or num = 2 or num = 7:

prime_less_than_10 = True

def n33():
char = input("Enter a character A-Z")

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix B / 66

if char = 'A' or char = 'E' or char = 'I' or char = 'O' or char = 'U':
print("Input is an vowel")

def n34():
if itemListEmpty() == True: return "List is empty"

def n35():
if name: print(name); print(address); count++;

def n36():
if !gitHubRepo(): for doc in index.getDoc: doc.setLicense(null);

def n37(sentence):
if(sentence.endswith('?')) return 'Interrogative sentence'; else

↪ return 'Informative sentence';

Listing B.6: List of NIP string formatting code snippets

def n38(Store):
return 'ID: ' + Store.branch_ID + ' City: ' + Store.city + ' Manager: ' +

↪ Store.manager

def n39(Store):
return 'ID: %i City: %s Manager: %s' % (Store.branch_ID, Store.city,

↪ Store.Manager)

def n40(self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

person = Person("John", 36, 'M')
return 'Name: ' + person.name + '\nAge: ' + person.age + '\nGender: ' +

↪ person.gender

def n41(self, name, age, gender):
self.name = name
self.age = age
self.gender = gender

person = Person("John", 36, 'M')
return 'Name: %s\nAge: %i\nGender: %c' % (person.name, person.age, person

↪ .gender)

def n42():

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 67

book_info = ' The Three Musketeers: Alexandre Dumas'
formatted_book_info = book_info.strip()
formatted_book_info = formatted_book_info.upper()
formatted_book_info = formatted_book_info.replace(':', ' by')

def n43(sentence):
output = sentence.capitalize()
output = output.swapcase()
output = output.replace('I\'m', 'I am')
output = output.replace('You\'re','You are')
output = output.replace('can\'t','cannot')
return output

def n44(sentence):
formatted = sentence.capitalize()
formatted = output.swapcase()
return formatted.endswith('.')

Listing B.7: List of NIP set code snippets

def n45():
student_nationality = ['Thai','Malaysian','Thai','Vietnamese','Vietnamese','

↪ Vietnamese','Singaporean','Laos','Cambodian','Cambodian','Chinese']
unique_nationality = []
for nationality in student_nationality:

if nationality not in unique_nationality:
unique_nationality.append(nationality)

def n46():
staff_name = ['Catherine','Bryan', 'Kevin', 'Frank', 'Emily', 'Steven', '

↪ George', 'Hallen', 'Sasha', 'Nathan', 'Edward', 'Phillip', '
↪ Scarlet', 'Robert']

staff_year_of_birth = [1997, 1960, 1971, 1982, 1990, 1995, 1994, 1960,
↪ 1983, 1997, 1996, 1960, 1981, 1982]

unique_year_of_birth = []
for year in staff_year_of_birth:

if year not in unique_year_of_birth:
unique_year_of_birth.append(year)

def n47():
max_temp = [35.6, 34.7, 34.7, 36.1, 36.4, 36.8, 36.2, 36.2, 35.1, 35.0]
min_temp = [27.1, 27.0, 26.8, 26.8, 27.0, 27.5, 27.2, 27.2, 26.9, 26.7]
unique_max_temp = []

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix B / 68

unique_min_temp = []
for temp in max_temp:

if temp not in unique_max_temp:
unique_max_temp.append(temp)

for temp in min_temp:
if temp not in unique_min_temp:

unique_min_temp.append(temp)

def n48():
grade = ['A','B','B','B','C','D','F','C','C','D','A']\
student_placeholder = 'John Doe'
unique_grade = []
for g in grade:

if g not in unique_grade:
unique_grade.append(g)

Listing B.8: List of NIP tuple code snippets

def n49():
list_from_comma_separated_value_file = ['dog', 'Fido', 10]
animal = list_from_comma_separated_value_file[0]
name = list_from_comma_separated_value_file[1]
age = list_from_comma_separated_value_file[2]

def n50():
catherine_info = ['Catherine', 1960, 'Australian', 'F', 165, 50, 'Trainee

↪ ']
class Staff:

name = ''
year-of-birth = 0
nationality = ''
gender = ''
height = 0
weight = 0
position = ''

cat = Staff()
cat.name = catherine_info[0]
cat.year-of-birth = catherine_info[1]
cat.nationality = catherine_info[2]
cat.gender = catherine_info[3]
cat.height = catherine_info[4]
cat.weight = catherine_info[5]
cat.position = catherine_info[6]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 69

def n51():
DOB_numbers = [11,27,1,9,1996]
h = DOB_numbers[0]
m = DOB_numbers[1]
D = DOB_numbers[2]
M = DOB_numbers[3]
Y = DOB_numbers[4]
return '%i:%i %i-%i-%i' % (h,m,D,M,Y)

def n52():
blood_group = ['A','B','O','B']
class Person:

blood = 'X'
p1 = Person()
p1.blood = blood_group[0]
p2 = Person()
p2.blood = blood_group[1]
p3 = Person()
p3.blood = blood_group[2]
p4 = Person()
p4.blood = blood_group[3]

Listing B.9: List of NIP variable swapping code snippets

def n53():
seat_A1 = 'Mike Wazowski'
seat_A2 = 'James P. Sullivan'
temp = seat_A1
seat_A1 = seat_A2
seat_A2 = temp

def n54(numA, numB):
temp = numA
numA = numB
numB = temp

def n55():
english = 4.0
math = 3.5
temp = english
english = math
math = temp

Phan-udom P., Wattanakul N., Sakulniwat T. Appendix B / 70

def n56(arr):
n = len(arr)
for i in range(n):

for j in range(0, n-i-1):
if arr[j] > arr[j+1]:

temp = arr[j]
arr[j] = arr[j+1]
arr[j+1] = temp

Listing B.10: List of NIP code formatting code snippets

def n57(file_name):
if file_name == "-":

module = types.ModuleType("input_scenes"); code = "from manimlib.
↪ imports import *\n\n" + sys.stdin.read()

try:
exec(code, module.__dict__); return module;

except Exception as e:
print(f"Failed to render scene: {str(e)}"); sys.exit(2);

else:
module_name = file_name.replace(os.sep, ".").replace(".py", ""); spec

↪ = importlib.util.spec_from_file_location(module_name,
↪ file_name); module = importlib.util.module_from_spec(spec);

spec.loader.exec_module(module)
return module

def n58(self, vmobject, ctx):
self.set_cairo_context_path(ctx, vmobject); self.apply_stroke(ctx,

↪ vmobject, background=True); self.apply_fill(ctx, vmobject); self.
↪ apply_stroke(ctx, vmobject);

return self

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 71

REFERENCES

[1] Ragkhitwetsagul C., Krinke J., “Siamese: scalable and incremental code clone

search via multiple code representations”, Empirical Software Engineering.

2019;p. 1–49.

[2] “A Look At 5 of the Most Popular Programming Languages of 2019”; [cited 14

November 2019].

[3] Knupp J., Writing Idiomatic Python 3.3, Amazon; 2013, [Online]. Available:

https://www.amazon.com/Writing-Idiomatic-Python-Jeff-Knupp/dp/1482374811.

[4] Foundation PS., editor, . “Glossary - Python 3.8.0 documentation”; [cited 10

November 2019].

[5] Guttag JV., 2nd ed. The MIT Press; 2016, [Online]. Available: https://

www.amazon.com/ Introduction-Computation-Programming-Using-Python-

ebook/dp/B01K6F2236.

[6] “The 10 most popular programming languages, according to the Microsoft-owned

GitHub”; [cited 12 November 2019].

[7] Alexandru CV., Merchante JJ., Panichella S., Proksch S., Gall HC., Robles G.,

“On the usage of pythonic idioms”, In: Proceedings of the 2018 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections on Pro-

gramming and Software. ACM; 2018. p. 1–11.

[8] Roy CK., Cordy JR., Koschke R., “Comparison and evaluation of code clone detec-

tion techniques and tools: A qualitative approach”, Science of Computer Program-

ming. 2009;74(7):470 – 495, [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0167642309000367.

https://www.amazon.com/Writing-Idiomatic-Python-Jeff-Knupp/dp/1482374811
https://www.amazon.com/Introduction-Computation-Programming-Using-Python-ebook/dp/B01K6F2236
https://www.amazon.com/Introduction-Computation-Programming-Using-Python-ebook/dp/B01K6F2236
https://www.amazon.com/Introduction-Computation-Programming-Using-Python-ebook/dp/B01K6F2236
http://www.sciencedirect.com/science/article/pii/S0167642309000367
http://www.sciencedirect.com/science/article/pii/S0167642309000367

Phan-udom P., Wattanakul N., Sakulniwat T. References / 72

[9] Peters T.. “PEP 20 – The Zen of Python”, Python Software Foundation; 2004,

[Online]. Available: https://www.python.org/dev/peps/pep-0020/.

[10] “Pythonic”; [cited 12 November 2019], [Online]. Available: https://pythonic-

examples.github.io/.

[11] Chatley R., Jones L., “Diggit: Automated code review via software repository

mining”, In: 25th International Conference on Software Analysis, Evolution and

Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018; 2018. p.

567–571, [Online]. Available: https://doi.org/10.1109/SANER.2018.8330261.

[12] “Stack Overflow | Where developers learn share build careers”; [cited 14 Novem-

ber 2019], [Online]. Available: https://stackoverflow.com/.

[13] Ragkhitwetsagul C., Krinke J., Paixão M., Bianco G., Oliveto R., “Toxic Code

Snippets on Stack Overflow”, ArXiv. 2018;abs/1806.07659.

[14] GitHub I., editor, . “The world’s leading software development platform · GitHub”;

[cited 14 November 2019], [Online]. Available: https://github.com/.

[15] GitHub I., editor, . “About · GitHub”; [cited 14 November 2019], [Online]. Avail-

able: https://github.com/about.

[16] “The State of theOctoverse | The State of theOctoverse celebrates a year of building

across teams, time zones, and millions of merged pull requests.”;.

[17] “Probot | GitHubApps to automate and improve your workflow”; [cited 14Novem-

ber 2019], [Online]. Available: https://probot.github.io/.

[18] “smee.io | Webhook payload delivery service”; [cited 14 November 2019], [On-

line]. Available: https://smee.io/.

[19] “Elasticsearch: The Official Distributed Search Analytics Engine | Elastic”; [cited

14 November 2019], [Online]. Available: https://www.elastic.co/products/elastic-

search.

https://www.python.org/dev/peps/pep-0020/
https://pythonic-examples.github.io/
https://pythonic-examples.github.io/
https://doi.org/10.1109/SANER.2018.8330261
https://stackoverflow.com/
https://github.com/
https://github.com/about
https://probot.github.io/
https://smee.io/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 73

[20] V. EB., editor, . “What is Elasticsearch | Elastic”; [cited 14 November 2019], [On-

line]. Available: https://www.elastic.co/what-is/elasticsearch.

[21] Zolkifli NN., Ngah A., Deraman A., “Version Control System: A Review”, Pro-

cedia Computer Science. 2018;135:408 – 415, The 3rd International Conference

on Computer Science and Computational Intelligence (ICCSCI 2018) : Empower-

ing Smart Technology in Digital Era for a Better Life, [Online]. Available: http://

www.sciencedirect.com/science/article/pii/S1877050918314819.

[22] “Bash - GNU Project - Free Software Foundation”; [cited 17 April 2020].

[23] “Git”; 2020 [cited 17 April 2020], [Online]. Available: https://git-scm.com/.

[24] “bokeh/bokeh: Interactive Data Visualization in the browser, from Python”; 2020

[updated 17 April 2020; cited 17 April 2020], [Online]. Available: https://

github.com/bokeh/bokeh.

[25] Inoue K., Miyamoto Y., German D., Ishio T., “Code Clone Matching: A Practical

and Effective Approach to Find Code Snippets”. 3 2020;.

https://www.elastic.co/what-is/elasticsearch
http://www.sciencedirect.com/science/article/pii/S1877050918314819
http://www.sciencedirect.com/science/article/pii/S1877050918314819
https://git-scm.com/
https://github.com/bokeh/bokeh
https://github.com/bokeh/bokeh

Phan-udom P., Wattanakul N., Sakulniwat T. Biographies / 74

BIOGRAPHIES

NAME Mr. Purit Phan-udom

DATE OF BIRTH 1 September 1996

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Matthayomwatnairong, 2016:

High School Diploma

Mahidol University, 2020:

Bachelor of Science (ICT)

NAME Mr. Naruedon Wattanakul

DATE OF BIRTH 14 December 1996

PLACE OF BIRTH Aberdeen, Scotland

INSTITUTIONS ATTENDED Benchamamaharat School, 2016:

High School Diploma

Mahidol University, 2020:

Bachelor of Science (ICT)

NAME Ms. Tattiya Sakulniwat

DATE OF BIRTH 19 July 1997

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Satriwithaya School, 2016:

High School Diploma

Mahidol University, 2020:

Bachelor of Science (ICT)

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	 1
	 2
	 3
	 4
	 5
	 6
	APPENDIX A
	APPENDIX B
	REFERENCES
	BIOGRAPHIES

