
ACHILLES: AUTOMATED TOOL FOR DETECTING AND

VISUALIZING NPM DEPENDENCY VULNERABILITIES

อคิลีส เครืองมือเพือการตรวจจบัและการแสดงผลช่องโหวด่า้นความปลอดภยัของเอน็พีเอม็ดีเพน
เดนซี

BY
MISS. VIPAWAN JARUKITPIPAT 6088044
MISS. WACHIRAYANA WANPRASERT 6088082
MR. KLINTON CHHUN 6088111

ADVISOR
DR. CHAIYONG RAGKHITWETSAGUL

CO-ADVISOR
DR. MORAKOT CHOETKIERTIKUL

ASST. PROF. DR. THANWADEE SUNETNANT

A Senior Project Submitted in Partial Fullfillment of
the Requirement for

THE DEGREE OF BACHELOR OF SCIENCE
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Faculty of Information and Communication Technology
Mahidol University

2020

ACKNOWLEDGEMENTS

To all the people who have been involved with the development until the com-

pletion of the project, we would like to dedicate this section to show our utmost grati-

tude. We are very thankful for their assistance throughout the long period of this project.

First and foremost, we would like to express our appreciation towards Dr. Chaiyong

Ragkhitwetsagul, our senior project advisor, and Asst. Prof. Dr. Thanwadee Sunetnanta

as well as Dr. Morakot Choetkiertikul, our respectable co-advisors. Furthermore, we

would like to thank Assist. Prof. Raula Gaikovina Kula, Bodin Chinthanet, and Assoc.

Prof Takashi Ishio, our advisors from NAIST. Additionally, It would be outrageous of

us to not thank our participants for partaking in our user study as well as those who par-

ticipated in our online survey during the evaluation process. We would also like to thank

the Faculty of Information and Communication Technology, instructors, staff, members

for the support given to us. Lastly, we would like to thank, from the bottom of our heart,

our dearest families for giving us the support we need during the making of this project.

This project would not have been this successful if not for those mentioned and their

offered support.

Miss. Vipawan Jarukitpipat

Miss. Wachirayana Wanprasert

Mr. Klinton Chhun

Faculty of ICT, Mahidol Univ. Senior Project / iii

Achilles: Automated tool for detecting and visualizing npm dependency vulner-

abilities

MISS. VIPAWAN JARUKITPIPAT 6088044 ITCS/B
MISS. WACHIRAYANA WANPRASERT 6088082 ITCS/B
MR. KLINTON CHHUN 6088111 ITCS/B

B.Sc.(INFORMATION AND COMMUNICATION TECHNOLOGY)

PROJECT ADVISOR: DR. CHAIYONG RAGKHITWETSAGUL

ABSTRACT

In contemporary software development, utilizing third-party libraries is common

practice for developers to create high-quality software at a reduced cost. According to

the State of Open Source Security Report 2020, the JavaScript ecosystem has driven

the growth in open source packages. From the end of 2018 to the end of 2019, npm,

which is a package manager for Node.js packages, grew by over 33% [1]. Nonetheless,

third-party dependency vulnerabilities have become the Achilles’s’ heel of most modern

software systems. These vulnerabilities can come from direct dependencies or when the

dependencies use other dependencies (indirect dependencies). A study by snyk.io shows

that 86% of npm package vulnerabilities are discovered in indirect dependencies.

Several tools (e.g., GitHub Dependabot, npm audit) are developed to assist the

developers in keeping their dependencies up-to-date, yet they have different ways of vi-

sualization. We propose the Achilles tool which detects and visualizes npm project’s de-

pendency vulnerabilities. Achilles assists programmers in comprehending and analyzing

potential risks of vulnerabilities of npm packages via the dependency graph visualiza-

tion and analysis report. We have performed an evaluation using a user study and found

that the graph visualization of Achilles helps support developers’ decisions on priori-

tizing vulnerability to fix by providing more information about complexity and direct/

indirect dependencies compared to the state-of-the-art tools. The tool can also detect

vulnerabilities currently existing in several most-starred GitHub open source projects.

KEYWORDS: VULNERABILITY DEPENDENCY, NPM, VISUALIZATION

221 P.

Faculty of ICT, Mahidol Univ. Senior Project / iv

อคิลีส เครืองมือเพือการตรวจจบัและการแสดงผลช่องโหว่ดา้นความปลอดภยัของเอน็พีเอ็มดีเพน
เดนซี

นางสาว วภิาวรรณ จารุกิจพิพฒัน์ 6088044 ITCS/B

นางสาว วชิรญาณ์ วนัประเสริฐ 6088082 ITCS/B

นาย คลินตนั ชน 6088111 ITCS/B

วท.บ. (เทคโนโลยสีารสนเทศและการสือสาร)

อาจารยที์ปรึกษาโครงการ: ดร. ชยัยงค์ รักขิตเวชสกลุ

บทคดัยอ่

ในปัจจุบนัการพฒันาซอฟตแ์วร์โดยใชไ้ลบรารีของบุคคลทีสามเป็นแนวทางเพือสร้าง
ซอฟตแ์วร์อยา่งรวดเร็วและลดตน้ทุน รายงานจาก State of Open Source Security 2020 กล่าววา่
ระบบนิเวศของ JavaScript ไดข้บัเคลือนการเติบโตของแพก็เกจ Open Source ซึงส่งผลให้ระบบ
จดัการแพค็เกจสาํหรับ Node.js หรือ npm โตขึน 33% ตงัแต่ปลายปี 2018 ถึง 2019 ถึงอยา่งไร
กต็ามช่องโหว่ดา้นความปลอดภยัของไลบรารีกลายเป็นปัญหาสาํหรับนกัพฒันา ช่องโหว่ เหล่านี
สามารถมาจากไลบรารีทีเรียกใช้โดยตรง (Direct dependency) หรือ เมือไลบรารีเรียกใช้ไลบรารี
ตวัอืน (Indirect dependency) จากการศึกษาของ Snyk.io พบวา่ 86% ของช่องโหว่ของแพค็เกจ
npm เกิดจากการใชง้านไลบรารีแบบทางออ้ม (Indirect dependency)

ผูว้จิยัพบวา่มีการพฒันาเครืองมือ (เช่น GitHub, Dependabot, npm-audit) จาํนวนมาก
เพือช่วยเหลือนกัพฒันาให้ติดตามขอ้มูลของไลบรารี อยา่งไรกต็ามเครืองมือเหล่านนัมีการแสดงผล
ทีแตกต่างกนั ผูว้จิยัจึงเกิดแนวคิดในการสร้างเครืองมือ Achilles ทีจะตรวจสอบและแสดงช่องโหว่
จากการใชไ้ลบรารีทงัทางตรงและทางออ้ม อีกทงัยงัสามารถช่วยนกัพฒันาในการทาํความเขา้ใจและ
วเิคราะห์ความเสียงทีอาจเกิดขึนจากการนาํแพค็เกจ npm ทีมีช่องโหว่มาใช้ ผา่นทางการแสดงผล
ความสมัพนัธ์ของแพค็เกจในรูปแบบกราฟและรายงานการวเิคราะห์ ผูว้จิยัไดท้าํการประเมินผลโดย
การศึกษาจากผูใ้ช้และพบวา่การแสดงผลของ Achilles สามารถช่วยใหก้ารตดัสินใจของนกัพฒันา
ในเรืองการจดัลาํดบัความสาํคญัของช่องโหว่เพือแกไ้ขและให้ขอ้มูลเพิมเติมเกียวกบัความซบัซอ้น
และการพงึพาโดยตรง (Direct dependency) / การพงึพาโดยทางออ้ม (Indirect dependency) เมือ
เทียบกบัเครืองมืออืน ๆ นอกจากนี Achilles ยงัสามารถตรวจจบัช่องโหว่ทีมีอยู่ใน GitHub open

source โปรเจค็ทีเป็นทีนิยม
221 หนา้

v

CONTENTS

Page

ACKNOWLEDGMENTS ii

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES ix

1 INTRODUCTION ... 1

1.1 MOTIVATION... 1

1.2 PROBLEM STATEMENTS .. 2

1.3 OBJECTIVES OF THE PROJECT... 3

1.4 SCOPE OF THE PROJECT .. 3

1.5 EXPECTED BENEFITS .. 3

1.6 ORGANIZATION OF THE DOCUMENT................................... 3

2 BACKGROUND ... 5

2.1 FUNDAMENTALS .. 5

2.1.1 DEPENDENCIES VULNERABILITIES........................... 5

2.1.2 OVERVIEWOFDEPENDENCIESVULNERABILITYANAL-

YSIS TOOLS .. 6

2.2 TOOLS AND TECHNIQUES ... 8

2.2.1 GITHUB .. 8

2.2.2 NODE.JS.. 8

2.2.3 MONGODB.. 9

2.2.4 D3.JS LIBRARY.. 9

2.2.5 GRAPHQL ... 9

2.3 LITERATURE REVIEW.. 12

2.3.1 LAGS IN LIBRARY DEPENDENCIES UPDATE 12

2.3.2 DEPENDENCIES VISUALIZATION............................... 13

2.3.3 DATASETFORVISUALIZINGNODE.JSDEPENDENCY

ECOSYSTEM IN GITHUB.. 16

vi

2.4 CHAPTER SUMMARY .. 18

3 ANALYSIS AND DESIGN ... 19

3.1 ACHILLES:ATOOLFORNPMECOSYSTEMVISUALIZATION

AND VULNERABILITY DETECTION 19

3.2 SYSTEM ARCHITECTURE OVERVIEW 20

3.3 USE CASE ANALYSIS ... 24

3.4 STRUCTURE CHART .. 26

3.5 SYSTEM ANALYSIS ... 27

3.5.1 DATAFLOWDIAGRAMLEVEL0 (CONTEXTDIAGRAM) 27

3.5.2 DATA FLOW DIAGRAM LEVEL 1 29

3.6 COMPARISON TO RELATED WORK 30

3.7 PROJECT TIMELINE, CURRENT PROGRESS, AND FUTURE

WORK ... 32

3.7.1 PROJECT TIMELINE... 32

3.8 CHAPTER SUMMARY .. 33

4 IMPLEMENTATION .. 34

4.1 RETRIEVE USER’S REPOSITORIES.. 34

4.1.1 GET THE USER’S GITHUB REPOSITORIES 34

4.1.2 FILTER FOR NPM PROJECTS 36

4.1.3 STORING THE SELECTED REPOSITORY 37

4.2 VISUALIZATIONS .. 38

4.2.1 GENERATING NODES AND EDGES 38

4.2.2 GENERATING TOOLTIPS .. 45

4.3 CREATE REPORT ... 45

4.3.1 VULNERABILITY INFORMATION DATA TEMPLATE 48

4.4 SEMVER-EXISTING-MAX... 50

5 EVALUATION RESULTS .. 54

5.1 EVALUATION METHODOLOGY .. 54

5.1.1 THE ONLINE SURVEY.. 54

5.1.2 THE USER STUDY ... 54

5.2 ONLINE SURVEY RESULT .. 61

vii

5.2.1 LEVEL OF CONCERN REGARDING SECURITY VUL-

NERABILITY SOURCES.. 61

5.2.2 PRIORITIZATION FACTORS FOR VULNERABILITIES

UPDATES .. 61

5.2.3 DECISION TO UPDATE VULNERABLE DEPENDENCIES 65

5.2.4 FEEDBACK FROM ONLINE SURVEY........................... 66

5.3 PARTICIPANTS’ DEMOGRAPHIC DATA 69

5.4 USER STUDY RESULT .. 70

5.4.1 RESULTS AND ANALYSIS .. 70

5.4.2 ANSWER TO RESEARCH QUESTIONS 82

5.5 ANALYSIS OF GITHUB PROJECT .. 83

5.5.1 MOST STARRED GITHUB PROJECTS........................... 84

5.5.2 MOST DEPENDENT NPM PROJECTS 85

6 CONCLUSIONS ... 88

6.1 PROBLEMS AND LIMITATIONS .. 88

6.2 THREATS TO VALIDITY ... 88

6.3 FUTURE WORK ... 89

6.3.1 POTENTIAL PERFORMANCE OPTIMIZATION.............. 89

6.3.2 POTENTIALLY BETTER VISUALIZATION METHOD 89

6.4 CONCLUSION.. 90

APPENDIX A 92

APPENDIX B 99

APPENDIX C 124

APPENDIX D 140

APPENDIX E 148

APPENDIX F 205

REFERENCES 218

BIOGRAPHIES 221

viii

LIST OF TABLES

Page

Table 3.1: Comparison of Dependencies Vulnerability Detection Technique and

Tools.. 31

Table 4.1: Parameter ... 35

Table 4.2: Parameter ... 35

Table 4.3: Parameter ... 35

Table 5.1: Characteristics of vulnerabilities in Test 1...................................... 58

Table 5.2: Characteristics of vulnerabilities in Test 2...................................... 60

Table 5.3: Participants’ Demographic ... 69

Table 5.4: The Result of Achilles Test Case No. 1 (Complexity)....................... 71

Table 5.5: Factors for Prioritizing Package Updates 72

Table 5.6: The Result of npm audit Test Case No. 1 (Complexity) 74

Table 5.7: Factors for Prioritizing Package Updates 75

Table 5.8: The Result of Achilles Test Case No. 2 (Direct/ Indirect) 77

Table 5.9: Factors for Prioritizing Package Updates 78

Table 5.10: The Result of npm audit Test Case No. 2 (Direct/ Indirect)................ 80

Table 5.11: Factors for Prioritizing Package Updates 81

Table 5.12: Comparison of Developers’ Decisions .. 82

Table 5.13: Comparison of Developers’ Decisions .. 83

Table 5.14: showing the prioritization results after using npm audit and Achilles ... 83

Table 5.15: 10 Most Stars GitHub Project Used in the Study 84

Table 5.16: 10 Most Dependent GitHub Project Used in the Study...................... 84

Table 6.1: Comparing the current and the proposed methods............................ 90

ix

LIST OF FIGURES

Page

Figure 2.1: Dependabot alert’s example .. 6

Figure 2.2: Dependabot pull request’s example ... 6

Figure 2.3: Dependabot Change Recommendation example............................. 7

Figure 2.4: npm audit report example ... 8

Figure 2.5: Directional Force Layout Diagram.. 10

Figure 2.6: Example of schema of securityVulnerabilities 11

Figure 2.7: VerXCombo - Parallel Sets Visualization 15

Figure 2.8: Coexistence Logic... 16

Figure 2.9: React Overview of Sol Mantra [2] .. 16

Figure 3.1: Proposed npm Ecosystem Network Visualization 20

Figure 3.2: System Architecture .. 21

Figure 3.3: A mock-up of the Achilles vulnerabilities analysis report................. 23

Figure 3.4: Use case Diagram ... 25

Figure 3.5: Structure Chart ... 26

Figure 3.6: Data Flow Diagram Level 0 (Context Diagram)............................. 28

Figure 3.7: Data-flow diagram Level 1 ... 29

Figure 3.8: Project Timeline ... 32

Figure 4.1: GHSA vs npm security advisory database 42

Figure 4.2: Chain of Dependencies of Package A .. 51

Figure 4.3: Chain of Dependencies of Package A with Different Version 52

Figure 5.1: Procedures of User Study ... 56

Figure 5.2: Achilles graph visualization of Test 1 .. 59

Figure 5.3: Achilles graph visualization of Test 2 .. 60

Figure 5.4: Participants’ Survey .. 62

Figure 5.5: The Students’ Level of Concern Regarding Different Sources........... 62

Figure 5.6: The Developers’ Level of Concern Regarding Different Sources 63

Figure 5.7: The Students’ Library Update Prioritization Factors 64

x

Figure 5.8: The Developers’ Library Update Prioritization Factors.................... 64

Figure 5.9: The Students’ Decision on Updating Vulnerable Dependencies 65

Figure 5.10: The Developers Decision on Updating Vulnerable Dependencies 66

Figure 5.11: Bar graphs showing Direct and Indirect Vulnerable Dependency for

Top 10 Most starred Repositories on GitHub................................. 86

Figure 5.12: Bar graphs showing Direct and Indirect Vulnerable dependencies for

Top 10 Most Dependent JavaScript Libraries in npm Registry 87

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 1

CHAPTER 1
INTRODUCTION

1.1 Motivation

In modern software development, developers usually depend on third-party li-

braries to provide specific functionality in their applications. The node package manager

(npm) dependency network is evolving at a growing rate with over 1.3 million packages

that have enabled over 12 million end-users to use them in their projects [3]. Libraries

aim to save both time and resources and reduce redundancy by taking advantages of

existing quality implementations [4].

Third-party dependency vulnerabilities become a concern for software develop-

ers. In a 2018 GitHub report, more than four million vulnerabilities were raised to the

attention of the developers of over 500,000 GitHub repositories [5]. Not only the direct

users of these software artifacts, but also the software ecosystem are exposed to the risk

of vulnerabilities. Heartbleed [6] and ShellShock [7] are examples of the severe vulnera-

bilities which caused widespread damage to diverse software ecosystems which include

both direct and indirect adopters.

However, developers are slow to update their vulnerable dependencies ,which is

sometimes due to bundled release of the fix, management, and process factors. Kula

et al.’s research shows that 85% of the studied systems still keep their outdated depen-

dencies, and 69% of the interviewed developers are unaware of their vulnerable depen-

dencies. In addition, developers are unlikely to prioritize a library update due to extra

workload and responsibilities [4].

Chinthanet et al.’s research also revealed that npm developers are slow to respond

to the threat of a vulnerability. It usually takes 4 to 11 months to update vulnerable

dependencies [8]. This research disclosed that fixing release update is not consistent with

the client-side fix release update. Possible causes of lags between vulnerable release and

fixing release update is developer’s unawareness of the fixing release. Since the fixed

V. Jarukitpipat, W. Wanprasert, and K.Chhun Introduction / 2

code tends to be small in size, developers of the library bundle the fixing with other

updates, and they do not highlight the fixing updates in the update note [8].

Since developers becomemore aware of vulnerable dependencies, automated de-

pendency updates tools are developed, e.g., Dependabot and Snyk.io. These tools help

developers to check for outdated and insecure dependencies and send the vulnerability

report to the user. They also create a pull request, i.e., a code review and merge request

on GitHub platform, for ease of review and merge the update. Moreover, visualiza-

tion tools are developed to assist system maintainers in making the decision whether to

update or introduce a new third party library since incompatibility between internal li-

brary dependencies might occur [9]. Todorov et al.’s visualization tool, SOL Mantra,

presents an opportunity to update libraries using a visualization of coexistence logic. It

demonstrates whether libraries should be updated. the visualization adopt a solar system

metaphor, which includes system, library, and coexistence between libraries [2].

From the literature review, the existing visualization only displays dependencies

relationship for only one particular project. However, it does not show relationships

among the whole npm ecosystem. Vulnerability detection tools on GitHub currently can

report only at the current project’s level itself. It does not display potential risk which

one particular project might have due to its indirect adoption of a vulnerable library via

other libraries. Although there exists a tool that can visualize the npm package, that tool

still does not visualize in version level and state of ecosystem overtime [10]. Hence, we

would like to propose a visualization tool which can display the npm ecosystem and pro-

duce a report which provides information about potential risks from vulnerability depen-

dencies that a project might have. Also, the proposed visualization tool can demonstrate

the state of the system at several points in time in order to exhibit the spreading of npm

vulnerabilities.

1.2 Problem Statements

This project tackles the following problems in visualizing npm vulnerabilities:

1. It is challenging to understand the complexity of dependencies in an npm project.

2. Existing visualizations do not represent the potential security risks that a partic-

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 3

ular project might have due to multiple levels of dependencies, i.e., the chain of

dependencies.

1.3 Objectives of the project

The objectives of the project are as follows:

1. Create a method for detecting and visualizing the complexity, direct and indirect

vulnerabilities of dependencies in an npm project.

2. Create a prototype that can analyze a GitHub project according to the data in the

npm registry and GitHub security Advisory.

3. Conduct a user study to investigate whether graph visualization would affect the

user’s decision on prioritizing vulnerability update.

1.4 Scope of the project

The project falls under the following scope:

1. The proposed system allows only login with GitHub account.

2. The proposed system runs as a web application

3. The proposed system supports only npm packages.

1.5 Expected Benefits

This project provides the following expected benefits:

1. Providing a new visualization of relationships in npm ecosystem network

2. Helping computer science students and software developers to be aware of poten-

tial vulnerable dependencies risks in their software system.

1.6 Organization of the document

The document consists of 6 parts including Introduction (Chapter 1), Background

(Chapter 2), Analysis and Design (Chapter 3), Implementation (Chapter 4), Evaluation

Results (Chapter 5), and Conclusion (Chapter 6).

V. Jarukitpipat, W. Wanprasert, and K.Chhun Introduction / 4

The Introduction chapter includes motivation, problem statements, objectives,

scope, expected benefits, and organization of the document. The Background chapter

describes the overview of the project, which has fundamentals and related work. Anal-

ysis and design chapter contains work procedures, which are methodology, system ar-

chitecture, structure chart, and system analysis. Implementation includes discussions of

steps that the system is implemented. Evaluation Results consists of the evaluations of

Visualization of npm ecosystem using Achilles, real software project, and by users. The

last chapter is Conclusion that includes the conclusion, problems and limitations, and

future work.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 5

CHAPTER 2

BACKGROUND

This chapter provides the background and required knowledge for completing

this project. It consists of 3 sections. The first section is Fundamentals section, which

provides the basic knowledge of the project. The second section is Tools and Techniques

section, which explains the tools and techniques that are applied into the project. The

third section is Literature Review section that is the section of summary of the research

studies which are related to the project.

2.1 Fundamentals

This section is to provide the basic knowledge of the project including third-party

vulnerabilities, an overview of third-party vulnerability and detection techniques.

2.1.1 Dependencies Vulnerabilities

Third-party libraries have played an important role in contemporary software de-

velopment. Developers highly rely on third-party libraries to provide a specific function-

ality in their application, especially in JavaScript ecosystem [4]. Node PackageManager

(npm) which is a package manager for the JavaScript Programming language is initially

released in 2014. In January 2017, snyk.io reported that 250,000 packages were avail-

able in npm registry [3]. The number of libraries reached 1 millionth package milestone

in June 4th 2019 which is almost 3 times more than it was in 2017 [3]. npm becomes

one of the largest registries of Open Source projects which support easy share packages

modules of code for JavaScript developers. Libraries are intended to reduce resources,

time, and redundancy by exploit existing quality implementations.

As software development have grown larger and more complex, the number of

third-party dependencies have grown significantly. Several libraries are in constant evo-

lution. One of growing concerns for the software developer is third-party dependencies

vulnerabilities. New versions are released to fix defects, patch vulnerabilities and en-

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 6

hance features. When a security vulnerability due to the source code of the dependency

is found, a fix is released, and developers are responsible to update their project’s depen-

dencies [11].

2.1.2 Overview of Dependencies Vulnerability Analysis Tools

Vulnerability detection tools on GitHub currently can report only at the current

project’s level itself.

Dependabot is a GitHub application that facilitates in updating dependency au-

tomatically. Currently, Dependabot has created more than 7 millions pull requests to

help users in updating dependency up-to-date (7,312,824). Dependabot works in three

ways. Firstly, Dependabot checks for dependency updates every day. Dependabot pull

downs user’s dependency files and looks for any updated or insecure requirements. Sec-

ondly, Dependabot is able to open pull requests for users’ repository. If there is any

user’s dependencies that are out-of-date, Dependabot opens an individual pull request

to update each one of the dependencies. Lastly, user can review and merge the process.

After Dependabot made a pull request, users can check whether the tests pass, scan the

included changelog and release notes, and merge the pull request or skip the new version.

The Figure 2.1, 2.2, and 2.3 below show examples of Dependabot reports.

Figure 2.1: Dependabot alert's example

Snyk is a developer security solution that allows companies to use open source

code and stay safe and secure. Snyk is the only solution that can transparently and proac-

tively discover and fix vulnerabilities and license violations in open source dependen-

cies and Docker images. Snyk is not totally free security solution. There are a different

between user roles that are using snyk. Free accounts and starter plans have only admin-

istrators, while other paid plans allow adding employees as collaborators. Contributors

Figure 2.2: Dependabot pull request's example

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 7

Figure 2.3: Dependabot Change Recommendation example

can view and contribute to the project, but cannot access billing information or invite

team members. Snyk detects project vulnerabilities by scanning user projects, testing

vulnerabilities, and importing project snapshots. Snyk regularly scans image snapshot

dependencies based on user configurations (daily or weekly) and updates users when

new security vulnerabilities (email or Slack) are discovered. Snyk reports are only avail-

able to subscribers. The report area provides data and analysis for all user projects and

displays historical data and summary data about projects, issues, dependencies, and li-

censes.

npm-audit is the audit command that asking for report of vulnerabilities that are

found in the client’s project. If there are vulnerabilities are found, npm will provide the

impact and remediation information. The security vulnerabilities that npm audit uses

can be found in https://www.npmjs.com/advisories. In the user’s npm project, users can

view the report by typing npm audit in the command.

The information provided by npm audit is shown in the Figure 2.4. They can be

described as follow:

1. npm install uid-safe@2.1.5: is the command line to fix this vulnerability

2. Severity: High is the level of severity. Level of severity is divided into Critical,

High, Moderate, and Low

3. Description: Out-of-bounds Read is the description of the vulnerability

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 8

Figure 2.4: npm audit report example

4. Package: base64-url is the name of package that has vulnerability

5. Dependency of: uid-safe is the package that depends on vulnerable package

6. Path: uid-safe > base64-url is the path to code that have vulnerability

7. More info: it is a link that leads to security report.

2.2 Tools and Techniques

This section explains several tools and techniques which are applied into the

project.

2.2.1 GitHub

Git is a version control system that keeps track of the changes of files in the

repositories. GitHub is the largest code archive based on Git in the development com-

munity. GitHub hosts over 190 million repositories, including at least 28 million public

repositories, and has over 40 million users, making GitHub, the largest host of source

code in the world [5]. Repositories can be configured to be private or public, and they

can be shared with other developers. Hence, it is one of the practical tools for group or

organization work.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 9

2.2.2 Node.js

Node.js is an open-source server-side runtime environment using JavaScript lan-

guage. Node.js is primarily used to create a web-server. Conventionally, in web devel-

opment, JavaScript is a client-side language. Hence, it has to use another language such

as PHP, Ruby, C#, Python, to develop server-side. Node.js is developed by the commu-

nity, and Ryan Dahl–the initiator of the project. Node.js is built on Google Chrome’s

JavaScript V8 engine. It is created for building fast and scalable network applications.

Moreover, it accepts JSON, which is a standard format for exchanging data between a

browser and a server [12].

2.2.3 MongoDB

MongoDB is an open-source document database. It is a non-relational and schema-

less database (i.e., NoSQL), and it stores data as JSON format which mean that numbers

or types of columns are not required before inserting the data. The data is stored as a

pair of key and value, which is called a document, and many documents in MongoDB

are stored as a collection. Since MongoDB is flexible and scalable, several well-known

companies are using MongoDB, such as Adobe, Google, and ebay [13].

2.2.4 D3.js library

D3.js, which stands for Data-Driven Documents, is a JavaScript library for vi-

sualizing data in web browsers. D3.js utilizes Scalable Vector Graphics (SVG), HTML

5, Canvas, and Cascading Style Sheets (CSS) standards [14]. In D3, users can create

power visualization as well as adopt interaction techniques with a data-driven approach

to manipulate the Document Object Model (DOM). With D3, users can design an ap-

propriate visual interface, which is suitable for the data. In this proposal, the Directional

Force Layout Diagram [15] is adopted to exhibit the relationship among the chain of

dependencies. In the graph as Fig 2.5, the direction of the connections is critical — the

node that has arrow pointed to means that other nodes are dependent on this particular

node. From the figure, if Mikey is removed, Elric and Henry will be affected.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 10

Figure 2.5: Directional Force Layout Diagram

2.2.5 GraphQL

GraphQL is a data query language developed by Facebook since 2012. GitHub

provides GraphQL for its API v4 since it offers more flexibility and provides ability to

define the data that user want to fetch more precisely. In term of flexibility, GraphQL

allows user to replace multiple REST requests with a single call to fetch the data using

nested fields. GraphQL provides schema for specifying available data and types of pa-

rameter that user need to send in order to fetch specific data. User can query the schema

for details about the schema (Figure 2.6).

For example, wewant to fetch some attributes of securityvulnerabilities: package

name and advisory ghsaId of package rpi

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 11

Figure 2.6: Example of schema of securityVulnerabilities

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 12

{
securityVulnerabilities(first: 100, ecosystem: NPM, package: "rpi") {

#totalCount
nodes {

package {
name

}
advisory {

ghsaId
}

}
}

}

The response back will look like this.
{

"data": {
"securityVulnerabilities": {

"nodes": [
{

"package": {
"name": "rpi"

},
"advisory": {

"ghsaId": "GHSA-vf26-7gjf-f92r"
}

}
]

}
}

}

2.3 Literature Review

The literature review section is a summary of the researches which are related to

the project.

2.3.1 Lags in library dependencies update

Kula et al.’s empirical research investigates the extent to which developers update

their library dependencies [4]. They conducted an empirical study on library migration,

including 4,600 GitHub software projects and 2,700 library dependencies. The result

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 13

reveals that even though several systems depend utterly on library dependencies, 81.5%

of the studied systems still keep their outdated dependencies. In the case of updating a

vulnerable dependency, the study shows that although developers are affected, they are

not likely to react to a security advisory. From the interview, 69% of the interviewees

declared that they are ignorant of their vulnerable dependencies. Furthermore, library

update is not the priority task for developers since it is considered to be extra workload

and responsibility. This study concludes that updating library dependencies is not typical

for developers despite the heavy dependence on these libraries.

Security vulnerabilities in third-party dependencies become an expanding con-

cern for both affected developers and the entire software ecosystem. Previous studies

show that developers respond to the threat of exposure slowly [4]. Chinthanet et al.

conduct an empirical investigation to identify lags that may occur between the vulner-

able release and its fixing release in order to promote quick adoption and propagation

of a fixing release [8]. In a preliminary study of 131 fixing releases of npm projects

on GitHub, they notice that the fixing release is often bundled with the other 92.86% of

commits unrelated to a fix. Furthermore, they compare the fixing release update with

changes on the client-side fixing release update. They conduct an empirical study of

the adoption and propagation tendencies of 188 fixing releases that impact throughout a

network of 882,222 npm packages. They find that the later library is updated, the more

migration effort is required even if the patch landing was quick. In addition, they find

that factors, including the fixing release landing branch, and the severity of the vulnera-

bility, influences its propagation. This study concludes that there are factors that create

lags in the release adoption propagation of npm vulnerability fixes. The research lays

the groundwork for future research on how to mitigate propagation lags in an ecosystem.

2.3.2 Dependencies Visualization

Utilizing third-party libraries becomes common in software development since it

helps lower development time and cost by reusing the implemented software. Dependen-

cies occur when code are reused from other libraries and/or when a function is called by

other libraries, which, as they increase over time, become strenuous to manage and avoid

compatibility issues or bugs. When newer versions release, new features, fix releases,

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 14

and quality improvements are introduced. However, it is challenging for large software

with many dependencies to decide whether to update a new version of the library or not

due to the library’s potential incompatibility with the existing source code. Hence, re-

searchers have invented visualizations, i.e., VerXCombo and SoL Mantra, to assist the

systemmaintainers in the decision-making process by providing more information about

each opportunity update’s complexity.

Yano et al.’s research [9] found that it would be tough for maintainers to decide

whether to update or introduce new third-party libraries into the system since there is

a vast range of Open Source System (OSS) libraries. For instance, system maintainers

need to consider how this new library will best fit the existing dependency environment.

Incompatibility between internal library dependencies may cause complicate adoption.

Therefore, system maintainers especially need adequate assurance of any candidate li-

brary release. To assist system maintainers in determining the best-fit combination of

libraries, they proposed VerXCombo (Version X Combination). VerXCombo platform

can assist system maintainers by mining popular library dependency patterns of similar

systems. Through data interactions, VerXCombo leverages parallel sets to break-down

large and complex datasets into distinguishable patterns of 1) popular and 2) latest li-

brary dependency release combinations as shown in Figure 2.7 . VerXCombo is a web-

application that was built by HTML5 and JavaScript for the front-end and Apache Tom-

cat and a Neo4j5 graph database for the server backend. In this research, the researchers

populated the VerXCombo database with systems that depend on java libraries that are

managed and hosted on the Maven 2 Super Repository. They analyzed library depen-

dency information from 4,367 projects hosted on GitHub. They used an extension of the

Pomwalker tool to extract system and library dependencies from respective pom.xml

files.

Most developers may care about untested and early bugs or new releases; still,

many other factors such as the compiler, development environment, and programming

language influence a system maintainer’s decision to update a library. In this work,

the researchers specifically target existing system dependency libraries to reduce library

incompatibility issues. The future work of this research is gathering feedbacks and im-

plements to use in real-world system maintainers.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 15

Figure 2.7: VerXCombo - Parallel Sets Visualization

Todorov et al. [2] presents an opportunity update of libraries that visualization

by using coexistence logic as shown in Figure 2.8 . They address the issue with updating

libraries and propose the peculiar software library mantra tool to demonstrate which

libraries are up-to-date or should be updated. In their concepts, they select the layout of

the solar system metaphor for visualization. This visualization system includes system,

library, and coexistence, which means the relationship between two libraries where they

use a similar library or system.

To illustrate their visualization of the software library mantra tool, the core is

represented as a system that comes with planets used by the software system. Every

planet has an outdated flag by using color to show the library is obsolete or up-to-date.

For example, the jQuery library is red, which means it an outdated library, but if the

jQuery library is green, which means it an up-to-date library. Moreover, some planet

have their own moons to represent coexisting libraries.

Figure 2.9 shows the visualization of React. React system overview with a total

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 16

Figure 2.8: Coexistence Logic

of 5 dependencies, represented by the 5 planets orbiting the core. Two of them are green

colored (up-to-date) which is prop-types and create-react-class, and 3 are red (outdated)

which is loose-envify, object-assign, and fbjs. To look inside of Loose-envify can see

that it has 100% coexistence with prop-types and object-assign. Furthermore, fbjs has

3 coexisting packages - 95.7% cc with prop-types and object-assign, and 23.16% with

loose-envify.

Figure 2.9: React Overview of Sol Mantra [2]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 17

2.3.3 Dataset for Visualizing Node.js Dependency Ecosystem in GitHub

Chinthanet et al. [8] presented an open dataset, GH-node.js, which includes data

from the official npm registry and JavaScript applications hosted on GitHub. The snap-

shots of git repositories exhibits the dependencies between npm packages and their ap-

plications on GitHub. To complement the git repositories, the researchers also added

meta-data, including vulnerability information and other developers activities such as

issues and pull requests.

The structure of a typical Node.js Package includes nine files.

1. package.json: This file is the configuration of the document, and it also contains

meta-data relevant to the project, including project dependencies, scripts, and ver-

sion information.

2. node_modules: All third-party dependencies are stored in node_modules.

3. Authors.md: It contains individuals contributors information.

4. Changelog.md: All changes after each release of the package are kept in this file.

5. Code_of_Conduct.md: This file contains the guidelines when contributors report

issues.

6. Contribuing.md: This is a guideline of how others may contribute to the package.

7. Source code

8. License.md

9. Readme.md: This file contains the purpose of the package usage, installation in-

structions, and all related information.

The meta-data structure includes data from GitHub API and vulnerability infor-

mation from GitHub. The structure consists of seven files.

1. Repositories: storage location for software packages

2. Repositories_Info: Basic information of a git repository

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 18

3. Dependencies_History: This file stores version and related information of de-

pendencies which change over time for the package based on Software Universe

Graph

4. Issues: Information which keep track of tasks, enhancement, and bugs of project

retrieved from GitHub API

5. Pull_requests: Changes pushed by contributor to a branch in a repository onGitHub

6. Contributors: Information about contributor collected from GitHub API

7. Security Advisories: Information is retrieved from the GitHub Security Advisory

database

2.4 Chapter Summary

This chapter explains the fundamental knowledge of this project, including third-

party vulnerabilities and detection tools. In addition, existing vulnerability analysis tools,

which are Dependabot, Snyk, and npm-audit, are described. Lastly, related research

studies about lags in dependencies update, existing dependencies visualizations are pre-

sented in this chapter. The studies show that most developers are unaware of vulner-

abilities in the project due to the indirect adoption of dependency in the chain of de-

pendencies. The existing visualization tools only detect vulnerabilities from a particular

project’s direct dependencies. A gap of studying the whole npm ecosystem’s dependency

adoption and vulnerabilities infection still remains. Besides, potential vulnerability risks

due to a chain of dependencies that a project might encounter are unidentified. Lastly,

the spreading of npm vulnerabilities have not been presented in time series.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 19

CHAPTER 3
ANALYSIS AND DESIGN

Analysis and Design chapter discusses the key concepts used in the project, and

illustrates the system design of the project from the overview to the detailed steps in each

process.

3.1 Achilles: A tool for npm ecosystem visualization and vulnerability detection

In order to tackle the define problem statements and to fulfill the objectives of the

project. We propose an automated tool, called “Achilles”, that can visualize npm ecosys-

tem to vividly show the relationships, i.e., dependencies, among the npm packages and

the existing vulnerabilities. The Achilles system aims to raise the developer’s awareness

about the potential vulnerability that the project might have when 1) the adopted package

is vulnerable or 2) the adopted package adopts a vulnerable package. In this project, we

call this situation of indirect adoption of dependencies as “a chain of dependencies”. A

chain of dependencies can be of any length. For example, the study by Chinthanet et

al. [8] shows that there can be more than 4 level of this chain of dependencies in npm

packages.

Our work is inspired byKula et al.[4]’s study. They conducted a developer survey

to investigate to what extent are developers updated their library dependencies, and the

result showed that 11 out of 16, which is 69% are unaware of the vulnerability in their

software potentially because of the indirect adoption of a vulnerable library via other

libraries, i.e., chains of dependencies.

Figure 3.1 shows the concept of the proposed npm ecosystem graph visualization.

Each node can represent both package and client (explained next). The starting nodes

of the paths are the npm package in the npm registry (P1, P2, P3). Other npm packages

or projects that use that package in the first level are called clients (C). The study from

Chinthanet et al.[8] shows that the chain of dependency occurs when one package or

project adopts another package, as shown in the figure 3.1 where C2 adopts package

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 20

Figure 3.1: Proposed npm Ecosystem Network Visualization

P1 and C7 utilize package in C2. From this example, a chain of dependency includes

P1–C2–C7–C100. If P1 is found to be vulnerable (highlighted in red in the Figure), all

the packages in the chain are “potentially” vulnerable. The other vulnerable chain of

dependencies include P1–C1–C99, P1–C4 and P3–C4. On the other hand, the chains of

P2–C3–C5 and P2–C3–C8–C12–C101 are clean. Our tool aims to detect this chain of

dependencies and reports to the developers if their project lies in any vulnerable chains.

For example, if the developers projects include C99, C100, and C101. Achilles will

detect that C99 and C100 are potentially vulnerable and need to be carefully checked

or fixed by replacing the vulnerable package with other similar packages. On the other

hand, C101 does not need any fix.

3.2 System Architecture Overview

For the front-end, we use the React library for the interface. After user login

with GitHub, we use Node.js to query the user’s list of repositories. After users select

package.json to analyze, we query vulnerability information using GraphQL and retrieve

chain of dependencies from npm registry. Then, we use the D3 library to create a visu-

alization graph, and we keep the history of the report in MongoDB Atlas.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 21

The Achilles system composes of three main parts.

Firstly, Achilles analyzes the relationships between the project and their pack-

ages using the data from npm’s package.json file, which the tool gets the first level of

dependencies. Then, Achilles uses the list of first-level dependencies to send requests to

the npm registry to retrieve other levels of dependencies using GraphQL. The chain of

dependencies information is used to create a graph using D3.js to exhibit the relationship

between packages and projects.

Secondly, the analysis showing the potential of vulnerability is performed by

identifying the chain that the package is part of and determine whether any node in the

chain of dependency is vulnerable. If one of the nodes in the chain has a vulnerability,

the packages in that chain are also potentially vulnerable.

Lastly, the Achilles system creates a report of the project risks of vulnerabilities

based on the package’s location in the graph to raise the developer’s awareness of the

project’s security issues from third-party dependencies, as shown in Figure 3.3.

Figure 3.2: System Architecture

In Achilles software system architecture (Figure 3.2), we chose MongoDB Atlas

database to store user and report information. We decided to choose this database because

the data structure of the report that we need to store in database has various form of data

such as vulnerable chaining node and vulnerability information that we get from GitHub

Security Advisory which is returning JSON format. Moreover, MongoDB Atlas can

store the data that is similar to the objects in the applications which benefits in reducing

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 22

time in the need of translating the form of data that is stored in the database and the the

form of data that is used in the code.

Users can interact with the Achilles software to see the visualization of the depen-

dency graph via the website, which we developed using React, a front-end framework

for developing a website, and D3.js library, which is used to create the visualization.

Public GitHub repositories can be retrieved without any authorization. However, users

are required to sign in with GitHub in order to allow our system to access their private

repositories.

The Achilles software is developed using node.js to query data from MongoDB,

get the users’ authentication from GitHub, retrieve users’ repositories information, and

retrieve the package.json file.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 23

Figure 3.3: A mock-up of the Achilles vulnerabilities analysis report

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 24

3.3 Use Case Analysis

In the use case diagram (Figure 3.4), Achilles interacts with an external actor

(User) and two entities (GitHub and npm registry). There are seven use cases.

First, the user has to log in with GitHub to allow the Achilles System to access

the user’s private and public repositories. GitHub is the secondary actor which authenti-

cates user credential and permission. Then, GitHub returns the lists of all user’s reposi-

tories (both public and private repositories) for the user to see on a web page. After that,

the user can select only one repository. In case there are multiple package.json files in

that repository, the user must choose one package.json, and Achilles System will use

that package.json as the system’s input. The user can see the dependency graph and

see the vulnerable node in the graph. Besides, the user can see the tooltip for more

information about the package and the vulnerabilities. The user can also create a vul-

nerability report in which the user can sort the vulnerabilities by severity according

to their preferences. Furthermore, the user can download the vulnerability report in

PDF format. Finally, the user can see the report history.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 25

Figure 3.4: Use case Diagram

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 26

3.4 Structure Chart

Seven modules in the Achilles system are presented in the structure chart (Figure

3.5). These seven modules include Login with GitHub, See the GitHub repositories list,

Select one repository, Select package.json, See the visualization, Create the report and

See the report history. The first, fifth, and sixth modules also have submodules.

The first module, Log in with GitHub, includes two submodules:

1. Request GitHub identity: This submodule is for requesting a GitHub credential

to authenticate the user.

2. Authenticate via GitHub: This submodule is for authenticating the credentials

via GitHub and grant access permission to the public and private repositories.

3. Grant access permission to repositories: This submodule is for granting user’s

permission to access both public and private repositories.

The second module is See list of GitHub repositories. This module is for show-

ing the list of private and public of the user’ repositories and repositories that user is a

contributor.

The third module is Select one repository. This module is for the user to select

one repository which has package.json file with dependencies to analyze. In a case that

the selected repository has no package.json file, Achilles will warn the user that the the

project cannot be analyzed.

Figure 3.5: Structure Chart

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 27

The forth module is Select package.json file. In a case that the selected reposi-

tory has multiple package.json files, Achilles will list all the files for the user to choose

only one.

The fifth module, See the visualization , are composed of two submodules:

1. See the vulnerable node: This submodule is for differentiating the vulnerable

node from others by changing the vulnerable node to red.

2. See the tooltip: This submodule is for presenting package and vulnerable infor-

mation for users.

The sixth module, Create the report, are composed of two submodules:

1. Download vulnerable report: This submodule is for providing the downloadable

PDF version of the vulnerability report.

2. Sort vulnerability by severity: This submodule is for providing level of severity

sorting according to users’ preferences.

The seventh module is See the report history. The module is for retrieving

user information and vulnerability information from internal storage which is MongoDB

Atlas to show the history of the vulnerability report which user can revisit.

3.5 System Analysis

System Analysis of the project is represented by data flow diagram level 0 and

level 1

3.5.1 Data Flow Diagram Level 0 (Context Diagram)

This figure 3.6 the data flow between the user, Achilles system, GitHub, and npm

registry. First, users have to authenticate using GitHub oath in our system. The system

requires a GitHub user id and password from users and passes it to GitHub. After authen-

ticating with GitHub, a list of the user’s repositories is sent to Achilles to be displayed

to the user. Users can then choose the repository that they would like to analyze, and

the selected repository name is sent to Achilles, and Achilles will return the list of pack-

age.json files in the same project (in case that the project has multiple package.json files)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 28

Figure 3.6: Data Flow Diagram Level 0 (Context Diagram)

to the user to choose. Once the user selects a package.json file, the file content will be re-

trieved from GitHub. The content of that package.json will be used by Achilles to create

the graph visualization. Achilles then send the package name to GitHub to request for

vulnerability information, and that information will be sent back to Achilles to identify

the vulnerable node. Achilles will then find the chain of other packages by sending the

package name to the npm registry, which will return the package’s chain of dependen-

cies to Achilles to add indirect dependencies to the visualization. A dependency graph

will be shown to the user, and the user can create the vulnerability report. The reports’

history will be kept by Achilles for a user to revisit.

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/29

3.5.2 Data Flow Diagram Level 1

Figure 3.7: Data-flow diagram Level 1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 30

Data Flow Diagram Level 1 (Figure 3.7) shows all the data flow within our sys-

tem. It consists of seven subprocesses: login, See a list of repositories, Select one repos-

itory, Select package.json file, See the dependency graph, See the vulnerability report,

and See the report history already been shown in the context diagram. However, there

is an internal data store for keeping user data from login (subprocess 1). The user can

see the list of repositories and select the package.json to analyze. Achilles will check for

vulnerabilities and retrieve the chain of dependencies to create the graph visualization.

Users can create the vulnerability report (subprocess 6), which will also be stored in the

internal data store and retrieve for the report history in subprocess 7.

3.6 Comparison to Related Work

The Table 3.1 below compares the functionalities of the three tools and techniques

for dependency vulnerability detection.

As discussed in the Literature Review, several existing vulnerability detection

techniques are available, including Dependabot, Synk.io, and npm audit. Dependabot is

available to be used automatically on GitHub. It only needs to the developer to enable its

execution. It can check for vulnerable dependencies in the project repository automati-

cally, and it will generate the pull request to keep the dependencies up to date. Snyk.io is

an open-source security management. It can automatically find, prioritize, and fix vul-

nerabilities in the developers open source repositories. npm audit is the command line

that is provided by npm. npm audit provides the summary of vulnerabilities with differ-

ent severity, suggests an updating package version to a patch version, and gives a short

vulnerability information as table. Even though they are capable of report each individ-

ual dependency vulnerability in the project, they cannot determine potential risks that the

project might be exposed to due to the complexity of indirect adoption of dependency

nor show the chain of the dependency.

After developers are aware of vulnerabilities, they have tomake a decisionwhether

to update the newer version, which might expose the risk of breakage. Visualization is

one of the tools which help the developers to make the decision on the opportunity up-

date. The existing visualization includes VerXCombo and SoL Mantra These visualiza-

tions display the relationship for only one particular project but do not consider the whole

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 31

Table 3.1: Comparison of Dependencies Vulnerability Detection Technique and Tools

Dependabot Snyk npm-audit
Web service
Command line service
Find direct dependency
Find indirect denpendency
Recommend patch version or
Receive update Pull Request
Recommend breaking change
Update dependencies

npm ecosystem. The risks of vulnerability can be exposed due to the indirect adoption

of libraries in the chain of dependencies.

The Achilles system can provide the full complement to these tools and visu-

alizations. The system will visualize the dependency graph from the package.json file

and analyze the potential risk of a given npm project according to direct and indirect

dependencies that users used in the project.

V.Jarukitpipat,W
.W

anprasert,and
K
.C
hhun

A
nalysisand

D
esign

/32

3.7 Project Timeline, Current Progress, and Future Work

3.7.1 Project Timeline

Figure 3.8: Project Timeline

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 33

3.8 Chapter Summary

This chapter explains the Achilles system’s analysis and design, including an in-

troduction of Achilles, system architecture, a mock-up of vulnerabilities analysis report,

use case diagram, structure chart, level 0 and level 1 of data flow diagram, a compari-

son to related work. Achilles’s six main components, including a database for the npm

ecosystem, a visualization of vulnerable npm ecosystem graph, a web interface for users

to select a repository to analyze potential vulnerable risks from a chain of dependen-

cies, lastly, an analysis report about the project’s vulnerable risks. Lastly, a Gantt chart

exhibiting the project’s time line, current work, and future work are presented in this

chapter.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 34

CHAPTER 4
IMPLEMENTATION

In this section, the implementation are divided into 4 parts which are retreiv-

ing user’s repositories and storing selected repository, visualization, create report, and

semver-exising-max

4.1 Retrieve User’s Repositories

In order to create the dependency graph visualization, we need to have pack-

age.json file of the user’s repository. Thus, first and foremost, we require the user to

give us a permission to get their GitHub repositories. After the permission is granted

via GitHub OAuth, the list of the user’s repositories will be shown to the user. When

the user selects a repository to analyze, there will be a warning if the repository is not

an npm project. However, if the the repository has multiple package.json files, Achilles

will ask the user to select a package.json file that they want to check for vulnerability.

4.1.1 Get the User’s GitHub Repositories

In order to get the user’s GitHub repositories, we need to have the GitHub’s user

access token from GitHub OAuth. The user access token will be provided when the user

logins to Achilles with their GitHub account.

There are two steps to get the user access token.

1. Request a user’s GitHub identity which is performed in the front-end

stack (React)

GET https://github.com/login/oauth/authorize

We use this URL with the parameters to get the exchange code for getting access

token. The parameters that we use are as follows the table 4.1.

2. Users are redirected back to the pre-configured site by GitHub which is

performed in the back-end stack (NodeJS)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 35

Table 4.1: Parameter

Name Type Description
client_id String The client ID is received from GitHub OAuth application.
redirect_uri String The URL that will be redirected to after user's authorization.
scope String The scope is a limitation of requesting users's repo scope.

Table 4.2: Parameter

Name Type Description
client_id String The client ID is received from GitHub OAuth application.
client_secret String The client secret is received from GitHub OAuth application.
code String The code you received as a response to Step 1.

POST https://github.com/login/oauth/access_token

After getting the exchange code, we need to use the following API to get the

user access token. We use this URL with the parameters to get the access token. The

parameters that we use are as follows the table 4.2.

The default response that we get from Github is

access_token=<token>&token_type=bearer

After getting access token, wewill use the belowURL to get the user repositories.

The GitHub access token is required to use in the header request with the authorization

parameter on the table 4.3. Otherwise, users’ repositories are not fetchable with the given

URL.

GET https://api.github.com/user/repos

Table 4.3: Parameter

Name Type In Description

accept string header Setting to application/vnd.github.v3+json
is recommended.

authorization String header Setting to access token that we received
per_page integer query Result per page (max 100)
page integer query Page number of the results to fetch.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 36

Code example by using axios:

const GITHUB_ACCESS_TOKEN = 'e72e16c7e42f292c6912e7710c838347ae178b4';

axios.get(
'https://api.github.com/user/repos?per_page=100&page=1',
{

headers: {
Authorization: `token ${GITHUB_ACCESS_TOKEN}`,
Accept: "application/vnd.github.v3+json",

},
}

);

4.1.2 Filter for npm Projects

When the user select one of these repositories, Achilles uses the API below to

check whether this repository is an npm project. This API is searching for the given

repository name by checking if the repository has package.json file name and in the

package.json file has ”dependencies” word.

const user = "username";
const repoName = "repository name";

GET `https://api.github.com/search/code?q=user:${user}+
dependencies+repo:${user}/${repoName}+filename:package.json`

Code example by using axios:

const user = "username";
const repoName = "repository name";

axios.get(
`https://api.github.com/search/code?q=user:${user}+

↪→ dependencies+repo:${user}/${repoName}+filename:package.json`,
{

headers: {
Authorization: 'token

↪→ e72e16c7e42f292c6912e7710c838347ae178b4',
},

}
);

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 37

After verifying that the selected repository is npm project, Achilles will ask users

to choose a package.json file if the repository has multiple package.json files. Otherwise,

Achilles will use the default path to query the package.json content from GitHub.

API to get package.json content

const user = "username";
const repoName = "repository name";
const path = "package.json path";

GET `https://api.github.com/repos/${user}/${repoName}/contents/${path}`

Code example by using axios:

const user = "username";
const repoName = "repository name";
const path = "package.json path";

axios.get(
`https://api.github.com/repos/${user}/${repoName}/contents/${path}`,
{

headers: {
Authorization: 'token e72e16c7e42f292c6912e7710c838347ae178b4',
Accept: "application/vnd.github.VERSION.raw",

},
}

);

4.1.3 Storing the Selected Repository

Lastly, before going to visualize the dependency graph, Achilles temporary stores

package.json content in localStorage, which is provided by the web application for stor-

ing client-side data. The localStorage allows a web application to store persistent data

and saves the data as key-value pairs in a web browser with no expiration date. However,

localStorage does not allow storing data in json format so that we use JSON.stringify()

function to convert package.json content to string format.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 38

Code example:

const packageJsonContent = {
...,
"dependencies": {

"dep1": "v1"
}

}

localStorage.setItem('packageJsonContent', JSON.stringify(packageJsonContent));

4.2 Visualizations

The graph visualization composes of three main components which are node,

ege and tooltip. To create the force-directed graph which it used to show the relationship

between the packages, we utilize the D3.js library.

4.2.1 Generating Nodes and Edges

For generating nodes and edges in the graph, there are 7 main steps for prepar-

ing data and creating the visualization which includes setup D3 and arrow head, setup

force simulation, retrieving dependencies from package.json, animating the visualiza-

tion, checking for the vulnerability and fetching chain of dependencies.

We define the mock data which will be used for the project node and create an

empty array for the link data. For the node, D3 only requires id property. Other properties

are added according to our utilization.

const mockNodesData: INode[] = [
{

id: 'PROJECT',
name: 'PROJECT',
type: NODE_TYPE.ROOT,
status: NODE_STATUS.CLEAN,
version: '',
dependenceiesAmount: 0,
level: 0,

},
];

const mockLinksData: ILink[] = [];

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 39

1. Setup D3 and arrow head

The first step is to setup D3 for the chart component and set the node and link

data.

function setupD3() {
ref.current = d3

.select(svgRef.current)

.attr('viewBox', `${[-width / 2, -height / 2, width, height]}`)

.style('font', '12px sans-serif');

ref.current.call(
zoom.current.on('zoom', (event: any) => {

ref.current.select('g').attr('transform', event.transform);
})

);

setNodesData(mockNodesData);
setLinksData(mockLinksData);

We also need to setup attributes of the arrow head including the reference posi-

tion, the size of the arrow, color, etc.

function setupMarker() {
ref.current

.append('defs')

.append('marker')

.attr('id', 'arrow-head')

.attr('viewBox', '-4 -4 10 10')

.attr('refX', '-4')

.attr('refY', '0')

.attr('orient', 'auto')

.attr('markerWidth', '10')

.attr('markerHeight', '10')

.attr('xoverflow', 'visible')

.append('svg:path')

.attr('d', 'M 4,-2 L 0 ,0 L 4,2')

.attr('fill', '#fff');
}

2. Setup force simulation

When there is a change in nodesData and linksData, we have to setup the force

simulation of the graph. D3 provides .forcesimulation which has its own algorithm that

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 40

will generate position x and y for the node at the certain time.

function setupForceSimulation(_nodes: any, _links: any) {
simulation.current = d3

.forceSimulation(_nodes)

.force('charge', d3.forceManyBody().strength(-300))

.force(
'link',
d3.forceLink(_links).id((d: any) => d.id)

)
.force('x', d3.forceX())
.force('y', d3.forceY());

}

3. Retrieving dependencies from package.json

Then, we retrieve the direct dependencies data from package.json file and keep

them in the array of depData. In the function animate, each dependency is retrieved

and add to node as the target node and create the link which connected to the PROJECT

node which is the source node. setTimeout() is used to controlled the speed of the adding

process.

async function animate() {
const ADD_NODE_SPEED = 50;
// Gently add node/link
function gentlyAddNodeLink(dependency: any) {

return new Promise((resolve) => {
const node = createNodeData(

dependency.node.id,
dependency.node.version,
dependency.node.level

);
setTimeout(() => {

addNodeLink(dependency.link.id, node); <--
resolve(null);

}, ADD_NODE_SPEED);
});

}
const _depData = depData;
const newDepData = _depData.splice(1);
await gentlyAddNodeLink(_depData[0]);
setDepData(newDepData);

}

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 41

4. Animating the visualization

5. Checking for the vulnerability

Next step is to check the vulnerability of the dependencies. We investigate npm

audit, and we found that npm audit use npm security advisory database as the source

of vulnerabilities. However, we decided to choose GitHub security advisory or GHSA

over npm security advisory database because GHSA has a larger number of vulnerabil-

ities in the npm ecosystem than npm security advisory, according to figure 4.1. This is

because the GHSA database already includes npm security advisory database and a few

additional vulnerability resources such as National Vulnerability Database, Security ad-

visories reported on GitHub, and vulnerabilities reports that come from combination of

machine learning and human review on GitHub. Moreover, the GitHub document stated

that “If you created a security advisory in your repository, the security advisory will stay

in your repository. We publish security advisories for any of the ecosystems supported

by the dependency graph to the GitHub Advisory Database on github.com/advisories.

If a security advisory is specifically for npm, we also publish the advisory to the npm

security advisories. For more information, see npmjs.com/advisories.[16]” This means

that some vulnerabilities that are found in the user’s repository will be updated in GHSA

first so that we can get the latest vulnerabilities information from GHSA.

A project can publicize security fixes in several places - CVE feed, mailing lists,

open-source groups, or within its release notes or changelog. Some vulnerabilities might

not be disclosed in the National Vulnerability Database or published in the CVE feed.

GitHub creates machine learning models that scan text associated with public commits

(the commit message and linked issues or pull requests) to detect these vulnerabili-

ties from activity within the GitHub developer community and generate security alerts.

While npm security advisory only depends on the security advisories already published

in the National Vulnerability Database. This results in different numbers of security

advisories in GHSA and npm security advisories. [17]

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 42

Figure 4.1: GHSA vs npm security advisory database

We loop through each node in the current level and query for the vulnerability

using graphQL api and save them to result.

export async function queryVulnerability(packageName: string) {
const vulnerability = await client.query({

query: gql`
query {

securityVulnerabilities(first: 100, ecosystem: NPM, package:
↪→ "${packageName}") {

#totalCount
nodes {

package {
name

}
firstPatchedVersion {

identifier
}
severity
vulnerableVersionRange
advisory {

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 43

identifiers {
type
value

}
permalink

}
}

}
}

`,
});

After getting vulnerabilities information, we filter only the related vulnerabilities

by checking whether the node version and vulnerable version is intersected. Then, we

update the node status whether it is vulnerable or not, and change the node color to red

if that node is vulnerable.

export const filterRelatedVulnerabilities = (node: INode, vulnerabilities:
↪→ ISecurityVulnerability[]) => {

let relatedAdvisories: ISecurityVulnerability[] = []

relatedAdvisories = vulnerabilities.filter((vulnerability) => {
if (node.version !== 'latest') {

const versionRange = vulnerability.vulnerableVersionRange &&
↪→ vulnerability.vulnerableVersionRange.toString().replace(',', '')

if (semver.intersects(node.version, versionRange)) {
if (vulnerability.firstPatchedVersion) {

if (semver.intersects(node.version,
↪→ vulnerability.firstPatchedVersion.identifier)) return false;

}
return true;

}
}

return false
})

return relatedAdvisories
}

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 44

6. Fetching chain of dependencies

Finally, we retrieve the chain of dependencies by sending the name of dependen-

cies via REST API to npm registry. The processes are repeated until the dependencies

reached the forth level.

import axios from 'axios'

const GET_DEPENDENCIES = 'https://registry.npmjs.cf/'

export const getDependencies = async (packageName: string) => {
const result = await axios({

url: GET_DEPENDENCIES + packageName,

})

return result
}

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 45

4.2.2 Generating Tooltips

The third component of the visualization is the tooltip. We retrieve information

of the node and advisory and show them when the mouse is hover over the node.

function onMouseOverNode(event: any, d: any) {
const svgStyle = svgRef.current!.style;
const topAwayOffet = 10;
const leftAwayOffet = 10;
if (document !== null) {

const tooltipEl = document.querySelector('#tooltip')! as HTMLDivElement;
if (tooltipEl) {

tooltipEl.style.left = `${
event.offsetX - svgStyle.width / 2 + topAwayOffet

}px`;
tooltipEl.style.top = `${

event.offsetY - svgStyle.height / 2 + leftAwayOffet
}px`;
setTooltipVisibility(true);

}
if (advisoriesData[d.id]) {

setTooltipData({
node: d,
advisory: filterRelatedVulnerabilities(d, advisoriesData[d.id]),

});
} else {

setTooltipData({
node: d,
advisory: [],

});
}

}
}

4.3 Create Report

The vulnerability report is created by the user after seeing the dependency graph.

Storing report aims to help users keep track of the vulnerability information in their

project. For example, if the users’ project had vulnerabilities and they had fixed the

vulnerabilities, they can come back to see the report history later in Achilles. Moreover,

storing the vulnerability report intents to help users see the vulnerability information

without visualizing the project again since visualizing the dependency graph might take

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 46

time to complete. The data in the report are stored in MongoDB atlas in JSON format.

When the user click ”Create Report” button, Achilles will collect all the vulner-

ability information that are displayed in the dependency graph including the chain of

dependencies that has vulnerable nodes, package.json path, repository name, username,

patch version of vulnerable nodes, GHSA, CWE, and CVE. The CVE and CWE are the

vulnerability records that are considered standards of information security community.

Both sources are different in term of security practitioners.

The CVE (Common Vulnerabilities and Exposures) is a public resource that re-

ports the information security and exposures. The CVE information can assist develop-

ers to search the attack signatures and identify particular vulnerability exploits. On the

other hand, the CWE stands for Common Weakness Enumeration, which is a formal list

of common software weaknesses. The CWE is the common software weaknesses that

caused by software architecture, design, code, and implementation. In short, CVE is a

problem that developers have to deal with the specific instance in a system while CWE

is a problem that developers have to deal with vulnerability, not the instance within a

system. Nevertheless, CWE information is the information the that we did not get from

visualization part. This is because security vulnerability API in visualization does not

provide CWE information. Thus, Achilles uses another API to request the CWE infor-

mation when creating report. We did not query the CWE information in the visualization

simultaneously since it might affect time usage in creating the dependency graph.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 47

Querying CWE Information

An example code snippet that uses GraphQL to query CWEs information

import { ApolloClient, InMemoryCache, createHttpLink, ApolloLink } from
↪→ '@apollo/client'

import { setContext } from '@apollo/client/link/context'

const GITHUB_ACCESS_TOKEN = <github access token>

const ENDPOINT: ApolloLink = createHttpLink({
uri: 'https://api.github.com/graphql',

})

const authLink = setContext(() => {
return {

headers: {
authorization: `Bearer ${GITHUB_ACCESS_TOKEN}`,

}
}

})
const client = new ApolloClient({

link: authLink.concat(ENDPOINT),
cache: new InMemoryCache()

})

const ghsaId = "gshaId from Security Github Advisory";
const queryCwes = async (ghsaId: string) => {

const securityAdvisory = await client.query({
query: gql`

query {
securityAdvisory(ghsaId: "${ghsaId}") {

cwes(first: 10) {
nodes {

cweId
name

}
}

}
}

`,
});

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 48

In CWEs information, we found that there is no link to view more information

for specific CWE so that we decide to attach ”cweId” to the URL in order to link to the

CWE information website.

Example:

const CWE_ID = "cwe id that getting from query"
const CWE_URL_LINK = `https://cwe.mitre.org/data/definitions/${CWE_ID}.html`

4.3.1 Vulnerability Information Data Template

The below is the data template that Achilles uses to store the vulnerability infor-

mation.

interface IReport {
username: string; // user Github name
jsonPath: string; // package.json path
repository_name: string; // repo's visualization name
items: IItem[]; // list of vulnerabilities

}

interface IItem {
chaining: IChaining[];
cwes: ICWE[];
direct_dependency_name: string;
direct_dependency: {

name: string;
current_version: string;
latest_version: string;

};
package: {

name: string;
};
firstPatchedVersion: {

identifier: string; // version: e.g. 1.9.0
};
vulnerableVersionRange: string; // version rager: e.g. < 1.9.0,
severity: ADVISORY_SERVERITY_LEVEL;
advisory: {

permalink: string;
ghsaId?: string;
identifiers?: IAdvisoryIdentifier[];

};
}

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 49

interface IChaining {
source: string;
target: string;

}

interface ICWE {
cweId: string;
name: string;
link: string;

}

type ADVISORY_SERVERITY_LEVEL = 'LOW' | 'MODERATE' | 'HIGH' | 'CRITICAL';

interface IAdvisoryIdentifier {
type: string;
value: string;

}

Storing Vulnerability Report in MongoDB Atlas

After collecting the vulnerability information from dependency graph, we use the

below API to send the vulnerability report to store in MongoDB Atlas.

const HOST_DOMAIN = 'Input your host domain';

POST `${HOST_DOMAIN}/api/v1/reports`;

A code snippet by using axios to store the vulnerability report is shown below.

const HOST_DOMAIN = 'Input your host domain';
const report = {}; // Input report information by following the report format

↪→ in step 1
const JWT_TOKEN = 'jwt token that created by backend';

axios.post(`${HOST_DOMAIN}/api/v1/reports`,
{ report },
{

Authorization: `Bearer ${JWT_TOKEN}`,
}

);

The success response from this API will be a report ID that stored in database.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 50

Achilles uses the report ID from the above API to request a specific report in

order to render the vulnerability report in the report web page.
const HOST_DOMAIN = 'Input your host domain';

GET `${HOST_DOMAIN}/api/v1/reports/:reportId`;

A code snippet by using axios to get the vulnerability report by report ID which

was generated by MongoDB Atlas is shown below.
const HOST_DOMAIN = 'Input your host domain';
const report = {};
const JWT_TOKEN = 'jwt token that created by backend';
const reportId = "report id";

axios.get(`${HOST_DOMAIN}/api/v1/reports${reportId}`,
{

Authorization: `Bearer ${JWT_TOKEN}`,
}

);

Retrieving Report History

Finally, Achilles allows user to see the all the report history that users has created

by the following API.
const HOST_DOMAIN = 'Input your host domain';

GET `${HOST_DOMAIN}/api/v1/reports`;

A code snippet by using axios to get the list of report history is shown below.
const HOST_DOMAIN = 'Input your host domain';
const JWT_TOKEN = 'jwt token that created by backend';

axios.get(`${HOST_DOMAIN}/api/v1/reports`,
{

Authorization: `Bearer ${JWT_TOKEN}`,
}

);

4.4 Semver-Existing-Max

semver-existing-max is a npm package that finds the maximum version of given

version range that exists in other npm packages or version list. It was created by our team

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 51

in order to assist Achilles website in creating dependency graph. In order to create the

dependency graph, there was a step that requires to find the chain of dependencies. For

example, package A has a chain of dependencies which are B and C (figure 4.2). This

worked fine if the developers installed the exact version of package in the package.json

file.

Figure 4.2: Chain of Dependencies of Package A

However, there was a problem when developers installed the package with range

version. For instance, developers installed package A with the version 1.0.0 or ^1.0.0.

The problem with the range version is that we cannot find the the chain of dependen-

cies with the exact version as we did above. This is because 1.0.0 can expand to be

1.0.1, 1.0.2, or 1.0.3 until reaching the maximum of minor change in version 1 (not the

maximum version of the package). Moreover, as the observation from our team shows

that different versions of package can lead to a different chain of dependencies in the

package.

As shown in the Figure 4.3, package A with version 1.0.0 has B and C as a chain

of dependencies whereas package A with version 1.0.1 has the B, C, and D as a chain of

dependencies.

At first, our team decided to use minimum version of the package since we found

that semver package provides a minVersion function to find the minimum version of

the given range. Yet, after exploring the chain of dependencies and vulnerabilities that

found in other tools which are npm audit and dependabot, we recognized that they

both used the maximum version of the given range of the package. In addition, as the

npm installation with the existing package range version, npm usually installs the latest

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 52

Figure 4.3: Chain of Dependencies of Package A with Different Version

version of the given range in the modules of the project. This behavior somehow can fix

the vulnerability in the user’s project, even though it is a minor change in version. Then,

our team decided to change the methodology in finding chain dependencies by creating

semver-existing-max package to help us in finding the maximum version of the given

range.

There are three steps to build semver-existing-max package.

1. Get all the versions of the specific package by npm registry API.

const package = "package name";
const response = await axios.get(url:

↪→ `https://registry.npmjs.cf/${package}`);
const versionList = Object.keys(response.data.versions);

// Example result:
// => versionList = [1.0.0, 1.0.1, 1.0.2, 2.1.1, 2.1.4];

2. Find the intersection version list from the given version range.

const semver = require('semver');
const givenRange = '~1.0.0';

const intersectedVersion = versionList.filter(version => {
if (semver.intersects(version, givenRange)) return true;
return false;

});

// => intersectedVersion = [1.0.0, 1.0.1, 1.0.2];

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 53

3. Find the intersection version list from the given version range.

const semverMax = require('semver-max');
const maxVersion = intersectedVersion.reduce(semverMax);

// => maxVersion = 1.0.2

After building this semver-existing-max package, we also published this pack-

age to npm registry on 31st March 2021, so that we can install and use this package in

Achilles website. Currently, the package has a total of 65 downloads.

The semver-existing-max package can be found here: https://www.npmjs.com/

package/semver-existing-max. The source code of the package can be found here: https://

github.com/KlintonICT/semver-existing-max.

https://www.npmjs.com/package/semver-existing-max
https://www.npmjs.com/package/semver-existing-max
https://github.com/KlintonICT/semver-existing-max
https://github.com/KlintonICT/semver-existing-max

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 54

CHAPTER 5
EVALUATION RESULTS

In this chapter, we discuss the results of user study to evaluate the performance

of the Achilles detecting and visualizing npm dependency vulnerabilities tool.

5.1 Evaluation Methodology

This chapter will focus on the evaluation of the project in several aspects. First,

we performed an online survey to understand the awareness of the npm developers on

security vulnerabilities, direct/indirect dependencies, and how they prioritize the updates

of vulnerable npm packages. Second, we evaluate Achilles tool by performing a user

study and compare it to the state-of-the-art tool, which is npm audit. Third, we applied

Achilles to real-world GitHub projects in order to check its effectiveness in locating npm

security vulnerabilities. We explain each of them in detail below.

5.1.1 The Online Survey

The online survey is created to evaluate developers and students’ awareness and

perception on security vulnerabilities and gather feedback for the visualization and vul-

nerability report of Achilles. We recruit participants who have experience in programing

for more than six months. We contacted them directly via chat messages, and also posted

the survey on the social media. We received nineteen responses; thirteen of them were

students in ICT faculty and six were developers. The result of the online survey will be

discussed in Section 5.2

5.1.2 The User Study

The objectives of the user study is to

1. Investigate how graph visualization (Achilles) support developer’s decision on

prioritizing vulnerability to fix.

2. Investigate how different types of visualization (Graph and Table) effect devel-

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 55

oper’s decision on prioritizing vulnerability to fix.

The user study follows the guidelines from Ko et al.[18]. The guideline consists of ten

key steps including Recruitment, Selection, Consent, Procedure, Demographic measure-

ments, Group assignment, Training, Tasks, Outcome measurements, and Debrief and

compensate. We followed the guideline as shown below.

1. Recruitment - We sent email to potential participants who are developers and we

recruit students by contacting the instructors of the related faculty and directly

contact potential participants.

2. Selection - The inclusion criteria for selecting the participants of this experiment

is as followed:

• Participants must be students in Information and Communication Technol-

ogy program or full-time employees at a software development company.

• Participantsmust have experience using npm to install packages in the projects

but do not require to have an experience in using npm audit.

• Participants must have the aforementioned experience at least six months.

Due to the limitation of recruiting ideal participants, we anticipate that it

would take sixmonths for students and developers to learn new programming

languages and have experience using third-party libraries. In addition, six

months is used as the criteria in the previous user study in Gopstein, D. et al.

[19]

• Participants should understand and have fundamental knowledge in software

vulnerability.

3. Consent - The user study has been approved by the Mahidol Central Institutional

Review Board (IRB) - 12 March 2021 Number 084.1502

4. Procedure - Fig. 5.1 shows the flowchart of user study procedure between the

controlled group and experimental group.

• We let the participants read the consent form and ask for their confirmation

to join the experiment.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 56

Figure 5.1: Procedures of User Study

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 57

• We gather their demographic background.

• We provide the guidelines and videos of the tools demonstration and ask

them to perform example tasks.

• When the real experiment begin, both group of participants are asked to see

the security vulnerability report from dependabot and prioritize the updates

of the vulnerabilities. Then for the controlled group, they are asked to use

npm audit, and for the experimental group, they are asked to use Achilles to

find security vulnerability. After that they are asked to prioritize the updates

of the vulnerabilities again.

• We interviewed the participants on their criteria that they use for the priori-

tization.

5. Demographic measurements - We asked participants the following questions

prior the experiment in order to gain more understanding of participants’ back-

ground.

• How long have you been using npm?

• What do you use npm for?

• How often do you check security vulnerabilities in the project?

• Do you know indirect dependencies?

6. Group assignment - By following the between-subject experiment, we randomly

assign participants to two experimental groups.

• Controlled group: Ten participants are randomly assigned to the controlled

group. They used npm audit to analyze security vulnerabilities.

• Experimental group: Ten participants are randomly assigned to the experi-

ment group. They used Achilles to analyze security vulnerabilities.

7. Training - We provided the tools guidelines and videos for the tools demonstra-

tion. We also prepare example tasks to check their understanding of the tools

before we begin the experiments.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 58

Table 5.1: Characteristics of vulnerabilities in Test 1

Severity Complexity
1 three high no
2 type-graphql low yes
3 xmldom low no
4 Pug high yes

8. Tasks - In this experiment, the participants are asked to use two tools for security

vulnerability check in npm projects. The goal that they have to do is prioritizing

the updates of the vulnerabilities after using each tool.

To assess Achilles’s usability in practice, we used Achilles to perform the vulnera-

bility analysis on real-world GitHub projects and compare the analysis result with

Dependabot and npm audit tools to see whether the results are different. The re-

sults showed that the vulnerabilities that were found in Achilles were also found

in the Dependabot and npm audit tools. However, we spotted that there is a small

different behavior between Achilles and npm audit. Some vulnerabilities that were

detected in the npm audit were not found in Achilles. This is because npm audit

is not just only finding vulnerabilities for dependencies that the project is using,

but it also detects the vulnerabilities in devDependencies in the package.json file.

The dependencies that are installed in devDependencies in the package.json file

are the dependencies that are used in local development and testing. It provided

some facilitating things in the development process. Nevertheless, those depen-

dencies will not be used or affect the production stage once the project deploys.

Since devDependencies are important during the development process, Achilles

may considered to detect vulnerabilities in devDependencies in the future work.

For the experimental group, they will be asked to see the vulnerability report of

dependabot in GitHub first and then Achilles. For the controlled group, they will

be asked to see the vulnerability report of dependabot in GitHub first and then npm

audit. Additionally, we ask the controlled group to see Achilles visualization after

they have finished the npm audit task.There are two tasks for the participants to

perform.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 59

Figure 5.2: Achilles graph visualization of Test 1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 60

Table 5.2: Characteristics of vulnerabilities in Test 2

Severity Types

1 Minimist@1.2.0
(karma-mocha@2.0.1) low indirect

2 netmask High direct
3 angular-expressions low direct
4 base64(uid-safe@2.1.5) high indirect

Figure 5.3: Achilles graph visualization of Test 2

Table 5.1 and Figure 5.2 shows the characteristics of vulnerabilities in Test 1. We

would like to test whether the graph which shows the complexity of the vulnera-

bility would affect the participants’ decision on ranking.

Table 5.2 and Figure 5.3 shows the characteristics of vulnerabilities in Test 2. We

would like to test whether the graph which shows the types of the vulnerabilities

(direct/ indirect) would affect the participants’ decision on ranking.

9. Outcomemeasurements - We compared the prioritization results and criteria that

they use before (security vulnerability report from dependabot) and after they see

the visualizations (npm audit or Achilles). We also compared the results between

different types of visualization which are table by npm audit and graph byAchilles.

10. Debrief - We told the participants about the purpose of this experiment and inter-

view them for them about the criteria that they used and the tool feedback.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 61

5.2 Online Survey Result

We conduct an online survey as part of the evaluation process. This survey aims

to gather information on developers’ and students’ awareness and perception of security

vulnerabilities and their feedback on the visualization and vulnerability report.

We received the survey response from nineteen participants. There are six devel-

opers and thirteen students (Figure 5.4). Since these two participant groups may have

different level of skills and experiences, we report their results separately.

5.2.1 Level of Concern Regarding Security Vulnerability Sources

First, we ask their level of concern regarding security vulnerability sources, i.e.,

vulnerabilities from third-party dependencies and indirect vulnerabilities.

From Figure 5.5, the graph shows the students’ level of concern regarding differ-

ent sources of vulnerability. Most students are very concerned about vulnerabilities from

indirect dependencies. However, their concern regarding vulnerabilities from third-party

dependencies is almost equal in different levels, from slightly concerned to extremely

concerned. Even though two students are not worried about indirect vulnerabilities, all

of them are worried about vulnerabilities from third-party dependencies.

From Figure 5.6, There is no developers who are not concerned about security

vulnerabilities from third-party dependencies and indirect dependencies. There are 3, 2,

and 1 developers who are moderately concerned, very concerned, and extremely con-

cerned about vulnerabilities in third-party dependencies. Regarding indirect vulnerabili-

ties, the result follows the same trend. The largest number of developers falls into slightly

concerned (3), followed by moderately concerned, very concerned, and extremely con-

cerned (1, 1, and 1).

We can see that the results from the two groups show that both students and devel-

opers are concerned about vulnerabilities from third-party dependencies. However, the

student group is concerned more with indirect vulnerabilities than the developer group.

5.2.2 Prioritization Factors for Vulnerabilities Updates

Second, we ask their prioritization factors for vulnerabilities updates. There are

five factors: number of vulnerabilities, severity, relevancy to business requirement, the

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 62

Figure 5.4: Participants' Survey

Figure 5.5: The Students' Level of Concern Regarding Different Sources

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 63

Figure 5.6: The Developers' Level of Concern Regarding Different Sources

gap between vulnerable version and patch version, and recency of the vulnerability. We

ask how important each factor to consider when they decide to update vulnerabilities.

From Figure5.7, seven out of thirteen students think that severity is extremely

important and relevancy of that dependencies to the business requirement is very impor-

tant for prioritizing vulnerabilities to update. These two factors range from moderately

to extremely important, while other factors are scattered across the scale. Six students

think that recency of vulnerability is moderately important.

From Figure 5.8, six developers think that severity, relevancy to business re-

quirements, and recency of vulnerability are very important factors to consider when

deciding which vulnerabilities to be updated. Interestingly, 3 participants rank severity,

relevancy of business requirements, and recency of vulnerability equally as very impor-

tant. Severity seems to be the major factor in this group as it is selected as very important

and extremely important from 5 out of the 6 participants.

Even though both students and developers prioritize severity as the extremely

level factor, their prioritization is different in other important levels. Students are more

interested in relevancy to business requirements at the very important level, while devel-

opers emphasize severity, relevancy to business requirements, and recency of vulnerabil-

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 64

Figure 5.7: The Students' Library Update Prioritization Factors

Figure 5.8: The Developers' Library Update Prioritization Factors

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 65

Figure 5.9: The Students' Decision on Updating Vulnerable Dependencies

ities. At the moderately important level, students prioritize the recency of vulnerabilities

and the number of vulnerabilities. On the other hand, developers prioritize the gap be-

tween vulnerable versions and patch versions. These differences in result will be used

as a guideline to train users to the tools according to each group prioritization factors.

5.2.3 Decision to Update Vulnerable Dependencies

Finally, we ask them whether they would update vulnerable dependencies.

From Figure 5.9 and Figure 5.10, nine out of thirteen students answered that they

would update the vulnerabilities. Two students provide the reason for not updating the

vulnerabilities as follows. One student declared that he or she does not know how to

fix the vulnerabilities. Another student mentioned that fixing security vulnerabilities is

not their priority job. There are other choices that two students would consider. First,

they would choose to update vulnerabilities depending on the severity and the level of

the vulnerability chain. Another student will update only significant vulnerabilities. If

those vulnerabilities do not affect the project, they would not update them.

On the developer side, two out of six developers would update the vulnerabili-

ties. One developer would not update vulnerabilities because it might cause conflict in

the project, and for some projects, the developer no longer maintains that project. Fixing

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 66

Figure 5.10: The Developers Decision on Updating Vulnerable Dependencies

vulnerabilities might lead to excessive expenses. Three developers consider other op-

tions. One developer mentioned that updating vulnerabilities depends on their severity

and their effect on the overall application. He or she always update the package if it is

not a breaking change. In case there is a breaking change, they would find the existing

workaround first. Another develop stated that he or she would update only the matter

vulnerabilities since conflict might occur after updating the vulnerabilities, and it is not

their priority. The last developer mentioned that it depends on the nature of vulnerabili-

ties and source. Some packages might be better to change than to update.

The full results of the online survey can be found in the Appendix B.

5.2.4 Feedback from Online Survey

As we received feedback from an online survey, there are two main parts that

participants suggest to update which are visualization and vulnerability report. In the

visualization, participants suggest to update and add some information as follow:

• Explain color of each node in each level

• Explain which node is direct or indirect dependency

• Add more information in tooltip

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 67

In the vulnerability report, there are a few suggestions from participants as fol-

low:

• Provide a link that allows participants to link to vulnerability information

• Change summary section in the report to display as table row and provide more

useful information

• Change vulnerability color representation

After we collected this information from participants, we decided to update some

parts according to the participants’ suggestions. In the visualization section, there are

some changes in the following:

• In the top of the dependency graph, we added the short description that describes

which node and color are represented to direct and indirect dependency, and also

describes which node and color are represented to vulnerable nodes.

• In the tooltip sections, we provided the patch version for vulnerable nodes and

provided the link for GHSA and CVE in order to allow participants to click on the

vulnerability web page. Moreover, we changed the severity color that displays in

tooltips according to the level of severity that displays in the report.

In the vulnerability report, we decided the changes are consists of some parts as

the following:

• In each vulnerability dependency section, we added remarkable links for GHSA,

CVE, and CWE that direct to vulnerability information web pages. We also pro-

vided a short description for CWE that helps participants to be aware of vulnera-

bility type.

• In the summary section, instead of displaying the number of vulnerabilities that

exist in the project, we decided to change more useful information for each vul-

nerability as a table row. There are four columns in summary section which are

vulnerable dependency name, type of dependency whether it is direct or indirect

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 68

dependency, updating from vulnerable version to safer or patch version, and pro-

vide the level of severity column whether the dependency is critical, high, moder-

ate or low.

• For the vulnerability color representation, we changed the low level color from

yellow to blue color which is easy for users to notice.

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/69

5.3 Participants’ demographic data

Table 5.3: Participants’ Demographic

Participants Demographics
A1 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency
N1 NAIST graduate student, proficient in npm, know indirect dependency
A2 NAIST graduate student, 3 years experience in npm, know indirect dependency
N2 Fourth-year undergraduate student, Little experience in npm, No prior knowledge of indirect dependency
A3 Fourth-year undergraduate student, 2-3 years experience in npm, know indirect dependency
N3 Developer, proficient in npm, know indirect dependency
A4 Developer, Little experience in npm, No prior knowledge of indirect dependency
N4 Fourth-year undergraduate student, Little experience in npm, No prior knowledge of indirect dependency
A5 Fourth-year undergraduate student, proficient in npm, know indirect dependency
N5 Fourth-year undergraduate student, Little experience in npm, No prior knowledge of indirect dependency
A6 Fourth-year undergraduate student, 3 years experience in npm, No prior knowledge of indirect dependency
N6 Fourth-year undergraduate student, Little experience in npm, know indirect dependency
A7 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
N7 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
A8 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency
N8 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
A9 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency
N9 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
A10 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency
N10 Developer, little experience in npm, No prior knowledge of indirect dependency

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 70

5.4 User Study Result

5.4.1 Results and Analysis

According to the defined methodology, we have performed a user study and

found the following results.

Test 1 - Vulnerable Packages with and without Complexity

Test 1 contains direct vulnerabilities with different levels of severity and com-

plexity (the number of dependencies that packages in the project are relied on). The

participants of both the Achilles group and npm audit group see the same project with

the same dependencies. We discuss their results below.

Achilles

According to Table 5.4, there are two groups of participants categorized by the

prioritization order.

The changed group includes the participant A1, A2, A4, A5, A7, A8, and A9.

They change the prioritization order after using the Achilles tool. We observed that they

only emphasize the severity when they see the vulnerability report from Dependabot.

However, after they use Achilles, they also take other factors into account. Within the

changed group, six participants (A1, A2, A4, A5, A7, and A8) take the package’s com-

plexity into account. However, A9 is only concerned about the severity more after using

Achilles, and the participant mentioned that the package’s complexity does not have in-

fluenced the prioritization.

Within six participants, three participants (A1, A4, A5) use severity as the first

priority factor and high complexity as the second priority factor. On the other hand, one

participant (A7) uses low complexity as the second priority factor. For two participants

who use complexity as the first priority factor and high severity as the second priority

factor, A2 prioritizes high complexity first, while A8 prioritizes low complexity first.

The unchanged group (A3, A6, and A10) does not change their prioritization

order. Nonetheless, they all mentioned that after they see Achilles, they get information

about the package’s complexity easier.

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/71

Table 5.4: The Result of Achilles Test Case No. 1 (Complexity)

Participants Tool Answers Comparison First Priority Second Priority

A1 Dependabot HC >= HS >LC >= LS Different High severity -
Achilles HC >HS >LC >LS High severity High complexity

A2 Dependabot HS >= HC >LC >LS Different High severity -
Achilles HC >LC >HS >LS High complexity High severity

A3 Dependabot HS >= HC >LC >= LS Same High severity -
Achilles HS >= HC >LC >= LS High severity Low complexity

A4 Dependabot HS >= HC >LC >= LS Different High severity -
Achilles HC >HS >LC >LS High severity High complexity

A5 Dependabot HC >HS >LS >LC Different High severity -
Achilles HS >HC >LS >LC High severity Low complexity

A6 Dependabot HC >= HS >LC >= LS Same Severity
Achilles HC >= HS >LC >= LS Severity

A7 Dependabot LS >LC >HS >HC Different Number of indirect dependencies
Achilles HS >= LS >HC >LC Number of indirect dependencies Severity

A8 Dependabot HS >HC >LC >LS Different High severity Recent
Achilles HS >= LS >HC >LC Low complexity Severity

A9 Dependabot HS >LC >LS >HC Different Version number
Achilles HS >HC >LC >LS High severity Less version number

A10 Dependabot HC >= HS >LC >= LS Same High severity High complexity
Achilles HS >= HC >LC >= LS High severity Low complexity

H = High severity, L = Low severity
C = Complex (has several dependencies), S = Simple (no dependency)

V.Jarukitpipat,W
.W

anprasert,and
K
.C
hhun

Evaluation
R
esults/72

Table 5.5: Factors for Prioritizing Package Updates

First priority factor Second priority factor Participants Amount

Dependabot

High Severity Low Severity A1, A2, A3,
A4, A5, A6, A10 7

Recent use A8 1
Other (Version number) A9 1

Other (Number of indirect dependencies) A7 1
Total 10

Achilles

High Severity

Low Severity A3, A6, A10 3
High Complexity A1, A4, A5 3
Low Complexity A7 1

Version A9 1
High Complexity High Severity A2 1
Low Complexity High Severity A8 1

Total 10

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 73

According to Table 5.5, after seeing the vulnerability report from Dependabot,

seven participants use severity as the significant factor for the prioritization. After wit-

nessing the graph visualization in Achilles, there are six cases where the package com-

plexity has become one of the factors when prioritizing the package update, either as the

first or the second priority factor.

npm-audit

According to Table 5.6, there are two groups of participants categorized by the

prioritization order.

There are three participants in the changed group, including N2, N4, and N8.

They shift the prioritization order after using npm audit. Even though there is no sig-

nificant change in the prioritization order, the report from Dependabot and npm audit

provide vulnerability information at different granularity. It affects the prioritization

order since these participants use vulnerability information (CVE) as the prioritization

criteria.

On the other hand, there are six participants (N1, N3, N5, N6, N7, N9 and N10)

in the unchanged group. Five of them (N1, N3, N5, N6 N10) use severity as the top

priority factor for both tools’ prioritization. Participant N7 uses the ease of patching the

packages as the main priority factor for both tools.

V.Jarukitpipat,W
.W

anprasert,and
K
.C
hhun

Evaluation
R
esults/74

Table 5.6: The Result of npm audit Test Case No. 1 (Complexity)

Participants Tool Answers Comparison First Priority Second Priority

N1
Dependabot HS >HC >LS >LC Same High severity Alerted Time
npm-audit HS >HC >LS >LC High severity -
Achilles HS >= LS >HC >= LC Different

N2
Dependabot HC >HS >LC >LS Different Severity Impact on the server?
npm-audit HC >HS >LC >= LS High severity
Achilles HS >HC >LS >LC Different Severity Less complex

N3
Dependabot HC >HS >LC >= LS Same High severity Impact with the project
npm-audit HC >HS >LC >= LS
Achilles HS >HC >LS >LC Different High severity Low complexity

N4
Dependabot HS >HC >LC >= LS Different High severity CVE
npm-audit HC >HS >LS >LC High severity npm description
Achilles HC >HS >LS >LC Same High seveirty newer CVE

N5
Dependabot HS >HC >LC >LS Same High severity
npm-audit HS >HC >LC >LS High severity
Achilles HS >HC >LS >LC Different High severity Less indirect dependencies

N6
Dependabot HS >= HC >LS >= LC Same High severity
npm-audit HS >= HC >LS >= LC High severity
Achilles HS >LS >HC >LC Different Less indirect dependencies Severity

N7
Dependabot LC >HS >LS >HC

Same
The ease of patching the packages

npm-audit LC >HS >LS >HC The ease of patching the packages
Achilles LC >HS >LS >HC The ease of patching the packages

N8
Dependabot HC >HS >LS >LC

Different
Severity Vulnerability risk

npm-audit HS >HC >LC >= LS Severity expected error
Achilles HC >HS >LC >LS High severity More indirect dependencies

N9
Dependabot HS >= HC >= LC >LS

Same
High severity

npm-audit HS >= HC >= LC >= LS High severity
Achilles HS >= HC >= LC >= LS High severity

N10
Dependabot HC >= HS >LC >= LS Same High severity
npm-audit HC >= HS >LC >= LS High severity
Achilles HC >LC >HS >LS Different Complexity Severity

H = High severity, L = Low severity
C = Complex (has several dependencies), S = Simple (no dependency)

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/75

Table 5.7: Factors for Prioritizing Package Updates

First priority factor Second priority factor Cases Number

Dependabot

High Severity

Low Severity N5, N6, N9, N10 4
Detail of vulnerability N8 1

Alert time N1 1
Impact with the project N3 1

CVE N4 1
Impact on the server High Severity N2 1

The ease of patching the packages. N7 1
Total 10

npm
High Severity

Low Severity N1, N2, N4, N5, N6, N9, N10 7
Expected error N8 1

Impact with the project N3 1
The ease of patching the packages. Update packages with no breaking changes N7 1

Total 10

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 76

According to Table 5.7, after using both Dependabot and npm audit, nine partic-

ipants use severity as the first priority factor.

Test 2 - Direct and indirect vulnerabilities

Test 2 contains both direct and indirect vulnerabilities with different levels of

severity. Similar to Test 1, the participants of both the Achilles group and npm audit

group see the same project with the same dependencies. We discuss their results below.

Achilles

According to table 5.8, there are two groups of participants categorized by the

prioritization order.

The changed group, including seven participants A1, A2, A4, A6, A7, A8, and

A10, change the prioritization order after seeing Achilles visualization. When they see

the vulnerability report from Dependabot, participants A1, A2, A4, and A10 only em-

phasize on severity of the vulnerable packages. Participant A6 also considers issue type.

Participant A8 takes the recentness of the vulnerability into account. However, Partic-

ipant A10 does not concern about the severity. The number of indirect dependencies is

the only factor that A10 considers.

Nonetheless, after using Achilles, they also take types of dependency (whether

directly or indirectly) into account. Within the changed group, four participants A1,

A6, A8, and A10, use severity as their first priority factor and for the second priority fac-

tor, consider updating direct dependencies first. Two participants, A2 and A4, choose to

update direct dependencies first and select high severity as the second priority factor. On

the other hand, participant A7 updates the indirect dependencies first before considering

the severity level.

The unchanged group (A3, A5, A9) does not change their prioritization order.

Participant A3 choose to update direct dependencies first since seeing the vulnerabilities

report from Dependabot. Participant A5 updates the high severity vulnerabilities first

and takes direct dependencies into account since seeing the report, but without changing

the prioritization. Participant A9 considers the severity level and the version number.

Nevertheless, they mentioned that Achilles allows them to differentiate between direct

and indirect vulnerabilities easier, similarly to Test 1.

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/77

Table 5.8: The Result of Achilles Test Case No. 2 (Direct/ Indirect)

Participants Tool Answers Comparison First Priority Second Priority

A1 Dependabot HD >= HI >LI >= LD Different High severity -
Achilles HD >HI >LD >LI High severity Direct

A2 Dependabot HD >= HI >= LI >= LD Different High severity -
Achilles HD >LD >LI >HI Direct High severity

A3 Dependabot HD >LD >HI >= LI Same Direct High severity
Achilles HD >LD >HI >= LI Direct High severity

A4 Dependabot HD >= HI >LI >= LD Different High severity
Achilles HD >LD >HI >LI Direct High severity

A5 Dependabot HD >HI >LD >LI Same High severity -
Achilles HD >HI >LD >LI High severity Direct

A6 Dependabot HD >= HI >LD >LI Different High severity -
Achilles HD >HI >LD >LI High severity Direct

A7 Dependabot HD >HI >LD >LI Different High severity number of indirect dependencies
Achilles HD >LD >LI >HI Direct -

A8 Dependabot HD >HI >LI >= LD Different High severity Recent
Achilles HD >= HI >LI >= LD High severity

A9 Dependabot LI >= LD >= HI >= HD Same Low severity number of Indirect dependencies
Achilles HI >= HD >= LI >= LD High severity Less version number

A10 Dependabot HD >= HI >LI >= LD Different High severity -
Achilles HD >LD >HI >LI Direct Severity

H = High severity, L = Low severity
D = Direct dependency, I = Indirect dependency

V.Jarukitpipat,W
.W

anprasert,and
K
.C
hhun

Evaluation
R
esults/78

Table 5.9: Factors for Prioritizing Package Updates

First priority factor Second priority factor Cases Number

Dependabot

High Severity

Low Severity A1,A2, A4, A10 4
Direct A5 1

Issue type A6 1
Recent use A8 1

Direct High Severity A3 1
Indirect Severity A9 1

Number of indirect dependencies A7 1
Total 10

Achilles

High Severity Direct A1, A5, A6, A8, A10 5
Version A9 1

Direct High Severity A2(with third factor of low severity), A3, A4 3
Indirect Severity A7 1

Total 10

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 79

According to Table 5.9, after seeing the vulnerability report from Dependabot,

six participants use severity as the major factor for the prioritization. After seeing the

graph visualization in Achilles, there are seven participants whose types of dependency

have become the factor when they are prioritizing the package update as the first or the

second priority factor.

npm-audit

According to table 5.10, there are two groups of participants categorized by the

prioritization order.

Five participants in the changed group are N3, N4, N6, N7, N8 and N10. When

they see the vulnerability report from Dependabot, they prioritize severity as the first

or second factor. Participants N3 and N6 use severity as their only factors. Participant

N4 also considers the CVE, and participant N7 prioritizes the ease of fixing. Participant

N8 only takes vulnerabilities information into account. Participant N10 considers the

risk of vulnerabilities from attacker. However, after they use npm audit, participants N3

and N6 consider the types of vulnerabilities as a factor for prioritization. N4, N7 and

N8 mentioned that short description that provided by npm affect their decision on the

prioritization. Participant N10 only considers the severity.

There are four participants in the unchanged group, which are N1, N2, N5, and

N9. Even though participant N1 does not change the order, the criteria is different. After

seeing dependabot report, participant N1 uses existing solving pull request and severity

as the factor, and after seeing the npm audit report, the participant considers direct de-

pendency and severity. Participants N2, N5, and N9 only assess the severity.

According to Table 5.11, after seeing the vulnerability report from Dependabot,

eight participants use severity as the major factor for prioritization. After seeing the

graph visualization in Achilles, there are four participants whose types of dependency

have become the factor when they prioritize the package update as the first or second

priority factor.

V.Jarukitpipat,W
.W

anprasert,and
K
.C
hhun

Evaluation
R
esults/80

Table 5.10: The Result of npm audit Test Case No. 2 (Direct/ Indirect)

Participants Tool Answers Comparison First Priority Second Priority

N1
Dependabot HD >LD >HI >LI

Samenpm-audit HD >LD >HI >LI Direct Severity
Achilles HD >LD >HI >LI

N2
Dependabot HD>HI >LI >= LD

Same
High severity

npm-audit HD>HI >LI >= LD
Achilles HD >= HI >LD >= LI

N3
Dependabot HI >= HD >LD >= LI Different High severity
npm-audit HD >LD >HI >LI Direct severity
Achilles HD >LD >HI >LI Same Type of dependency Severity

N4
Dependabot HD >HI >LI >LD Different High severity CVE, impact
npm-audit HD >LD >HI >LI Direct Severity
Achilles LD >LI >HD >= HI Different CVSS score

N5
Dependabot HD >= HI >LD >= LI Same High severity -
npm-audit HD >= HI >LD >= LI High severity -
Achilles HD >LD >HI >LI Direct

N6
Dependabot HD >= HI >LI >= LD Different High severity
npm-audit HD >LD >HI >LI Direct Severity
Achilles HD >LD >HI >LI Same Direct Severity

N7
Dependabot HD >LD >= LI >HI Different Ease of fixing Severity
npm-audit HD >LD >LI >HI Ease of fixing Severity
Achilles HD >LD >LI >HI same Ease of fixing Severity

N8
Dependabot HD >LI >= LD >HI Different Details of vulnerabilities
npm-audit HD >HI >LI >= LD Severity Effect of vulnerabilities
Achilles HD >HI >LD >LI Different High severity Direct

N9
Dependabot HD >= HI >= LI >= LD Same High severity
npm-audit HI >= HD >LI >= LD High severity
Achilles HD >HI >LD >LI Different High severity Direct

N10
Dependabot HD >HI >LD >LI Same High severity
npm-audit HD >HI >LD >LI High severity
Achilles HI >HD >LI >LD Different High severity Indirect

H = High severity, L = Low severity
D = Direct dependency, I = Indirect dependency

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/81

Table 5.11: Factors for Prioritizing Package Updates

First priority factor Second priority factor Cases Amount

Dependabot

High Severity
Low Severity N3, N5, N6, N9 4
how it can impact the project N2 1
CVE N4 1

Existing solving pull request High Severity N1 1
Ease of fixing High Severity N7 1
Detail of vulnerability N8 1
Chance of getting attack from the outsider N10 1

Total 10

npm

High Severity
Low Severity N2, N5, N8, N9, N10 5

Direct N6 1
Impact the project N4 1

Direct High Severity N1, N3 2
Patch the packages with no breaking changes High Severity N7 1

Total 10

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 82

Table 5.12: Comparison of Developers' Decisions

Dependabot - Achilles Dependabot - npm audit
Same 3 7

Different 7 3

5.4.2 Answer to Research Questions

From the results, we can answer the two research questions as follows.

RQ1: How graph visualization (Achilles) support developer’s decision on

prioritizing vulnerability to fix?

From the user study, we found that the graph visualization of Achilles helps

supporting developers’ decisions on prioritizing vulnerability to fix by providing

more information about complexity and direct/indirect dependencies compared to

the traditional list of vulnerabilities provided by Dependabot. Six participants take

complexity into account after seeing the graph visualization. Nine out of ten partici-

pants consider types of dependencies (direct or indirect dependencies) as the factor for

prioritization after seeing the graph visualization.

RQ2: How different types of visualization (Graph and Table) effect devel-

oper’s decision on prioritizing vulnerability to fix?

The types of visualization affect developers’ decision on prioritizing vulnerabil-

ities to fix as below.

Table 5.12 Comparison of developers’ decisions after seeing the graph and table

visualization on the task having vulnerabilities with complexity

We can see from table 5.12, for test 1 where vulnerable packages have different

complexities, the number of participants who use Achilles and change their prioritization

order is larger than the number of participants who use npm audit. The table visualization

can affect the developers’ decision three out of nine cases, while the graph visualization

can affect the developers’ decision to update vulnerabilities seven out of ten cases.

Table 5.13 Comparison of developers’ decisions after seeing the graph and table

visualization on the task with indirect vulnerabilities

We can see from table 5.13, for test 2, where vulnerable packages have different

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 83

Table 5.13: Comparison of Developers' Decisions

Dependabot - Achilles Dependabot - npm audit
Same 3 5

Different 7 5

Table 5.14: showing the prioritization results after using npm audit and Achilles

Test 1 Test 2
Same 3 5

Different 7 5

types of dependencies. The number of participants who use Achilles and change

the prioritization order is also larger than participants who use npm audit. We

can see that the graph visualization in Achilles does outperform npm audit in providing

information about the types of dependencies since both of the tools represent direct and

indirect dependencies differently. However, the differences between the two group is not

as large as in Test 1. The table visualization can affect the developers’ decision five out

of nine cases, while the graph visualization can affect the developers’ decision to update

vulnerabilities seven out of ten cases.

We also asked participants who use npm audit to see Achilles visualization of Test

1 and Test 2 and asked for their prioritization again. What we found are as followed.

Table 5.14 shows the prioritization results after participants using npm audit and

Achilles. In Test 1, there are seven participants change their prioritization since they

consider complexity of the packageswhich introduced byAchilles as a prioritization

factor. There is no significant differences in Test 2 since bothAchilles and npmaudit

provide types of dependencies (whether direct or indirect dependencies).

5.5 Analysis of GitHub Project

To assess its usability in practice, we used Achilles to perform the vulnerability

analysis on real-world GitHub projects to see if the tool can detect any existing security

vulnerabilities. There are a few criteria that we chose to sample the repositories.

1. The repositories must be developed by using npm.

2. The repositories must have the dependencies in package.json file.

Then, we choose two sets pf projects. First, we retrieved the repositories based on the

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 84

Table 5.15: 10 Most Stars GitHub Project Used in the Study

Project Description No. of Stars
np A better npm publish 6k
sinopia A private/caching npm repository server 5.4k

nwb A toolkit for React, Preact,
Inferno & vanilla jS apps 5.3k

concurrently Command line 4.4k
npm JavaScript package manager 17.3k

npm-run-all A CLI tool to run multiple npm-scripts
in parallel or sequential 4.1k

node-semver The semver parser for node 3.6k
cnpmjs.org Private npm registry and web for Enterprise 3.4k
windows-build-tools Install C++ Build Tools for Windows using npm 3.2k
npx Execute npm package binaries 2.6k

Table 5.16: 10 Most Dependent GitHub Project Used in the Study

Project Description No. of Stars
mocha Javascript test framework for node.js & the browser 2074

chai BDD / TDD assertion framework for node.js
and the browser that can be paired with any testing framework 1577

grunt The JavaScript Task Runner 1623
eslint Find and fix problems in JavaScript code 916
gulp A toolkit ot automate & enhance workflow 2758
request HTTP request client 15820
istanbul JS code coverage tool 391
should Test framework for node.js 612
express Fast, unopinionated, minimalist web framework for node 10250
sinon Test spies, stubs and mocks for JavaScript 511

number of stars. Then, we selected the top 10 projects with the highest number of stars

in the study. The information of the 10 projects is shown in the Table 5.15.

Second, we retrieved the repositories based on the number of dependent pack-

ages using the information from npm registry. This is done using the all-the-package-

names[20] package in npm registry. Then, we picked the 10 projects with the highest

number of dependent packages. The information of the 10 projects is shown in the Table

5.16.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 85

5.5.1 Most Starred GitHub Projects

As shown in Figure 5.11, we found that Achilles could find the vulnerabilities in

4 most-starred GitHub repositories including sinopia, cnpmjs.org, windows-build-tools,

and npx.

For sinopia, Achilless found 9 direct vulnerabilities (1 low, 1 medium, 6 high,

and 1 critical), and 3 indirect vulnerabilities (2 low and 1 high).

For cnpmjs.org, Achilles found 4 direct vulnerabilities (1 medium and 3 high),

and 7 indirect vulnerabilities (4 low, 1 medium, and 2 high).

For windows-build-tools, Achilles found 1 indirect vulnerability (1 low).

For npx, Achilles found 1 indirect vulnerability (1 low).

The full Achilles analysis report of the 4 vulnerable projects can be found in the

Appendix F.

5.5.2 Most Dependent npm Projects

As shown in Figure 5.12, Achilles did not report any vulnerability in the 10 most

dependent npm projects. This shows that these projects are actively maintained with

regular security checks.

V.Jarukitpipat,W
.W

anprasert,and
K
.C
hhun

Evaluation
R
esults/86

Figure 5.11: Bar graphs showing Direct and Indirect Vulnerable Dependency for Top 10 Most starred Repositories on GitHub

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/87

Figure 5.12: Bar graphs showing Direct and Indirect Vulnerable dependencies for Top 10 Most Dependent JavaScript Libraries in npm
Registry

V. Jarukitpipat, W. Wanprasert, and K.Chhun Conclusions / 88

CHAPTER 6

CONCLUSIONS

This chapter summarizes the project and discusses the limitations and the future

directions of this project

6.1 Problems and limitations

There is a limitation while selecting the user’s repository to analyze. Achilles

takes the repository name to search and verify whether the project is an npm project and

has dependencies in package.json. However, in GitHub’s code search API, there is a

limitation that the API is not allowed to search the repository’s content that hasn’t had

activity on the repository over a year. Thus, Achilles will not be able to analyze and draw

dependency graph of the project that is not maintained for over a year [21].

A limitation during the visualization development includes scarcity in D3 docu-

mentation, leading to some problems during the visualization implementation. We can-

not handle some factors properly, such as the force simulation when the graph contains

a large number of dependencies. The performance of the graph drops significantly when

it has to handle a complex relationship between dependencies. In the report part, the pdf

version cannot be downloaded on mobile.

6.2 Threats to validity

The result of user study may not be fully representative for the npm audit group.

This is because some of the participants in the study may be inexperienced in using npm

audit. We mitigate this problem by having a short training for participants to understand

how to use and interpret the result of npm audit. The result from the online survey sug-

gested that students and developers are interested in different prioritization factors. We

will use that information as a guideline to design the training process according to their

interests. For students, we will mainly focus on severity, recency and number of vulnera-

bilities. Contrarily, for developers, we will focus on severity, recency of vulnerabilities,

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 89

and gap between patch versions and vulnerable versions.

6.3 Future work

In the future, we aim to have the tool be integrated into GitHub repositories and

be able to open a pull request for updating the vulnerabilities from the visualization. We

also intend to improve the graph navigation for easy understanding and the ability to filter

information that the user only wants to know. Performance of the visualization is also one

of the areas that we aim to enhance to handle projects with more extensive dependencies

and provide insightful information for developers to manage the projects. We anticipate

that Achilles can be used with not only npm projects but also other package managers,

including Composer, Maven, NuGet, etc. There are also many other unexplored aspects

of D3 that remain potential key factors to better performance and represent information

of the visualization.

Since the COVID-19 and financial support prohibiting us from recruiting more

specific and expected target user groups, our future work is to contact companies and

industries which mainly focus on security vulnerabilities in order to hear comments from

real user experiences and get feedback to develop our tool to meet the needs of the users.

Moreover, if our tool can be integrated with GitHub directly, it would be more

convenient for users to see the graph visualizations in the GitHub repositories without

opening a separate browser and be able to manage their packages instantly. This can be

done as an issue report or a pull request comment.

6.3.1 Potential performance optimization

It is feasible to optimize the performance of the querying and visualization pro-

cess by separating these two processes. After querying the dependencies and vulnerabil-

ities information, we can keep this information in the data structure which supports the

graph format. Hence, it will not be required to query the information when the web page

is refreshed. We also compare the current and new methods for the querying process and

visualizing process in the Table 6.1.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Conclusions / 90

Table 6.1: Comparing the current and the proposed methods
Pros Cons

Current method
(New query every time)

- Information is up to date
- Use the existing GraphQL API
provided by GitHub

- Expensive computational power
- Slower information retrieval

Local database - Indexing - Cheap computational power
- Faster information retrieval

- Information is not updated
- Need to design new database

6.3.2 Potentially better visualization method

We plan to change the default view to show only vulnerable nodes and provide

other options for users to visualize according to their preferences. The possibilities in-

clude showing an entire graph, only the direct dependencies or indirect dependencies.

We also plan to investigate other visualization which would better represent dependen-

cies and vulnerabilities information, e.g., hierarchical visualization.

6.4 Conclusion

The main goal of this project is to provide developers a tool that can help them

detect, visualize and report vulnerabilities in their projects. We create an automated

tool called Achilles to detect both direct and indirect vulnerabilities and visualize the

dependencies graph with identified vulnerable node. Users can also see and download

the vulnerabilities report.

Achilles requires a user to log in with a GitHub account in order to retrieve the

list of user’s repositories. After the user selects a repository and package.json file to

analyze, Achilles will check the packages vulnerability from GitHub Security Advisory,

retrieve the chain of dependencies of the packages from npm registry, and visualize the

dependencies graph. Achilles also provides the security vulnerability report, which can

be downloaded in pdf format.

We evaluate the Achilles tool by three methods: gathering information from an

online survey, conducting a user study, and analyzing GitHub projects. The responses

from the online survey suggested that most students and developers use severity as a

highly important factor that they consider when updating vulnerabilities. Comparing the

prioritization for vulnerabilities update after participants use the Dependabot report, npm

audit, and Achilles, we found that most participants change their prioritization order after

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 91

using Achilles due to information about packages’ complexity and types of dependencies

(direct and indirect vulnerabilities) Achilles introduced. We also usedAchilles to analyze

the vulnerability in the real-world GitHub projects. We tested with the Top 10 most

starred repositories on GitHub. Achilles can detect vulnerabilities in four repositories.

Direct and indirect vulnerabilities are detected in two repositories which are sinopia and

cnpmjs.org. An indirect vulnerability is detected in windows-build-tools and npx. We

also tested Achilles with Top 10 Most Dependent JavaScript Libraries in npm registry.

Achilles did not report any vulnerabilities.

The evaluation results show that Achilles tool is a beneficial addition to contem-

porary software development to detect indirect dependencies and comprehend potential

vulnerabilities via the dependency graph visualization and analysis report.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A / 92

APPENDIX A
IRB DOCUMENT

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 93

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A / 94

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 95

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A / 96

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 97

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A / 98

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 99

APPENDIX B
ONLINE SURVEY

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 1/24

1.

Mark only one oval.

ภาษาไทย
Skip to section 2 (แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security
Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) และเค อง อในการ
ตรวจ บ)

English
Skip to section 8 (Survey on security vulnerability from third-party library and detection
tool)

แบบสอบถามเ ยว บ องโห านความ
ปลอด ย ของซอฟ แว (Security
Vulnerability) เ ด นจาก ไลบรา ของ
คคล 3 (Third-pa y library) และเค อง
อในการตรวจ บ

Survey about the software vulnerability from third-party library and Achilles tool for
detecting security vulnerabilities

* Required

ก ณาเ อกภาษาของแบบสอบถาม *
Please choose the language of the survey

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 100

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 2/24

แบบสอบถาม
เ ยว บ องโห
านความ
ปลอด ย ของ
ซอฟ แว
(Security
Vulnerability)
เ ด นจาก
ไลบรา ของ คคล

 3 (Third-party

library) และ
เค อง อในการ
ตรวจ บ

แบบสอบถาม เ น วนห งของ ชา ITCS492 Senior Project II คณะเทคโนโล
สารสนเทศและการ อสาร มหา ทยา ยม ดล คณะ ด ไ ฒนาเค อง อในการ
นหาและแสดงผล องโห านความปลอด ยของ npm dependency ง น ด

ประสง ของแบบสอบถาม ง เ อสอบถามความตระห ก ใน ญหา อาจเ ด นจาก
องโห านความปลอด ยของ npm dependency รวม งความ ดเ น อ วอ างการ
ใ งานเค อง อ งก าว

เ องจากแบบสอบถามประกอบ วย ถามหลาย วน งขอความก ณาใ าน จารณา
ตอบตามความเ าใจ านใ มาก ด โดย อ ลและ ตอบ งหมดจะ กปก ดเ น
ความ บ และจะ มาใ ในการ เคราะ ผลการ กษาค ง โดยออกมาเ นภาพรวมของ
การ ยเ า น งไ ผลกระทบใด ๆ อ ตอบห อห วยงานของ ตอบ เ องจากไ
สามารถ มา บ นเจาะจงหา ตอบไ าน ท จะไ ตอบ ถาม อใด อห ง หาก
านไ สบายใจห อ ด ด จะตอบ ถาม น ห อไ ตอบแบบสอบถาม งหมดเลย ไ

โดยไ ผลกระทบ อการป งานใด ๆ ของ าน าน ท จะไ เ า วมการ ย
ไ โดยไ องแ งเห ผล

หาก เ า วม ย อสง ยเ ยว บการ ยห อแบบสอบถาม สามารถ ด อสอบถาม
ไ ดร. ยยง ก ตเวชส ล (อาจาร ป กษา) สถาน ด อ คณะเทคโนโล
สารสนเทศและการ อสาร มหา ทยา ยม ดล 999 ถนน ทธมณฑลสาย 4 บลศาลา
ยา เภอ ทธมณฑล , งห ดนครปฐม 73170 ประเทศไทยใน นและเวลาราชการ ห อ
โทร พ ด อไ (02) 441-0909 ห อ เมล chaiyong.rag@mahidol.ac.th

โครงการ ย ไ บการ จารณา บรองจาก คณะกรรมการจ ยธรรมการ ยในคนของ
มหา ทยา ยม ดล เลข MU-CIRB 2021/085.1103 กงานอ กงาน
อ การบ มหา ทยา ยม ดล ถนน ทธมณฑล สาย 4 บลศาลายา เภอ ทธมณฑล
งห ดนครปฐม 73170 หมายเลขโทร พ 02-849-6224, 6225 โทรสาร 02-849-

6224 หาก านไ บการป ไ ตรงตาม ระ ไ านสามารถ ด อประธานกรรม
การฯห อ แทน ไ ตามสถาน และหมายเลขโทร พ าง น

ขอขอบพระ ณ ก ณาสละเวลาในการตอบแบบสอบถาม
นางสาว ภาวรรณ จา จ ฒ
นางสาว ว รญา นประเส ฐ
นาย ค น น ชน
ดร. ยยง ก ตเวชส ล (อาจาร ป กษา)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 101

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 3/24

เอกสาร แจง เ า วม ยโดยการตอบแบบสอบถาม

อ ลเ อง น

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 102

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 4/24

2.

Mark only one oval.

Other:

กเ ยน/ ก กษา

เ ยวชาญ านความปลอด ย (Security specialist)

ก ฒนาซอฟ แว (Software developer)

กทดสอบโปรแกรมคอม วเตอ (Software tester)

แลและ ดการเค อ ายคอม วเตอ (System administrator)

ก เคราะ องโห ในซอฟ แว (Vulnerability analyst)

ก ย (Researcher)

3.

Mark only one oval.

6 เ อน - 1

1 - 2

3 - 4

5 - 6

มากก า 6

4.

Other:

Check all that apply.

PHP

Java

JavaScript

.NET

Python

Ruby

ณประกอบอา พใด *

ณ ประสบการ การเ ยนโปรแกรมมานานเ าใด *

ณใ ภาษาใดในการ ฒนาซอฟ แว *

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 103

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 5/24

5.

Other:

Check all that apply.

Composer

Maven

npm

NuGet

pip

RubyGems

โปรด าน
อนเ ม
แบบสอบถาม

การ องโห านความปลอด ย (Security vulnerability) สามารถเ ด นไ จากหลายแห ง
ไ าจะเ ดจากภายในโ ดของโปรเ คเอง ห อเ ดจากการเ ยกใ ไลบรา ของ คคล สาม
(Third-party dependency)

ญหา องโห านความปลอด ย เ ดจากการใ ไลบรา ของ คคล สาม น อาจเ ด นไ

จากไลบรา ของ คคล สามโดยตรง (Direct vulnerability) ห อจากการ ไลบรา คคล
สาม นเ ยกใ ไลบรา น ก โดยเห การ งก าว ใ เ ดเ นสายโยงของไลบรา
(Chain of library dependency) ห อเ ยก กอ างห ง า องโห านความปลอด ยทาง
อม (Indirect vulnerability)

แบบสอบถาม งเ นความสนใจ องโห านความปลอด ย (Security vulnerability) ง
เ ดจากการใ ไลบรา ของ คคล สาม (Third-party dependency) งทางตรง (Direct
vulnerability) และทาง อม (Indirect vulnerability) เ อ กษา งความตระห ก
(Awareness) ของ ก ฒนาซอฟ แว

6.

Mark only one oval per row.

ณใ การ ดการแ กเกจ (Package manager ecosystem) ใด *

โปรดตอบ ถามเ อง นเ ยว บ องโห านความปลอด ย (Security vulnerability) *

ไ
ญ

ญ
อย

ญปาน
กลาง

ญ
มาก

ญ
ด

ณใ ความ ญ บ องโห าน
ความปลอด ยของซอฟ แว
(Security vulnerability) เ ด นจาก
ไลบรา ของ คลล สาม (Third-party
dependency) ในระ บใด

ณใ ความ ญ บ Security
vulnerability เ ด นจากสายโยงของ
ไลบรา (Chain of dependencies)
ของ Third-party library ในระ บใด

ณใ ความ ญ บ องโห าน
ความปลอด ยของซอฟ แว
(Security vulnerability) เ ด นจาก
ไลบรา ของ คลล สาม (Third-party
dependency) ในระ บใด

ณใ ความ ญ บ Security
vulnerability เ ด นจากสายโยงของ
ไลบรา (Chain of dependencies)
ของ Third-party library ในระ บใด

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 104

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 6/24

7.

Mark only one oval per row.

ถามเ ยว บการแสดงผลกราฟ

โปรด บชม โอสา ตการใ เค อง อ Achilles แ วตอบ ถาม าน าง (โอขนาดเ ม
สามารถ ไ https://youtu.be/BRMhT_vmu_0) ณสามารถทดลองใ งาน Achilles Tool ไ
https://achilles-sp.azurewebsites.net/

http://youtube.com/watch?
v=BRMhT_vmu_0

ในการ ด น บความ ญ การ ปเดต Third-party library ณใ ความ ญ บ งใด *

ไ
ญ

ญ
อย

ญปาน
กลาง

ญ
มาก

ญ
ด

นวนของ อ ล องโห านความ
ปลอด ย พบและปรากฎในฐาน อ ล
Common Vulnerabilities and
Exposures (https://cve.mitre.org)
ห อ GitHub Security Advisory
(https://github.com/advisories)

ระ บความ นแรงของ องโห าน
ความปลอด ย

ความเ ยว องของ องโห านความ
ปลอด ย บ ง นห กของซอฟ แว

ความ างระห างเวอ น องโห
(Vulnerable version) เ ยบ บเวอ น
ไ บการแ ไข (First patch version)

เ น องโห านความปลอด ย เ ง
นพบ (ความให ของ องโห ฯ)

นวนของ อ ล องโห านความ
ปลอด ย พบและปรากฎในฐาน อ ล
Common Vulnerabilities and
Exposures (https://cve.mitre.org)
ห อ GitHub Security Advisory
(https://github.com/advisories)

ระ บความ นแรงของ องโห าน
ความปลอด ย

ความเ ยว องของ องโห านความ
ปลอด ย บ ง นห กของซอฟ แว

ความ างระห างเวอ น องโห
(Vulnerable version) เ ยบ บเวอ น
ไ บการแ ไข (First patch version)

เ น องโห านความปลอด ย เ ง
นพบ (ความให ของ องโห ฯ)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 105

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 7/24

ภาพ วอ างการแสดงผล องโห านความปลอด ย (Vulnerable dependency visualization)
(ภาพขนาดเ มสามารถ ไ http://bit.ly/achilles-visualization)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 106

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 8/24

ภาพ วอ างการแสดงผล องโห านความปลอด ย (Vulnerable dependency visualization)
พ อม อ บาย (ภาพขนาดเ มสามารถ ไ http://bit.ly/achilles-tooltip)

8.

Mark only one oval.

ไ เ าใจ

1 2 3 4 5

เ าใจ งหมด

ณเ าใจการแสดงผลของ องโหว านความปลอด ยจากการแสดงผล วยกราฟ านบน
(Vulnerability dependency visualization) ในระ บใด *

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 107

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 9/24

9.

Check all that apply.

ไ องการ อ บายเ มเ ม องโห านความปลอด ยทางตรง
(Direct vulnerability)

องโห านความปลอด ยทาง อม
(Indirect vulnerability)

ของโหนดแยก นไ ดเจน

อ บายเ มเ ม (Tooltips)

Other:

วนใด ณ ด า ง องการ อ บายเ มเ ม

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 108

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 10/24

10.

แบบสอบถามเ ยว บรายงาน องโห านความปลอด ย

ณ แนะ เ มเ ม น ห บการแสดงผล Vulnerability dependency visualization
ห อไ

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 109

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 11/24

โปรด กษาภาพ วอ างรายงาน องโห านความปลอด ยของ Achilles แ วตอบ ถาม าน
าง (ภาพขนาดเ มสามารถ ไ http://bit.ly/achilles-report)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 110

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 12/24

11.

Mark only one oval.

ไ เ าใจเลย

1 2 3 4 5

เ าใจ งหมด

12.

การวางแผนห งการใ เค อง อ Achilles

13.

Mark only one oval.

อย ด

1 2 3 4 5

มาก ด

14.

Mark only one oval.

Other:

วางแผน ปเดตไลบรา องโห

เ อก จะไ ปเดตไลบรา องโห

ระ บของความเ าใจเ อ ณ รายงาน องโห านความปลอด ย านบน *

แนะ เ มเ ม ห บรายงานฯ

จากการ บชม โอสา ตและ วอ างรายงานของเค อง อตรวจสอบและรายงาน องโห
านความปลอด ย Achilles ณ ด าเค อง อ งก าว ประโยช องาน ณมาก อย
เ ยงใด *

ณจะ ด นใจอ างไร หากใ เค อง อ Achilles และพบ าโปรเ คของ ณ องโห าน
ความปลอด ย *

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 111

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 13/24

15.

Other:

Check all that apply.

หาก ปเดตไลบรา องโห อาจ ใ โ ดในโปรเ คเ ดความ ดแ งไ (Conflict)

การแ ไข องโห านความปลอด ยไ ใ งาน ความ ญ น บแรก
ไ ทราบ าจะ องแ ไขไลบรา องโห อ างไร

Survey on
security
vulnerability
from third-
party
library and
detection
tool

This survey is part of the ITCS492 Senior Project II in the Faculty of Information and
Communication Technology, Mahidol University. We developed an Achilles tool for
finding and visualizing security vulnerability for npm dependency. This survey aims
to perceive the awareness of npm dependencies security vulnerabilities issues and
ask for suggestions and feedback for the Achilles tool.

Since the survey consists of multiple parts, thus we ask you to consider answering
based on your utmost understanding. Your survey answers will be sent to a link at
Google Forms and Google Sheets where data will be stored in a password-
protected electronic format. Google Forms and Google Sheets do not collect
identifying information such as your name, email address, or IP address. Therefore,
your responses will remain anonymous. No one will be able to identify you or your
answers, and no one will know whether you participated in the survey. The survey
responses will be used to analyze the overview of this research project. It will not
have any effect on your career or your organization. Your participation in this survey
is voluntary. You may refuse to take part in the research or exit the survey at any
time without penalty. You are free to decline to answer any particular question you
do not wish to answer for any reason.

If you have questions at any time about the study or the procedures, you may
contact my research supervisor, Dr. Chaiyong Ragkhitwetsagul, at the Faculty of
Information and Communication Technology on official days and hours or via
phone at (02) 441-0909 or via email at chaiyong.rag@mahidol.ac.th.

This research study has been approved by Mahidol University Center of Ethical
Reinforcement for Research No. MU-CIRB 2021/085.1103 at Office of the President
Mahidol University, 2nd floor, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom
73170, Thailand or via phone at (02) 849-6220, (02) 849-6223 If you feel you have
not been treated according to the descriptions in this form, or that your rights as a
participant in research have not been honored during the course of this project, or
you have any questions, concerns, or complaints that you wish to address to
someone other than the investigator, you may contact MUCERif Administrative at
the address and phone mentioned above.

Thank you for dedicating your time to answering this survey.
Miss Vipawan Jarukitpipat
Miss Wachirayana Wanprasert
Mr. Klinton Chhun
Dr. Chaiyong Ragkhitwetsagul (Research advisors)

โปรดอ บายเ มเ ม า ไม ณ งเ อก จะไ ปเดตไลบรา องโห

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 112

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 14/24

Self-Administered Questionnaire Participant Information Sheet

Basic Information

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 113

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 15/24

16.

Mark only one oval.

Other:

Students

Security specialist

Software developer

Software tester

System administrator

Vulnerability analyst

Researcher

17.

Mark only one oval.

6 months - 1 year

1 - 2 years

3 - 4 years

5 - 6 years

More than 6 years

18.

Other:

Check all that apply.

PHP

Java

JavaScript

.NET

Python

Ruby

What is your occupation? *

How long is your experience in programming? *

What programming language do you use? *

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 114

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 16/24

19.

Other:

Check all that apply.

Composer

Maven

npm

NuGet

pip

RubyGems

Please read
before
starting the
survey

Security vulnerability can occur from several sources including vulnerability from
source code and from third-party dependency.

Vulnerability from third-party dependency can be direct vulnerability and indirect
vulnerability which occur from the usage of other libraries causing a chain of
dependency.

This survey focuses on security vulnerability from third-party dependency both
direct and indirect vulnerability. We would like to study the awareness of software
developers regarding this vulnerability.

20.

Mark only one oval per row.

What package manager ecosystem do you use? *

Please answer the following basic questions about software vulnerabilities. *

Not
concerned

Slightly
concerned

Moderately
concerned

Very
concerned

Extremely
concerned

How much are you
concerned about
security
vulnerabilities from
third-party
dependencies in your
software project?

How much are you
concerned of security
vulnerabilities caused
by chain of
dependencies in your
software project
(indirect
vulnerabilities)

How much are you
concerned about
security
vulnerabilities from
third-party
dependencies in your
software project?

How much are you
concerned of security
vulnerabilities caused
by chain of
dependencies in your
software project
(indirect
vulnerabilities)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 115

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 17/24

21.

Mark only one oval per row.

Questions for visualization

Please watch the Achilles tool demonstration and answer the following questions (Link
for the video: https://youtu.be/BRMhT_vmu_0) We would like to invite you to use
Achilles tool at https://achilles-sp.azurewebsites.net.

http://youtube.com/watch?
v=BRMhT_vmu_0

How do you prioritize each factor when you decide to update the Third-party library? *

Not
important

Slightly
important

Moderately
important

Very
Important

Extremely
important

The number of vulnerabilities
that found in CVE
(https://cve.mitre.org) or
GitHub Security Advisory
(https://github.com/advisories)

Severity of Vulnerability

Relevancy to the business
requirement

The gap between your
vulnerable library version and
first patch version to fix that
vulnerability is large

Recency of vulnerability

The number of vulnerabilities
that found in CVE
(https://cve.mitre.org) or
GitHub Security Advisory
(https://github.com/advisories)

Severity of Vulnerability

Relevancy to the business
requirement

The gap between your
vulnerable library version and
first patch version to fix that
vulnerability is large

Recency of vulnerability

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 116

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 18/24

Visualization of vulnerable dependencies (See full image: http://bit.ly/achilles-
visualization)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 117

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 19/24

Visualization of vulnerable dependencies with tooltips (See full image:
http://bit.ly/achilles-tooltip)

22.

Mark only one oval.

Do not understand

1 2 3 4 5

Understand completely

How much do you understand this visualization? *

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 118

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 20/24

23.

Check all that apply.

None Direct vulnerability

Indirect vulnerability Color of the nodes in each level

Tooltips

Other:

Are there any parts that you would like more explanation?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 119

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 21/24

24.

Questions for security vulnerability report

Do you have any suggestion for improving the vulnerability dependency
visualization?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 120

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 22/24

Please see the security vulnerability report and answer the following questions (See
full picture: http://bit.ly/achilles-report)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 121

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 23/24

25.

Mark only one oval.

Do not understand

1 2 3 4 5

Understand completely

26.

Questions for the plan after using the Achilles tool

27.

Mark only one oval.

Least useful

1 2 3 4 5

Most useful

28.

Mark only one oval.

Other:

Update vulnerable dependencies

Do not update vulnerable dependencies

What is your level of understanding when reading the vulnerability report *

Suggestion for the security vulnerability report

After watching the Achilles tool demonstration and vulnerability report, how do
you find this vulnerability visualization and report useful? *

What would be your decision if you use the Achilles tool and find that your
project has security vulnerabilities. *

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B / 122

4/18/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/edit 24/24

29.

Other:

Check all that apply.

Conflict in the code might occur after updating the library

Updating vulnerable dependencies is not the first priority

Do not know how to update the vulnerable dependencies

This content is neither created nor endorsed by Google.

Please provide some reasons why you would not update vulnerable
dependencies

 Forms

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 123

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 124

APPENDIX C
ONLINE SURVEY RESULT

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 1/15

ก ณาเ อกภาษาของแบบสอบถาม
19 responses

แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability)
เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) และเค อง อในการตรวจ บ

อ ลเ อง น

แบบสอบถามเ ยว บ องโห านความ
ปลอด ย ของซอฟ แว (Security
Vulnerability) เ ด นจาก ไลบรา ของ
คคล 3 (Third-pa y library) และเค อง
อในการตรวจ บ

19 responses

Publish analytics

ภาษาไทย
English42.1%

57.9%

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 125

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 2/15

ณประกอบอา พใด
11 responses

ณ ประสบการ การเ ยนโปรแกรมมานานเ าใด
11 responses

ณใ ภาษาใดในการ ฒนาซอฟ แว
11 responses

กเ ยน/ ก กษา
เ ยวชาญ านความปลอด ย

(Security specialist)
ก ฒนาซอฟ แว (Software

developer)
กทดสอบโปรแกรมคอม วเตอ …
แลและ ดการเค อ ายคอม …
ก เคราะ องโห ในซอฟ แว …
ก ย (Researcher)

Cloud Solution Architect / We…

9.1%

18.2%

72.7%

6 เ อน - 1
1 - 2
3 - 4
5 - 6
มากก า 6

18.2%

9.1%

45.5%

27.3%

0 2 4 6 8

PHP

Java

JavaScript

.NET

Python

Ruby

TypeScript, Dart

2 (18.2%)2 (18.2%)2 (18.2%)

3 (27.3%)3 (27.3%)3 (27.3%)

6 (54.5%)6 (54.5%)6 (54.5%)

2 (18.2%)2 (18.2%)2 (18.2%)

8 (72.7%)8 (72.7%)8 (72.7%)

0 (0%)0 (0%)0 (0%)

1 (9.1%)1 (9.1%)1 (9.1%)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 126

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 3/15

ณใ การ ดการแ กเกจ (Package manager ecosystem) ใด
11 responses

โปรด าน อนเ ม แบบสอบถาม

โปรดตอบ ถามเ อง นเ ยว บ องโห านความปลอด ย (Security
vulnerability)

0 2 4 6 8

Composer

Maven

npm

NuGet

pip

RubyGems

Yarn, Dart Pub

2 (18.2%)2 (18.2%)2 (18.2%)

1 (9.1%)1 (9.1%)1 (9.1%)

8 (72.7%)8 (72.7%)8 (72.7%)

2 (18.2%)2 (18.2%)2 (18.2%)

7 (63.6%)7 (63.6%)7 (63.6%)

1 (9.1%)1 (9.1%)1 (9.1%)

1 (9.1%)1 (9.1%)1 (9.1%)

ณใ ความ ญ บ องโห านความปลอด ยของ
ซอฟ แว (Security vulnerability) เ ด นจาก

ไลบรา ของ คลล สาม (Third-party dependency)…

ณใ ความ ญ บ Security vulnerability เ ด น
จากสายโยงของไลบรา (Chain of dependencies)

ของ Third-party library ในระ บใด

0

2

4

6
ไ ญไ ญไ ญ ญ อยญ อยญ อย ญปานกลางญปานกลางญปานกลาง ญมากญมากญมาก ญ ดญ ดญ ด

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 127

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 4/15

ในการ ด น บความ ญ การ ปเดต Third-party library ณใ ความ ญ บ
งใด

ถามเ ยว บการแสดงผลกราฟ

ณเ าใจการแสดงผลของ องโหว านความปลอด ยจากการแสดงผล วยกราฟ
านบน (Vulnerability dependency visualization) ในระ บใด

11 responses

นวน
ของ

…

ระ
บคว

าม…

ควา
มเ

ยว…

ควา
ม างร…

0

2

4

6

8
ไ ญไ ญไ ญ ญ อยญ อยญ อย ญปานกลางญปานกลางญปานกลาง ญมากญมากญมาก ญ ดญ ดญ ด

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%) 1 (9.1%)

3 (27.3%)

5 (45.5%)

2 (18.2%)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 128

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 5/15

วนใด ณ ด า ง องการ อ บายเ มเ ม
10 responses

ณ แนะ เ มเ ม น ห บการแสดงผล Vulnerability dependency visualization
ห อไ
2 responses

ความหมายของเลขlevel ของ indirect dependency งไ ดเจน

- node ควร ขนาดให น
- ควรป บ ของ node ใ สอดค อง บ ui
- อาจจะ option ใ เ อกในการ display าอยากใ vulnerability dependency show node
ห อ path (ใ user เ อกไ าจะ hilight ไหน)

แบบสอบถามเ ยว บรายงาน องโห านความปลอด ย

0 1 2 3 4 5

ไ องการ อ บายเ มเ ม

องโห านความปลอด ย…

องโห านความปลอด ย…

ของโหนดแยก นไ ดเจน

อ บายเ มเ ม (Tooltips)

อยากทราบเ มเ ม า Dire…

องการใ แสดง อของ de…

2 (20%)2 (20%)2 (20%)

1 (10%)1 (10%)1 (10%)

5 (50%)5 (50%)5 (50%)

5 (50%)5 (50%)5 (50%)

2 (20%)2 (20%)2 (20%)

1 (10%)1 (10%)1 (10%)

1 (10%)1 (10%)1 (10%)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 129

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 6/15

ระ บของความเ าใจเ อ ณ รายงาน องโห านความปลอด ย านบน
11 responses

แนะ เ มเ ม ห บรายงานฯ
3 responses

าใ น อาจจะ ง ไป version ไ vulnerability เ อใ พเดตไ เลย อาจจะสะดวก บ
dev

อยากใ ง พาไปห า NPM ของ dependency

อยากใ แยก severity เ น section มากก ารวม นใน section

การวางแผนห งการใ เค อง อ Achilles

1 2 3 4 5
0

2

4

6

8

0 (0%)0 (0%)0 (0%) 1 (9.1%) 1 (9.1%)

7 (63.6%)

2 (18.2%)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 130

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 7/15

จากการ บชม โอสา ตและ วอ างรายงานของเค อง อตรวจสอบและรายงาน
องโห านความปลอด ย Achilles ณ ด าเค อง อ งก าว ประโยช องาน
ณมาก อยเ ยงใด

11 responses

ณจะ ด นใจอ างไร หากใ เค อง อ Achilles และพบ าโปรเ คของ ณ อง
โห านความปลอด ย
11 responses

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%) 1 (9.1%)

3 (27.3%)

5 (45.5%)

2 (18.2%)

วางแผน ปเดตไลบรา องโห
เ อก จะไ ปเดตไลบรา อง
โห
พเดตเ นบาง ว เพราะบางโปรเจ
ก ใ library เยอะมาก พเดต
หมดไ ไหว า นไหนไ ใ ญหา
เ ด นในโ ดเรา อาจจะไ
พเดต

9.1%

27.3%

63.6%

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 131

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 8/15

โปรดอ บายเ มเ ม า ไม ณ งเ อก จะไ ปเดตไลบรา องโห
7 responses

Survey on security vulnerability from third-party library and detection tool

Basic Information

What is your occupation?

8 responses

0 1 2 3 4

หาก ปเดตไลบรา องโห
อาจ ใ โ ดในโปรเ คเ ด
ความ ดแ งไ (Conflict)
การแ ไข องโห านความ
ปลอด ยไ ใ งาน ความ

ญ น บแรก

ไ ทราบ าจะ องแ ไขไลบรา
องโห อ างไร

หาก อง พเดต library อาจจะ
ใ ระบบ ใ งานอ เ ย

หายห อไ สามารถ งานไ…

4 (57.1%)4 (57.1%)4 (57.1%)

3 (42.9%)3 (42.9%)3 (42.9%)

1 (14.3%)1 (14.3%)1 (14.3%)

1 (14.3%)1 (14.3%)1 (14.3%)

Students
Security specialist
Software developer
Software tester
System administrator
Vulnerability analyst
Researcher
Students, and software
developer

12.5%

25%

62.5%

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 132

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 9/15

How long is your experience in programming?

8 responses

What programming language do you use?

8 responses

6 months - 1 year
1 - 2 years
3 - 4 years
5 - 6 years
More than 6 years

12.5%

12.5%

75%

0 2 4 6 8

PHP

Java

JavaScript

.NET

Python

Ruby

4 (50%)4 (50%)4 (50%)

4 (50%)4 (50%)4 (50%)

8 (100%)8 (100%)8 (100%)

1 (12.5%)1 (12.5%)1 (12.5%)

6 (75%)6 (75%)6 (75%)

2 (25%)2 (25%)2 (25%)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 133

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 10/15

What package manager ecosystem do you use?

8 responses

Please read before starting the survey

Please answer the following basic questions about software vulnerabilities.

0 2 4 6 8

Composer

Maven

npm

NuGet

pip

RubyGems

yarn

Gradle

3 (37.5%)3 (37.5%)3 (37.5%)

3 (37.5%)3 (37.5%)3 (37.5%)

7 (87.5%)7 (87.5%)7 (87.5%)

0 (0%)0 (0%)0 (0%)

6 (75%)6 (75%)6 (75%)

2 (25%)2 (25%)2 (25%)

1 (12.5%)1 (12.5%)1 (12.5%)

1 (12.5%)1 (12.5%)1 (12.5%)

How much are you concerned about security
vulnerabilities from third-party dependencies in

your software project?

How much are you concerned of security
vulnerabilities caused by chain of dependencies
in your software project (indirect vulnerabilities)

0

1

2

3

4
Not concernedNot concernedNot concerned Slightly concernedSlightly concernedSlightly concerned Moderately concernedModerately concernedModerately concerned 1/21/21/2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 134

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 11/15

How do you prioritize each factor when you decide to update the Third-
party library?

Questions for visualization

How much do you understand this visualization?

8 responses

The numb…

Severity
 of…

Relevancy…

The gap b…
0

2

4

Not importantNot importantNot important Slightly importantSlightly importantSlightly important Moderately importantModerately importantModerately important Very ImportantVery ImportantVery Important

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

5 (62.5%)

3 (37.5%)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 135

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 12/15

Are there any parts that you would like more explanation?

6 responses

Do you have any suggestion for improving the vulnerability dependency
visualization?

3 responses

as the graph grew bigger, it got really slow. It was slow to the point that moving is hard.

May add label of each colour beside the visualization.

In the tool tips, it would be more insightful if there is a short description of what thype
the vulnerability is.

Questions for security vulnerability report

0 1 2 3 4

None

Direct vulnerability

Indirect vulnerability

Color of the nodes in each
level

Tooltips

0 (0%)0 (0%)0 (0%)

1 (16.7%)1 (16.7%)1 (16.7%)

3 (50%)3 (50%)3 (50%)

4 (66.7%)4 (66.7%)4 (66.7%)

2 (33.3%)2 (33.3%)2 (33.3%)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 136

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 13/15

What is your level of understanding when reading the vulnerability report

8 responses

Suggestion for the security vulnerability report

2 responses

Improve the design like using more color visualization to show how important is. ex.
CRITICAL -> using dark purple bg color / bar over the section of that library.

In the summary section, I think that it would be easier for me to read if the data is
displayed in a table view containing columns such as the vulnerable packages,
dependency, the level of severity, etc.

Questions for the plan after using the Achilles tool

1 2 3 4 5
0

2

4

6

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%) 1 (12.5%)

5 (62.5%)

2 (25%)

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 137

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 14/15

After watching the Achilles tool demonstration and vulnerability report,
how do you find this vulnerability visualization and report useful?

8 responses

What would be your decision if you use the Achilles tool and find that your
project has security vulnerabilities.

8 responses

1 2 3 4 5
0

1

2

3

4

0 (0%)0 (0%)0 (0%) 0 (0%)0 (0%)0 (0%)

4 (50%)

2 (25%) 2 (25%)

Update vulnerable
dependencies
Do not update vulnerable
dependencies
update only matter ones
Depends on the severity and
the level of vulnerability chain
Depends on the nature of
vulnerability/source of vulnera…
Depends on the severity, and…

12.5%

12.5%12.5%

12.5%

50%

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 138

4/16/2021 แบบสอบถามเ ยว บ องโห านความปลอด ย ของซอฟ แว (Security Vulnerability) เ ด นจาก ไลบรา ของ คคล 3 (Third-party library) แ…

https://docs.google.com/forms/d/1dRThodUigO2e8Gf4zjCqqTgVAGoCZ4HwJwso0aKqlBU/viewanalytics 15/15

Please provide some reasons why you would not update vulnerable
dependencies

6 responses

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

0 1 2 3 4 5 6

Conflict in the code might
occur after updating the

library
Updating vulnerable

dependencies is not the
first priority

Do not know how to update
the vulnerable
dependencies

sometimes it's not
something I can control

6 (100%)6 (100%)6 (100%)

2 (33.3%)2 (33.3%)2 (33.3%)

1 (16.7%)1 (16.7%)1 (16.7%)

1 (16.7%)1 (16.7%)1 (16.7%)

 Forms

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 139

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D / 140

APPENDIX D
USER STUDY MATERIALS

Next page

�สง่�FRQVHQW�IRUP!
KWWS���ELW�O\�DFKLOOHV�FRQVHQW

+HOOR��P\�QDPH�LV��\RXU�QDPH!��,¶P�D�UHVHDUFKHU�LQ WKH�SURMHFW�³$FKLOOHV��$XWRPDWHG�WRRO�IRU
GHWHFWLQJ�DQG�YLVXDOL]LQJ�QSP�GHSHQGHQF\�YXOQHUDELOLWLHV´

,�ZRXOG�OLNH�WR�WKDQN�\RX�IRU�MRLQLQJ�RXU�XVHU�VWXG\ WRGD\��7KLV�XVHU�VWXG\�LV�D�SDUW�RI�RXU�VHQLRU
SURMHFW�ZKLFK�VWXGLHV�VHFXULW\�YXOQHUDELOLWLHV�LQ QSP�SURMHFWV��7KH�SURMHFW�DOVR�LQYROYHV�WKH�WRROV WKDW
GHWHFW�DQG�UHSRUW�VHFXULW\�YXOQHUDELOLWLHV�LQ�VXFK SURMHFWV�

1RZ��ZH�ZRXOG�OLNH�WR�DVN�\RX�WR�UHDG�WKH�SDUWLFLSDQW LQIRUPDWLRQ�IRUP�DQG�WKH�FRQVHQW�IRUPV�WKDW
ZH�KDYH�VHQW�WR�\RX�LQ�WKH�FKDW��2QFH�\RX�KDYH�ILQLVKHG UHDGLQJ�DQG�DJUHH�WR�MRLQ�WKH�VWXG\��SOHDVH
OHW�XV�NQRZ�E\�VD\LQJ�³,�DJUHH�WR�MRLQ�WKH�VWXG\´�

5HJDUGLQJ�WKH�VWXG\��\RX�ZLOO�EH�DVNHG�WR�XVH�D�WRRO IRU�VHFXULW\�YXOQHUDELOLW\�FKHFN�LQ�QSP�SURMHFWV
RQ�WKH�SURMHFWV�WKDW�ZH�SUHSDUHG�IRU�\RX��7KH�WRRO WKDW�\RX¶OO�XVH�WRGD\�LV��DFKLOOHV !

%HIRUH�VWDUWLQJ�WKH�VWXG\��ZH�ZRXOG�OLNH�WR�DVN�\RX VRPH�TXHVWLRQV�

�GHPRJUDSKLF�TXHVWLRQV!
�� +RZ�ORQJ�KDYH�\RX�EHHQ�XVLQJ�QSP"
�� :KDW�GR�\RX�XVH�QSP�IRU"
�� +RZ�RIWHQ�GR�\RX�FKHFN�VHFXULW\�YXOQHUDELOLW\�LQ�\RXU SURMHFW"�$QG�KRZ"
�� +DYH�\RX�XVHG�WKLV�WRRO�EHIRUH"�,I�\HV���IRU�KRZ�ORQJ"
�� 'R�\RX�NQRZ�,QGLUHFW�'HSHQGHQFLHV"�+RZ�PXFK�\RX�JLYH LPSRUWDQFH�WR�WKHP"��ถา้ไมเ่คยให ้

เปิดสไลดอ์ธบิาย�LQGLUHFW�GHSHQGHQFLHV�

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 141

�สง่�'RFXPHQW!
เปิดเมลเตรยีมสง่�YHULILFDWLRQ�FRGH

0D\�ZH�DVN�\RX�WR�VKDUH�\RXU�VFUHHQ�SOHDVH"

1H[W��ZH¶OO�JLYH�\RX�D�PRFN�WDVN�WR�WU\��<RX�ZLOO XVH�WKH�WZR�WRROV��GHSHQGDERW�UHSRUW�DQG�DFKLOOHV�
DQG�DQVZHU�WKH�TXHVWLRQV�

:H�KDYH�WKH�JXLGH�YLGHRV�RQ�KRZ�WR�XVH�GHSHQGDERW DQG�DFKLOOHV�DQG�DOVR�WKH�PRFN�UHSRVLWRU\
KHUH�

9LGHR� KWWSV���\RXWX�EH��SS&R&'W)HR

>อธบิาย@�'HSHQGDERW�5HSRUW�จะโชวท์งั�'LUHFW�และ�,QGLUHFW YXOQHUDELOLWLHV�ถา้อยากทราบกส็ามารถตรวจ
สอบท�ีSDFNDJH�MVRQ�ILOH�ไดเ้ลย

)RU�QRZ��ZH�KDYH���TXHVWLRQV��\RX�FDQ�OHW�XV�NQRZ ZKHQ�\RX�KDYH�ILQLVKHG�DQVZHULQJ�WKH
TXHVWLRQV��,I�\RX�KDYH�DQ\�LQTXLULHV�ZKLOH�DQVZHULQJ WKH�TXHVWLRQV��SOHDVH�IHHO�IUHH�WR�OHW�XV�NQRZ�

1H[W��ZH�ZLOO�PRYH�WR�WKH�DFWXDO�XVHU�VWXG\�

)RU�WKLV�XVHU�VWXG\��ZH�KDYH���WHVW�FDVHV�IRU�\RX�
�บอกให�้SDUWLFLSDQWV เปิด�*LW+XE�RYHUYLHZ�ด�ูUHSR!

7KHUH�DUH���UHSRVLWRULHV�IRU�WKH���WHVW�FDVHV��ZKLFK DUH�7HVW���DQG�7HVW���

�บอกใหเ้ปิด�'RFXPHQW�หนา้ท�ี�!
7KH�WDVN�WKDW�\RX�KDYH�WR�GR�LV�SULRULWL]LQJ�WKH�XSGDWHV RI�WKH�YXOQHUDELOLWLHV��,Q�HDFK�WHVW��\RX�ZLOO
VHH�WKH�YXOQHUDELOLW\�UHSRUW�RI�GHSHQGDERW�LQ�*LW+XE� <RX�FDQ�WDNH�QRWHV�ZKLOH�VHHLQJ�WKH�UHSRUW�
$IWHU�WKDW��\RX¶OO�XVH��QSP�DXGLW!�DQG�SULRULWL]H WKH�XSGDWHV�RI�WKH�YXOQHUDELOLWLHV�DJDLQ�
%HIRUH�ZH�SURFHHG��GR�\RX�DOORZ�XV�WR�UHFRUG�WKH�YLGHR IURP�IXUWKHU�DQDO\VLV"

7HVW�� LQGH[�MV�²�WHVW��²�FRGH�VHUYHU��FGU�FR�

7HVW�� \DUQ�ORFN�²�WHVW��²�FRGH�VHUYHU��FGU�FR�

7HVW��
6HYHULW\ &RPSOH[LW\

� WKUHH KLJK QR

� W\SH�JUDSKTO ORZ \HV

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D / 142

� [POGRP ORZ QR

� 3XJ KLJK \HV

7HVW��
6HYHULW\ 7\SHV

� 0LQLPLVW
�NDUPD�PRFKD�

ORZ LQGLUHFW

� QHWPDVN KLJK GLUHFW

� DQJXODU�H[SUHVVLRQV ORZ GLUHFW

� EDVH���XLG�VDIH� KLJK LQGLUHFW

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 143

'HEULHI�>$PSHUH@

)RU�WKLV�XVHU�VWXG\��ZH�ZRXOG�OLNH�WR�HYDOXDWH�LI D�VHFXULW\�YXOQHUDELOLW\�WRRO�DIIHFWV�XQGHUVWDQGLQJ
DQG�SULRULWL]DWLRQ�RI�YXOQHUDELOLWLHV�

� &DQ�\RX�SOHDVH�H[SODLQ�ZKDW�ZHUH�WKH�FULWHULD�WKDW \RX�XVHG�WR�SULRULWL]H�WKH�YXOQHUDELOLWLHV�WR
IL[�IRU�HDFK�WRRO"

� ,Q�WKH�IXWXUH��LV�WKHUH�DQ\�FKDQFH�WKDW�\RX�ZRXOG XVH�WKHVH�WRROV"�:LOO�WKH\�EH�XVHG�LQ�WKH
VDPH�RU�GLIIHUHQW�VFHQDULR"

� ,V�WKHUH�RWKHU�IDFWRUV�WKDW�\RX�ZRXOG�XSGDWH�WKH�YXOQHUDELOLW\"
� 'R�\RX�KDYH�DQ\�IHHGEDFN�RU�VXJJHVWLRQV�IRU�DFKLOOHV"

>$FKLOOHV@

:H�KDYH�DQRWKHU�WRRO�WR�DQDO\]H�VHFXULW\�YXOQHUDELOLWLHV DQG�ZH�ZRXOG�OLNH�\RX�WR�WU\�XVLQJ�LW�

$FKLOOHV��DFKLOOHV�VS�D]XUHZHEVLWHV�QHW�

� &DQ�\RX�SOHDVH�WU\�LW�RQ�WKH�7HVW���DQG�7HVW���SURMHFWV DJDLQ�DQG�OHW�XV�NQRZ�KRZ�\RX�ZRXOG
SULRULWL]H�WKH�SDFNDJHV�IRU�XSGDWHV"

� 7KLV�LV�WKH�WRRO�WKDW�ZH�KDYH�GHYHORSHG��'R�\RX�KDYH DQ\�VXJJHVWLRQV�IRU�WKH�$FKLOOHV�WRRO"

7KDW�LV�WKH�HQG�RI�WKLV�VWXG\��:H�ZRXOG�OLNH�WR�WKDQN \RX�DJDLQ�IRU�\RXU�SDUWLFLSDWLRQ�LQ�WKLV�XVHU
VWXG\�

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D / 144

�สง่�FRQVHQW�IRUP!
KWWS���ELW�O\�DFKLOOHV�FRQVHQW

+HOOR��P\�QDPH�LV��\RXU�QDPH!��,¶P�D�UHVHDUFKHU�LQ WKH�SURMHFW�³$FKLOOHV��$XWRPDWHG�WRRO�IRU
GHWHFWLQJ�DQG�YLVXDOL]LQJ�QSP�GHSHQGHQF\�YXOQHUDELOLWLHV´

,�ZRXOG�OLNH�WR�WKDQN�\RX�IRU�MRLQLQJ�RXU�XVHU�VWXG\ WRGD\��7KLV�XVHU�VWXG\�LV�D�SDUW�RI�RXU�VHQLRU
SURMHFW�ZKLFK�VWXGLHV�VHFXULW\�YXOQHUDELOLWLHV�LQ QSP�SURMHFWV��7KH�SURMHFW�DOVR�LQYROYHV�WKH�WRROV WKDW
GHWHFW�DQG�UHSRUW�VHFXULW\�YXOQHUDELOLWLHV�LQ�VXFK SURMHFWV�

1RZ��ZH�ZRXOG�OLNH�WR�DVN�\RX�WR�UHDG�WKH�SDUWLFLSDQW LQIRUPDWLRQ�IRUP�DQG�WKH�FRQVHQW�IRUPV�WKDW
ZH�KDYH�VHQW�WR�\RX�LQ�WKH�FKDW��2QFH�\RX�KDYH�ILQLVKHG UHDGLQJ�DQG�DJUHH�WR�MRLQ�WKH�VWXG\��SOHDVH
OHW�XV�NQRZ�E\�VD\LQJ�³,�DJUHH�WR�MRLQ�WKH�VWXG\´�

5HJDUGLQJ�WKH�VWXG\��\RX�ZLOO�EH�DVNHG�WR�XVH�D�WRRO IRU�VHFXULW\�YXOQHUDELOLW\�FKHFN�LQ�QSP�SURMHFWV
RQ�WKH�SURMHFWV�WKDW�ZH�SUHSDUHG�IRU�\RX��7KH�WRRO WKDW�\RX¶OO�XVH�WRGD\�LV��QSP�DXGLW !

%HIRUH�VWDUWLQJ�WKH�VWXG\��ZH�ZRXOG�OLNH�WR�DVN�\RX VRPH�TXHVWLRQV�

�GHPRJUDSKLF�TXHVWLRQV!
�� +RZ�ORQJ�KDYH�\RX�EHHQ�XVLQJ�QSP"
�� :KDW�GR�\RX�XVH�QSP�IRU"
�� +RZ�RIWHQ�GR�\RX�FKHFN�VHFXULW\�YXOQHUDELOLW\�LQ�\RXU SURMHFW"�$QG�KRZ"
�� +DYH�\RX�XVHG�WKLV�WRRO�EHIRUH"�,I�\HV���IRU�KRZ�ORQJ"
�� 'R�\RX�NQRZ�,QGLUHFW�'HSHQGHQFLHV"�+RZ�PXFK�\RX�JLYH LPSRUWDQFH�WR�WKHP"��ถา้ไมเ่คยให ้

เปิดสไลดอ์ธบิาย�LQGLUHFW�GHSHQGHQFLHV�

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 145

�สง่�'RFXPHQW!
เปิดเมลเตรยีมสง่�YHULILFDWLRQ�FRGH

0D\�ZH�DVN�\RX�WR�VKDUH�\RXU�VFUHHQ�SOHDVH"

1H[W��ZH¶OO�JLYH�\RX�D�PRFN�WDVN�WR�WU\��<RX�ZLOO XVH�WKH�WZR�WRROV��GHSHQGDERW�UHSRUW�DQG�QSP�DXGLW�
DQG�DQVZHU�WKH�TXHVWLRQV�

:H�KDYH�WKH�JXLGH�YLGHRV�RQ�KRZ�WR�XVH�GHSHQGDERW DQG�QSP�DXGLW�DQG�DOVR�WKH�PRFN�UHSRVLWRU\
KHUH�

9LGHR� KWWSV���\RXWX�EH��SS&R&'W)HR

>อธบิาย@�'HSHQGDERW�5HSRUW�จะโชวท์งั�'LUHFW�และ�,QGLUHFW YXOQHUDELOLWLHV�ถา้อยากทราบกส็ามารถตรวจ
สอบท�ีSDFNDJH�MVRQ�ILOH�ไดเ้ลย

)RU�QRZ��ZH�KDYH���TXHVWLRQV��\RX�FDQ�OHW�XV�NQRZ ZKHQ�\RX�KDYH�ILQLVKHG�DQVZHULQJ�WKH
TXHVWLRQV��,I�\RX�KDYH�DQ\�LQTXLULHV�ZKLOH�DQVZHULQJ WKH�TXHVWLRQV��SOHDVH�IHHO�IUHH�WR�OHW�XV�NQRZ�

1H[W��ZH�ZLOO�PRYH�WR�WKH�DFWXDO�XVHU�VWXG\�

)RU�WKLV�XVHU�VWXG\��ZH�KDYH���WHVW�FDVHV�IRU�\RX�
�บอกให�้SDUWLFLSDQWV เปิด�*LW+XE�RYHUYLHZ�ด�ูUHSR!

7KHUH�DUH���UHSRVLWRULHV�IRU�WKH���WHVW�FDVHV��ZKLFK DUH�7HVW���DQG�7HVW���

�บอกใหเ้ปิด�'RFXPHQW�หนา้ท�ี�!
7KH�WDVN�WKDW�\RX�KDYH�WR�GR�LV�SULRULWL]LQJ�WKH�XSGDWHV RI�WKH�YXOQHUDELOLWLHV��,Q�HDFK�WHVW��\RX�ZLOO
VHH�WKH�YXOQHUDELOLW\�UHSRUW�RI�GHSHQGDERW�LQ�*LW+XE� <RX�FDQ�WDNH�QRWHV�ZKLOH�VHHLQJ�WKH�UHSRUW�
$IWHU�WKDW��\RX¶OO�XVH��QSP�DXGLW!�DQG�SULRULWL]H WKH�XSGDWHV�RI�WKH�YXOQHUDELOLWLHV�DJDLQ�
%HIRUH�ZH�SURFHHG��GR�\RX�DOORZ�XV�WR�UHFRUG�WKH�YLGHR IURP�IXUWKHU�DQDO\VLV"

7HVW�� LQGH[�MV�²�WHVW��²�FRGH�VHUYHU��FGU�FR�

7HVW�� \DUQ�ORFN�²�WHVW��²�FRGH�VHUYHU��FGU�FR�

7HVW��
6HYHULW\ &RPSOH[LW\

� WKUHH KLJK QR

� W\SH�JUDSKTO ORZ \HV

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D / 146

� [POGRP ORZ QR

� 3XJ
�WHPSODWH
HQJLQH�

KLJK \HV

7HVW��
6HYHULW\ 7\SHV

� 0LQLPLVW#�����
�NDUPD�PRFKD#�������

ORZ LQGLUHFW

� QHWPDVN +LJK GLUHFW

� DQJXODU�H[SUHVVLRQV ORZ GLUHFW

� EDVH���XLG�VDIH#������ KLJK LQGLUHFW

'HEULHI�>$PSHUH@

)RU�WKLV�XVHU�VWXG\��ZH�ZRXOG�OLNH�WR�HYDOXDWH�LI D�VHFXULW\�YXOQHUDELOLW\�WRRO�DIIHFWV�XQGHUVWDQGLQJ
DQG�SULRULWL]DWLRQ�RI�YXOQHUDELOLWLHV�

� &DQ�\RX�SOHDVH�H[SODLQ�ZKDW�ZHUH�WKH�FULWHULD�WKDW \RX�XVHG�WR�SULRULWL]H�WKH�YXOQHUDELOLWLHV�WR
IL[�IRU�HDFK�WRRO"

>$FKLOOHV@

:H�KDYH�DQRWKHU�WRRO�WR�DQDO\]H�VHFXULW\�YXOQHUDELOLWLHV DQG�ZH�ZRXOG�OLNH�\RX�WR�WU\�XVLQJ�LW�

KWWSV���GRFV�JRRJOH�FRP�GRFXPHQW�G��<1�:7:T:0�'2�]V7QE�('FRW8&�(/E�-3H/�69G%3,J�
HGLW"XVS VKDULQJ

� &DQ�\RX�SOHDVH�WU\�LW�RQ�WKH�7HVW���DQG�7HVW���SURMHFWV DJDLQ�DQG�OHW�XV�NQRZ�KRZ�\RX�ZRXOG
SULRULWL]H�WKH�SDFNDJHV�IRU�XSGDWHV"

� 7KLV�LV�WKH�WRRO�WKDW�ZH�KDYH�GHYHORSHG��'R�\RX�KDYH DQ\�VXJJHVWLRQV�IRU�WKH�$FKLOOHV�WRRO"

7KDW�LV�WKH�HQG�RI�WKLV�VWXG\��:H�ZRXOG�OLNH�WR�WKDQN \RX�DJDLQ�IRU�\RXU�SDUWLFLSDWLRQ�LQ�WKLV�XVHU
VWXG\�

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 147

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 148

APPENDIX E
PARTICIPANTS ANSWER SHEET

Participant A1 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 pug >= D2 three > D3 type-graphql >= D4 xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer I checked these severity.
I think the most high priority dependency is pug and three because
this severity is high

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: pug
Level of severity: high
Other note: 9 days ago by GitHub

D2: Dependency 2 Name of vulnerable package: three
Level of severity: high
Other note: 5 days ago by GitHub

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: low
Other note: 5 days ago by GitHub

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: low
Other note: 9 days ago by Github

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 pug > D2 three > D3 type-graphql > D4 xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 149

Participant A1 Date: 09 April 2021

Answer I checked these serverity and the number of indirect dependencies.
I think the highest priority is pug because this serverity is high and it
has many indirect dependencies.
Next one is three because it is high serverity.
Type-graphql has many dependencies but that serverity is low.
So I think serverity is an important factor than the number of indirect
dependencies.

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 netmask >= D2 base64-url > D3 minimist >= D4 angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer I checked their serverity.

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: high
Other note: 5 days ago

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: high
Other note: 9 days ago

D3: Dependency 3 Name of vulnerable package: minimist
Level of severity: low
Other note: 4 days ago

D4: Dependency 4 Name of vulnerable package: angular-expressions
Level of severity: low
Other note: 9 days ago

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 150

Participant A1 Date: 09 April 2021

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 netmask > D2 base64-url > D3 angular-expressions > D4 minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer I checked their serverity and the dependency whether direct or not.
D1 and D2 are high serverity but D1 is direct dependency.
I think direct dependency is easier to fix than indirect dependency,
then I think it is the highest priority than others.

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 151

Participant A2 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1>=D4>D2>D3

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Work on high level dependencies first and low afterwards

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: high
Other note:

D2: Dependency 2 Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D3: Dependency 3 Name of vulnerable package: xmldom
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: pug
Level of severity: high
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D4>D2>D1>D3

Questions What criteria do you use to prioritize these vulnerability updates?

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 152

Participant A2 Date: 09 April 2021

Answer Fixing those dependencies with a larger number of interdependencies and
higher level of severity first and moving to fewer number of
interdependencies

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D2>=D4>D1>=D3

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Same as before giving more priority to higher risk vulnerabilities first

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: minimst
Level of severity: low
Other note:

D2: Dependency 2 Name of vulnerable package: netmask
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: base64-url
Level of severity: high
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 153

Participant A2 Date: 09 April 2021

Answer D2>D3>D1>=D4

Questions What criteria do you use to prioritize these vulnerability updates?

Answer I’m prioritazing D2 and D3 since they are direct vulnerabilities and from
level of severity, for D1 and D4 thanks to Achilles I can see that those
libraries are indirect dependencies so I wouldn’t be able to actually update
those directly and will have to update the direct dependencies insrtead

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 154

Participant A3 Date: 08 April 2021

1

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > type-graphql >= xmldom

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Vulnerability level

[Optional] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: high
Other note: Upgrade three to version 0.125.0 or later

D2: Dependency 2 Name of vulnerable package: pug
Level of severity: high
Other note: Upgrade pug to version 3.0.1 or later

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: low
Other note: Upgrade type-graphql to version 0.17.6 or later

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: low
Other note: Upgrade xmldom to version 0.5.0 or later

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > xmldom >= type-graphql

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Vulnerability level

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 155

Participant A3 Date: 08 April 2021

2

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 [Netmask] > angular-expressions > base-64url >= minimist

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Type of dependency, vulnerability level

[Optional] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: high
Other note: Upgrade netmask to version 2.0.1 or later

D2: Dependency 2 Name of vulnerable package: angular-expressions
Level of severity: low
Other note: Upgrade angular-expressions to version 1.1.2 or later

D3: Dependency 3 Name of vulnerable package: base-64url
Level of severity: high
Other note: Upgrade base64-url to version 2.0.0 or later

D4: Dependency 4 Name of vulnerable package: minimist
Level of severity: low
Other note: Upgrade minimist to version 1.2.3 or later

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base-64url >= minimist

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Type of dependency, vulnerability level

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 156

Participant A4 Date: 08 April 2021

1

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > type-graphql >= xmldom

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

[Optional] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: high
Other note:

D2: Dependency 2 Name of vulnerable package: pug
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: low
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > type-graphql > xmldom

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and level of indirect dependency complexity?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 157

Participant A4 Date: 08 April 2021

2

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > minimist >= angular-expressions

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

[Optional] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: high
Other note:

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: minimist
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base64-url > minimist

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Direct first > severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 158

Participant A5 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > Three.js > xmldom > typegraphql

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and complexity of package & direct and indirect dependency

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: pug
Level of severity: hight
Other note:

D2: Dependency 2 Name of vulnerable package: three.js
Level of severity:high
Other note:

D3: Dependency 3 Name of vulnerable package: xmldom
Level of severity:low
Other note:

D4: Dependency 4 Name of vulnerable package:typegraphql
Level of severity:low
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three.js > pug > xmldom > typegraphql

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and complexity of package & direct and indirect dependency

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 159

Participant A5 Date: 08 April 2021

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > base64-url > angular-expressions > minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and complexity of package & direct and indirect dependency

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: Netmask
Level of severity: high
Other note:

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity:low
Other note:

D4: Dependency 4 Name of vulnerable package: minimist
Level of severity:low
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > base64-url > angular-expressions > minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and complexity of package & direct and indirect dependency

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 160

Participant A5 Date: 08 April 2021

1

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug >= three > type-graphql >= xmldom

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer severity

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: pug
Level of severity: high severity
Other note: -

D2: Dependency 2 Name of vulnerable package: three
Level of severity: high severity
Other note: -

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: low severity
Other note: -

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: low severity
Other note: -

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug >= three > type-graphql >= xmldom

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer severity

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 161

Participant A5 Date: 08 April 2021

2

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask >= base64-url > angular-expressions > minimist

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and issue type

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: high severity
Other note: -

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: high severity
Other note: -

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: low severity
Other note: -

D4: Dependency 4 Name of vulnerable package: minimist
Level of severity: low severity
Other note: -

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask > base64-url > angular-expressions > minimist

Q uestions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and direct/indirect graph

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 162

Participant A7 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D4 [xmldom] > D3 [type-graphql] > D2 [three.js] > D1 [pug]

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Number of indirect dependencies

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: pug
Level of severity: high
Other note:

D2: Dependency 2 Name of vulnerable package: three.js
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity:low
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 [three.js] >= D2 [xmldom] > D3 > [pug] > D4 [type-graphql]

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 163

Participant A7 Date: 08 April 2021

Answer Number of indirect dependencies in each library. If the number is
high, it may interrupt other libraries once updated.

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 [node-netmask] > D2 [uid-safe] > D3 [angular-expressions] > D4
[karma-mocha]

Questions What criteria do you use to prioritize these vulnerability updates?

Answer The number of indirect dependencies

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 164

Participant A7 Date: 08 April 2021

Answer D1 [netmask] > D2 [angular-expressions] > D3 [minimist] > D4
[base64-url]

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Number of indirects dependencies and severity

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 165

Participant A8 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three>pug>type-graphql>xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer severity (high first) then time (recent use first)

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: direct
Other note:

D2: Dependency 2 Name of vulnerable package: pug
Level of severity: direct
Other note:

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: direct
Other note:

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: direct
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three>xmldom>type-graphql>pug

Questions What criteria do you use to prioritize these vulnerability updates?

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 166

Participant A8 Date: 09 April 2021

Answer How big of the dependency graph (small first because it might take
shorter time for fixing)

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask>base64-url>minimist>=angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer High severity first then more recent time

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask>=base64-url>minimist>=angular-expressions

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 167

Participant A8 Date: 09 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer คอ่ยดจูาก severity แลว้ดวูา่แตล่ะตวัมตีวัตอ่เยอะแคไ่หน เอาตวัทมีตีวัตอ่
นอ้ยกอ่น

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 168

Participant A9 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer mrdoob / three.js >= MichalLytek / type-graphql >= xmldom / xmldom >=
pugjs / pug

Questions What criteria do you use to prioritize these vulnerability updates?

Answer The number of versions.
If the package has many, it should be less vulnerable.
So, it should be the last priority.

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 169

Participant A9 Date: 09 April 2021

dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= Pug >= MichalLytek / type-graphql >= xmldom / xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Use the severity and version.
High severity and Less version

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer karma-runner / karma-mocha >= peerigon / angular-expressions

>= crypto-utils / uid-safe >= rs / node-netmask

Questions What criteria do you use to prioritize these vulnerability updates?

Answer The number of indirect dependencies.
High > Low

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 170

Participant A9 Date: 09 April 2021

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer crypto-utils / uid-safe >= rs / node-netmask >= karma-runner / karma-mocha
>= peerigon / angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Use the severity and version.
High severity and Less version

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 171

Participant A10 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug>= three >
type-graphql >=
xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of severity

[Option] Test 1 Note Section

D1: Dependency 1
Name of vulnerable package: pug
Level of severity: high
Other note: Vulnerable versions: < 3.0.1

D2: Dependency 2
Name of vulnerable package: three
Level of severity: high
Other note: Vulnerable versions: < 0.125.0

D3: Dependency 3
Name of vulnerable package: type-graphql
Level of severity: low
Other note: Vulnerable versions: < 0.17.6

D4: Dependency 4
Name of vulnerable package: xmldom
Level of severity: low
Other note: Vulnerable versions: < 0.5.0

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 172

Participant A10 Date: 09 April 2021

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

three>=pug>xmldom>=type-graphq
Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask>=base64-url>
minimist>=angular-exp
ressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of Serverity

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 173

Participant A10 Date: 09 April 2021

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

netmask>angular-expressions>base64-url>
minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Direct before indirect and Level of Serverity

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 174

Participant N1 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three > pug > xmldom > type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and alerted time

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity:high
Other note:

D2: Dependency 2 Name of vulnerable package: type-graphql
Level of severity:low
Other note:

D3: Dependency 3 Name of vulnerable package: xmldom
Level of severity:low
Other note:

D4: Dependency 4 Name of vulnerable package: pug
Level of severity:high
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three > pug > xmldom > type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 175

Participant N1 Date: 09 April 2021

Answer Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask > angular-expressions > Base64-url > minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Existing solving pull request and severity

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: minimist
Level of severity:low
Other note:

D2: Dependency 2 Name of vulnerable package: netmask
Level of severity:high
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity:low
Other note:

D4: Dependency 4 Name of vulnerable package: base64-url
Level of severity:high
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask > angular-expressions > base64-url > minimist

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 176

Participant N1 Date: 09 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Direct dependency and severity

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 177

Participant N2 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > type-graphQl > xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer I see the impact on the server first and then use level of severity as
criteria

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > grahpql >= xml

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 178

Participant N2 Date: 09 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask> base64-url > minimist > = angular-expression

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of severity and how it can impact the project

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 179

Participant N2 Date: 09 April 2021

Answer netmask> base64-url > minimist > = angular-expression

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of severity

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 180

Participant N3 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug > three.js > type-graphql >= xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of severity, impact with the project, ease of modification

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: pug
Level of severity: High
Other note: Main renderer library

D2: Dependency 2 Name of vulnerable package: three.js
Level of severity: High
Other note: Consist with rendering part

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: Low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug > three.js > type-graphql >= xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 181

Participant N3 Date: 08 April 2021

Answer Level of severity, impact with the project

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer base64-url >= node-netmark > angular-expressions >= minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of severity

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: base64-url
Level of severity: High
Other note:

D2: Dependency 2 Name of vulnerable package: node-netmark
Level of severity: High
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: minimist
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer node-netmark > angular-expressions > base64-url > minimist

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 182

Participant N3 Date: 08 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Type of dependency, Level of severity, Vulnerability effect (type of
vulnerability)

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 183

Participant N4 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three > pug > type-graphql >= xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and CVE

[Optional] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: high
Other note: CVE-2020-28496

D2: Dependency 2 Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D3: Dependency 3 Name of vulnerable package: xmldom
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: pug
Level of severity: high
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three >xmldom > type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 184

Participant N4 Date: 08 April 2021

Answer Vulnerability Types

Test 1 Part 3 - achilles
(Achilles (achilles-sp.azurewebsites.net))

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

Questions What criteria do you use to prioritize these vulnerability updates?

Answer

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > base64-url > minimist > angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Impact, Severity, and CVE (newest)

[Optional] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: minimist
Level of severity: low
Other note: CVE-2020-7598

D2: Dependency 2 Name of vulnerable package: netmask
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 185

Participant N4 Date: 08 April 2021

D4: Dependency 4 Name of vulnerable package: base64-url
Level of severity: high
Other note: CVE-2021-29418

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base64-url > minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Vulnerability Type, Severity, and Impact

Test 2 Part 3 - achilles
Achilles (achilles-sp.azurewebsites.net)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

Questions What criteria do you use to prioritize these vulnerability updates?

Answer

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 186

Participant N5 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= Pug > type-graphql > xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: High
Other note:

D2: Dependency 2 Name of vulnerable package: Pug
Level of severity: High
Other note:

D3: Dependency 3 Name of vulnerable package: type-graphql
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: xmldom
Level of severity: low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > type-graphql > xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 187

Participant N5 Date: 08 April 2021

Answer Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > angular-expressions >= minimist

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: High
Other note:

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: High
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: minimist
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > angular-expressions >= minimist

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 188

Participant N5 Date: 08 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 189

Participant N6 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > xml-dom >= type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: High
Other note:

D2: Dependency 2 Name of vulnerable package: pug
Level of severity: High
Other note:

D3: Dependency 3 Name of vulnerable package: xml-dom
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: type-graphql
Level of severity: Low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > xml-dom >= type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 190

Participant N6 Date: 08 April 2021

Answer Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > minimist >= angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: High
Other note:

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: High
Other note:

D3: Dependency 3 Name of vulnerable package: minimist
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: angular-expression
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base64-url > minimist

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 191

Participant N6 Date: 08 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity, Dependency

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 192

Participant N7 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Type-graphql > three.js > xmldom > pug

Questions What criteria do you use to prioritize these vulnerability updates?

Answer The ease of patching the packages.

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Type-graphql > three.js > xmldom > pug

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 193

Participant N7 Date: 08 April 2021

Answer Ease of patching. Update packages with no breaking changes first.

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expression >= minimist > base64-url

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Ease of fixing and level of vulnerability (Order by ease of fixing, then
the level of vulnerability)

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 194

Participant N7 Date: 08 April 2021

Answer Netmask > angular-expressions > karma-mocha > uid-safe

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Patch the packages with no breaking changes first (order by level of
severity).

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 195

Participant N8 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > xmldom > type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity level + details of vulnerability risk

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: Pug
Level of severity: high
Other note:

D2: Dependency 2 Name of vulnerable package: three
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: xmldom
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: type-graphql
Level of severity: low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three > pug > type-graphql >= xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 196

Participant N8 Date: 09 April 2021

Answer Level of vulnerability + expected error

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 > D4 >= D3 > D2

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Details of vulnerability

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: netmask
Level of severity: high severity
Other note: bypass access ctrl

D2: Dependency 2 Name of vulnerable package: base64-url
Level of severity: high
Other note: allocate uninit buffer

D3: Dependency 3 Name of vulnerable package: angular - expression
Level of severity: low
Other note: bypass but using complex payload

D4: Dependency 4 Name of vulnerable package: minimist
Level of severity: low
Other note: atker modify prototype

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > Base64-url > minimist >= angular expression

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 197

Participant N8 Date: 09 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level and vulnerability that can cause.

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 198

Participant N9 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 three >= D4 pug > D2 type_graphql >= D3 xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer By the level of risk of severity

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package: three
Level of severity: High
Other note:

D2: Dependency 2 Name of vulnerable package: type_graphql
Level of severity: Low
Other note:

D3: Dependency 3 Name of vulnerable package: xmldom
Level of severity: Low
Other note:

D4: Dependency 4 Name of vulnerable package: pug
Level of severity: High
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D2 three >= D3 pug > D1 type-graphql >= D4 xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

1

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 199

Participant N9 Date: 09 April 2021

Answer By the level of risk of severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D2 netmask >= D4 base64-url > D1 minimist >= D3 angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer By the risk level of severity

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package: minimist
Level of severity: Low
Other note:

D2: Dependency 2 Name of vulnerable package: netmask
Level of severity: High
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: High
Other note:

D4: Dependency 4 Name of vulnerable package: base64-url
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 base64-url >= D4 netmask > D2 minimist >= D3 angular-expressions

2

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 200

Participant N9 Date: 09 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer By the risk level of severity

3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 201

Participant N10 Date: 19 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug >= three > type-graphql => xlmdom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer From severity level

[Option] Test 1 Note Section

D1: Dependency 1 Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug >= three > type-graphql >= xlmdom

Questions What criteria do you use to prioritize these vulnerability updates?

1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 202

Participant N10 Date: 19 April 2021

Answer From level of severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > minimist > base64-url

Questions What criteria do you use to prioritize these vulnerability updates?

Answer From chance of attacker

[Option] Test 2 Note Section

D1: Dependency 1 Name of vulnerable package:minimist
Level of severity: low
Other note:

D2: Dependency 2 Name of vulnerable package:netmask
Level of severity: high
Other note:

D3: Dependency 3 Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

D4: Dependency 4 Name of vulnerable package: base64-url
Level of severity: high
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask>= base64-url > angular-expressions >= minimist

2

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 203

Participant N10 Date: 19 April 2021

Questions What criteria do you use to prioritize these vulnerability updates?

Answer From severity

3

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 204

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 205

APPENDIX F
ACHILLES SECURITY VULNERABILITY REPORT FROM

GITHUB PROJECTS

Achilles: Vulnerability Report
April 18th 2021, 10:13 pm

KlintonICT
baak-packagejson-test
From:cpnmjs/package.json

0
CRITICAL

5
HIGH

2
MODERATE

4
LOW

Summary Total vulnerabilities: 11

Dependency Type Updating Severity
sequelize Direct < 4.44.4 4.44.4 moderate

sequelize Direct < 4.44.3 4.44.3 high

sequelize Direct < 4.12.0 4.12.0 high

treekill Direct >= 0.0.0 none high

debug Indirect < 2.6.9 2.6.9 low

debug Indirect < 2.6.9 2.6.9 low

debug Indirect < 2.6.9 2.6.9 low

debug Indirect < 2.6.9 2.6.9 low

ejs Indirect < 2.5.3 2.5.5 high

ejs Indirect < 2.5.5 2.5.5 high

ejs Indirect < 2.5.5 2.5.5 moderate

Total of vulnerable direct dependency: 4

Total of vulnerable indirect dependency: 7

Vulnerabilities

Potentially Vulnerable: sequelize

Severity: moderate

Current Usage Version: ^3.23.4

Vulnerable Version: < 4.44.4

Patch Version: 4.44.4

Vulnerability Chaining:

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix F / 206

Vulnerabilities and Advisory link:

GHSA-fw4p-36j9-rrj3 Dependency to be updated:

sequelize Update to latest version:sequelize

^3.23.4 6.6.2

Potentially Vulnerable: sequelize

Severity: high

Current Usage Version: ^3.23.4

Vulnerable Version: < 4.44.3

Patch Version: 4.44.3

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-m9jw-237r-gvfv

CVE-2019-10752

Dependency to be updated: sequelize

Update to latest version:sequelize ^3.23.4 6.6.2

Potentially Vulnerable: sequelize

Severity: high

Current Usage Version: ^3.23.4

Vulnerable Version: < 4.12.0

Patch Version: 4.12.0

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-wfp9-vr4j-f49j

Dependency to be updated: sequelize

Update to latest version:sequelize ^3.23.4 6.6.2

Potentially Vulnerable: treekill

Severity: high

Current Usage Version: ^1.0.0

Vulnerable Version: >= 0.0.0

Patch Version: Currently, no patch version

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 207

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-533p-g2hq-qr26

Dependency to be updated: treekill

Update to latest version:treekill ^1.0.0 1.0.0

Potentially Vulnerable: debug

Severity: low

Current Usage Version: ~2.2.0

Vulnerable Version: < 2.6.9

Patch Version: 2.6.9

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-gxpj-cx7g-858c

CVE-2017-16137

CWEs: CWE-400 : Uncontrolled Resource Consumption

Dependency to be updated: koa-mock

Update to latest version:koa-mock ^1.6.2 2.0.0

Potentially Vulnerable: debug

Severity: low

Current Usage Version: ~0.8.0

Vulnerable Version: < 2.6.9

Patch Version: 2.6.9

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-gxpj-cx7g-858c

CVE-2017-16137

CWEs: CWE-400 : Uncontrolled Resource Consumption

Dependency to be updated: changes-stream

Update to latest version:changes-stream ^1.1.0 2.2.0

Potentially Vulnerable: debug

Severity: low

Current Usage Version:

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix F / 208

0.7.4
Vulnerable Version:

< 2.6.9 Patch Version:

2.6.9 Vulnerability Chaining:

Vulnerabilities and Advisory link:

GHSA-gxpj-cx7g-858c

CVE-2017-16137

CWEs:

CWE-400 : Uncontrolled Resource Consumption Dependency to be updated:

koa-limit Update to latest version:koa-limit

^1.0.2 1.0.2

Potentially Vulnerable: debug

Severity: low

Current Usage Version: ^0.7.4

Vulnerable Version: < 2.6.9

Patch Version: 2.6.9

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-gxpj-cx7g-858c

CVE-2017-16137

CWEs: CWE-400 : Uncontrolled Resource Consumption

Dependency to be updated: koa-middlewares

Update to latest version:koa-middlewares ^2.1.0 6.0.0

Potentially Vulnerable: ejs

Severity: high

Current Usage Version: ^1.0.0

Vulnerable Version: < 2.5.3

Patch Version: 2.5.5

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-3w5v-p54c-f74x

CVE-2017-1000228

Dependency to be updated: koa-middlewares

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 209

Update to latest version:koa-middlewares ^2.1.0 6.0.0

Potentially Vulnerable: ejs

Severity: high

Current Usage Version: ^1.0.0

Vulnerable Version: < 2.5.5

Patch Version: 2.5.5

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-6x77-rpqf-j6mw

CVE-2017-1000189

Dependency to be updated: koa-middlewares

Update to latest version:koa-middlewares ^2.1.0 6.0.0

Potentially Vulnerable: ejs

Severity: moderate

Current Usage Version: ^1.0.0

Vulnerable Version: < 2.5.5

Patch Version: 2.5.5

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-hwcf-pp87-7x6p

CVE-2017-1000188

Dependency to be updated: koa-middlewares

Update to latest version:koa-middlewares ^2.1.0 6.0.0

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix F / 210

Achilles: Vulnerability Report
April 18th 2021, 10:19 pm

KlintonICT
baak-packagejson-test
From:npx/package.json

0
CRITICAL

0
HIGH

0
MODERATE

1
LOW

Summary Total vulnerabilities: 1

Dependency Type Updating Severity

yargs-parser Indirect >= 6.0.0, < 13.1.2 13.1.2 low

Total of vulnerable direct dependency: 0

Total of vulnerable indirect dependency: 1

Vulnerability

Potentially Vulnerable: yargs-parser

Severity: low

Current Usage Version: ^9.0.2

Vulnerable Version: >= 6.0.0, < 13.1.2

Patch Version: 13.1.2

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-p9pc-299p-vxgp

CWEs: CWE-471: Modification of Assumed-Immutable Data (MAID)

Dependency to be updated: yargs

Update to latest version:yargs ^11.1.0 16.2.0

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 211

Achilles: Vulnerability Report
April 18th 2021, 10:08 pm

KlintonICT
baak-packagejson-test
From:sinopia/package.json

1
CRITICAL

7
HIGH

1
MODERATE

3
LOW

Summary Total vulnerabilities: 12

Dependency Type Updating Severity

minimatch Direct < 3.0.2 3.0.2 high

handlebars Direct < 3.0.8 3.0.8 high

handlebars Direct < 3.0.8 3.0.8 high

handlebars Direct < 3.0.8 3.0.8 high

handlebars Direct < 4.3.0 4.3.0 high

handlebars Direct < 3.0.7 3.0.7 critical

handlebars Direct < 4.0.0 4.0.0 high

handlebars Direct < 4.0.0 4.0.0 moderate

highlight.js Direct < 9.18.2 9.18.2 low

uglify-js Indirect < 2.4.24 2.4.24 high

uglify-js Indirect < 2.4.24 2.4.24 low

uglify-js Indirect < 2.6.0 2.6.0 low

Total of vulnerable direct dependency: 9

Total of vulnerable indirect dependency: 3

Vulnerabilities

Potentially Vulnerable: minimatch

Severity: high

Current Usage Version: >=0.2.14 <2.0.0-0

Vulnerable Version: < 3.0.2

Patch Version: 3.0.2

Vulnerability Chaining:

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix F / 212

Vulnerabilities and Advisory link:

GHSA-hxm2-r34f-qmc5

CVE-2016-10540

Dependency to be updated:

minimatch Update to latest version:minimatch

>=0.2.14 <2.0.0-0 3.0.4

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: 2.x

Vulnerable Version: < 3.0.8

Patch Version: 3.0.8

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-q2c6-c6pm-g3gh

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: 2.x

Vulnerable Version: < 3.0.8

Patch Version: 3.0.8

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-g9r4-xpmj-mj65

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: 2.x

Vulnerable Version: < 3.0.8

Patch Version: 3.0.8

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 213

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-2cf5-4w76-r9qv

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: 2.x

Vulnerable Version: < 4.3.0

Patch Version: 4.3.0

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-w457-6q6x-cgp9

CVE-2019-19919

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: handlebars

Severity: critical

Current Usage Version: 2.x

Vulnerable Version: < 3.0.7

Patch Version: 3.0.7

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-q42p-pg8m-cqh6

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: 2.x

Vulnerable Version: < 4.0.0

Patch Version: 4.0.0

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix F / 214

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-9prh-257w-9277

CVE-2015-8861

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: handlebars

Severity: moderate

Current Usage Version: 2.x

Vulnerable Version: < 4.0.0

Patch Version: 4.0.0

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-fmr4-7g9q-7hc7

CVE-2015-8861

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: highlight.js

Severity: low

Current Usage Version: 8.x

Vulnerable Version: < 9.18.2

Patch Version: 9.18.2

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-vfrc-7r7c-w9mx

CVE-2020-26237

CWEs: CWE-471: Modification of Assumed-Immutable Data (MAID)

Dependency to be updated: highlight.js

Update to latest version:highlight.js 8.x 10.7.2

Potentially Vulnerable: uglify-js

Severity: high

Current Usage Version: ~2.3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 215

Vulnerable Version: < 2.4.24

Patch Version: 2.4.24

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-g6f4-j6c2-w3p3

CVE-2015-8857

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: uglify-js

Severity: low

Current Usage Version: ~2.3

Vulnerable Version: < 2.4.24

Patch Version: 2.4.24

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-34r7-q49f-h37c

CVE-2015-8857

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

Potentially Vulnerable: uglify-js

Severity: low

Current Usage Version: ~2.3

Vulnerable Version: < 2.6.0

Patch Version: 2.6.0

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-c9f4-xj24-8jqx

CVE-2015-8858

Dependency to be updated: handlebars

Update to latest version:handlebars 2.x 4.7.7

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix F / 216

Achilles: Vulnerability Report
April 18th 2021, 10:18 pm

KlintonICT
baak-packagejson-test
From:window-build-tools/package.json

0
CRITICAL

0
HIGH

0
MODERATE

1
LOW

Summary Total vulnerabilities: 1

Dependency Type Updating Severity

mem Indirect < 4.0.0 4.0.0 low

Total of vulnerable direct dependency: 0

Total of vulnerable indirect dependency: 1

Vulnerability

Potentially Vulnerable: mem

Severity: low

Current Usage Version: ^3.0.1

Vulnerable Version: < 4.0.0

Patch Version: 4.0.0

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-4xcv-9jjx-gfj3

Dependency to be updated: in-gfw

Update to latest version:in-gfw ^1.2.0 1.2.0

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 217

V. Jarukitpipat, W. Wanprasert, and K.Chhun References / 218

REFERENCES

[1] Alyssa Miller SZ., “The State of Open Source Security 2020k”; June 2020 [cited

9 November 2020], [Online]. Available: https://snyk.io/open-source-security/.

[2] Todorov B., Kula R., Ishio T., Inoue K., “SoL Mantra: Visualizing Update Oppor-

tunities Based on Library Coexistence”; 09 2017. p. 129–133.

[3] Liran Tal SM., “npm passes the 1 millionth package milestone! What can we

learn?”; June 2019 [cited 1 November 2020], [Online]. Available: https://snyk.io/

blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/.

[4] Kula RG., German DM., Ouni A., Ishio T., Inoue K., “Do Developers Update

Their Library Dependencies?”, Empirical Software Engineering. Feb. 2018;23(1):

384–417, [Online]. Available: https://doi.org/10.1007/s10664-017-9521-5.

[5] East T., “2020 GitHub Universe Micro-Mentoring Application”; October 2020

[cited 1 November 2020], [Online]. Available: https://github.blog/2020-10-27-

2020-github-universe-micro-mentoring-application/.

[6] Synopsys, “Heartbleed Bug”; June 2020 [cited 1 November 2020], [Online]. Avail-

able: http://heartbleed.com/.

[7] Bennett JT., “Shellshock in the Wild”; September 2014 [cited 1 Novem-

ber 2020], [Online]. Available: https://www.fireeye.com/blog/ threat-research/

2014/09/shellshock-in-the-wild.html.

[8] Chinthanet B., Kula RG., McIntosh S., Ishio T., Ihara A., Matsumoto K.. “Lags in

the Release, Adoption, and Propagation of npm Vulnerability Fixes”; 2020.

[9] Yano Y., Kula R., Kula T., Ishio K., Inoue K., “VerXCombo: An Interactive Data

Visualization of Popular Library Version Combinations”; 05 2015. .

https://snyk.io/open-source-security/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://doi.org/10.1007/s10664-017-9521-5
https://github.blog/2020-10-27-2020-github-universe-micro-mentoring-application/
https://github.blog/2020-10-27-2020-github-universe-micro-mentoring-application/
http://heartbleed.com/
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 219

[10] Fatih Erikli AK. Burak Arikan, “NPM Dependency Network”; [cited 9 November

2020], [Online]. Available: https://graphcommons.com/graphs/a7ec343d-2a0c-

47bb-9658-bb8315e8a096?auto=trueshow=analysis-cluster.

[11] Security R., “Vulnerable Dependencies”; [cited 1 November 2020], [Online].

Available: https://ropesec.com/articles/vulnerable-dependencies/.

[12] W3School, “JSON - Introduction”; [cited 1 November 2020], [Online]. Available:

https://www.w3schools.com/js/jsjsonintro.asp.

[13] MongoDB, “What Is MongoDB?”; [cited 1 November 2020], [Online]. Available:

https://www.mongodb.com/what-is-mongodb.

[14] Bostock M., “D3 Data-Driven Documents”; [cited 1 November 2020], [Online].

Available: https://d3js.org/.

[15] Bostock M., “Directional Force Layout Diagram”; [cited 9 November 2020], [On-

line]. Available: https://gist.github.com/d3noob/5141278.

[16] Docs G., “About GitHub Security Advisories”; [cited 14 May 2021], [Online].

Available: https:// docs.github.com/ en/ code-security/ security-advisories/ about-

github-security-advisories.

[17] Thompson B., “Applying machine intelligence to GitHub security alerts”; [cited

24 May 2021], [Online]. Available: https:// github.blog/2018-10-09-applying-

machine-intelligence-to-security-alerts/leveraging-the-community.

[18] Ko A., LaToza T., Burnett M., “A practical guide to controlled experiments of soft-

ware engineering tools with human participants”, Empirical Software Engineering.

02 2013;20.

[19] Gopstein YDZY. Iannacone, Cappos, “Understanding Misunderstandings in

Source Code”, European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 09 2017;.

https://graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?auto=true&show=analysis-cluster
https://graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?auto=true&show=analysis-cluster
https://ropesec.com/articles/vulnerable-dependencies/
https://www.w3schools.com/js/js_json_intro.asp
https://www.mongodb.com/what-is-mongodb
https://d3js.org/
https://gist.github.com/d3noob/5141278
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories
https://github.blog/2018-10-09-applying-machine-intelligence-to-security-alerts/##leveraging-the-community
https://github.blog/2018-10-09-applying-machine-intelligence-to-security-alerts/##leveraging-the-community

V. Jarukitpipat, W. Wanprasert, and K.Chhun References / 220

[20] Zeke Sikelianos FA. Ionică Bizău, “nice-registry/all-the-package-names”; [cited 19

April 2021], [Online]. Available: https://github.com/nice-registry/all-the-package-

names.

[21] Docs G., “Searching code”; [cited 19 April 2021], [Online]. Available: https://

docs.github.com/en/github/searching-for-information-on-github/searching-code.

https://github.com/nice-registry/all-the-package-names
https://github.com/nice-registry/all-the-package-names
https://docs.github.com/en/github/searching-for-information-on-github/searching-code
https://docs.github.com/en/github/searching-for-information-on-github/searching-code

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 221

BIOGRAPHIES

NAME Miss. Vipawan Jarukitpipat

DATE OF BIRTH 11 January 1999

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Mahidol University International Demonstra-

tion School, 2016:

High School Diploma

Mahidol University, 2021:

Bachelor of Science (ICT)

NAME Miss. Wachirayana Wanprasert

DATE OF BIRTH 12 November 1998

PLACE OF BIRTH Loei, Thailand

INSTITUTIONS ATTENDED Loeipittayakom School, 2016:

High School Diploma

Mahidol University, 2021:

Bachelor of Science (ICT)

NAME Mr. Klinton Chhun

DATE OF BIRTH 28 February 1999

PLACE OF BIRTH Phnom Penh, Cambodia

INSTITUTIONS ATTENDED Bak Touk High School, 2016:

High School Diploma

Mahidol University, 2021:

Bachelor of Science (ICT)

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	 1
	 2
	 3
	 4
	 5
	 6
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	REFERENCES
	BIOGRAPHIES

