ACHILLES: AUTOMATED TOOL FOR DETECTING AND
VISUALIZING NPM DEPENDENCY VULNERABILITIES

ax A A A o 1 'Y o I A I A
RIRGE Lﬂi@QN@LW@ﬂTi@ﬁ?%ﬁ]ﬁllﬂxﬂ”lillﬁﬂ\‘lWﬁ%i’)\‘liﬁ?ﬂTL!ﬂ'NﬂJﬂa@ﬂﬂﬂﬂl@ﬂmuWL@NﬂLWU

AU
BY
MISS. VIPAWAN JARUKITPIPAT 6088044
MISS. WACHIRAYANA WANPRASERT 6088082
MR. KLINTON CHHUN 6088111
ADVISOR

DR. CHAIYONG RAGKHITWETSAGUL

CO-ADVISOR
DR. MORAKOT CHOETKIERTIKUL
ASST. PROF. DR. THANWADEE SUNETNANT

A Senior Project Submitted in Partial Fullfillment of
the Requirement for

THE DEGREE OF BACHELOR OF SCIENCE
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Faculty of Information and Communication Technology
Mabhidol University

2020

ACKNOWLEDGEMENTS

To all the people who have been involved with the development until the com-
pletion of the project, we would like to dedicate this section to show our utmost grati-
tude. We are very thankful for their assistance throughout the long period of this project.
First and foremost, we would like to express our appreciation towards Dr. Chaiyong
Ragkhitwetsagul, our senior project advisor, and Asst. Prof. Dr. Thanwadee Sunetnanta
as well as Dr. Morakot Choetkiertikul, our respectable co-advisors. Furthermore, we
would like to thank Assist. Prof. Raula Gaikovina Kula, Bodin Chinthanet, and Assoc.
Prof Takashi Ishio, our advisors from NAIST. Additionally, It would be outrageous of
us to not thank our participants for partaking in our user study as well as those who par-
ticipated in our online survey during the evaluation process. We would also like to thank
the Faculty of Information and Communication Technology, instructors, staff, members
for the support given to us. Lastly, we would like to thank, from the bottom of our heart,
our dearest families for giving us the support we need during the making of this project.
This project would not have been this successful if not for those mentioned and their

offered support.

Miss. Vipawan Jarukitpipat
Miss. Wachirayana Wanprasert
Mr. Klinton Chhun

Faculty of ICT, Mahidol Univ. Senior Project / iii

Achilles: Automated tool for detecting and visualizing npm dependency vulner-

abilities

MISS. VIPAWAN JARUKITPIPAT 6088044 ITCS/B
MISS. WACHIRAYANA WANPRASERT 6088082 ITCS/B
MR. KLINTON CHHUN 6088111 ITCS/B

B.Sc.(INFORMATION AND COMMUNICATION TECHNOLOGY)

PROJECT ADVISOR: DR. CHAIYONG RAGKHITWETSAGUL

ABSTRACT

In contemporary software development, utilizing third-party libraries is common
practice for developers to create high-quality software at a reduced cost. According to
the State of Open Source Security Report 2020, the JavaScript ecosystem has driven
the growth in open source packages. From the end of 2018 to the end of 2019, npm,
which is a package manager for Node.js packages, grew by over 33% [1]. Nonetheless,
third-party dependency vulnerabilities have become the Achilles’s’ heel of most modern
software systems. These vulnerabilities can come from direct dependencies or when the
dependencies use other dependencies (indirect dependencies). A study by snyk.io shows
that 86% of npm package vulnerabilities are discovered in indirect dependencies.

Several tools (e.g., GitHub Dependabot, npm audit) are developed to assist the
developers in keeping their dependencies up-to-date, yet they have different ways of vi-
sualization. We propose the Achilles tool which detects and visualizes npm project’s de-
pendency vulnerabilities. Achilles assists programmers in comprehending and analyzing
potential risks of vulnerabilities of npm packages via the dependency graph visualiza-
tion and analysis report. We have performed an evaluation using a user study and found
that the graph visualization of Achilles helps support developers’ decisions on priori-
tizing vulnerability to fix by providing more information about complexity and direct/
indirect dependencies compared to the state-of-the-art tools. The tool can also detect

vulnerabilities currently existing in several most-starred GitHub open source projects.

KEYWORDS: VULNERABILITY DEPENDENCY, NPM, VISUALIZATION

2M2°1 P
ZzZZT I,

Faculty of ICT, Mahidol Univ. Senior Project / iv

ag A =} A Y]]) o I ad A
PAAY INT0IUDINDNITATIVIVLAL NI LAAINATDI 1HIAIUANNYa0ANIVDIDUNIDUAINY
A
AU
a a a o J
UNA INNITIU NFNINNAY - 6088044 ITCS/B
uNaN Fsgnel Tuilsviey 6088082 ITCS/B
WY AAUAY YU 6088111 ITCS/B

m.u. (maluladasaumaazmsaoas)

P o S v A
p10156N1U5nE1IATIMT: A3, Foeena SnIANYEND
UNAAED

lutagiiumswannaending TaslFlaus Gvesanafiaundumamaieahs

wovldnTothesaEwazanduny 189U State of Open Source Security 2020 a1
ssvuiinaves JavaScript 1dvumaeumsidnTavesiining Open Source Fadawa sz
Samsuimnadmsn Node js wio npm Iadu 33% saudilarei] 2018 4 2019 Favda'ls
Ao res T duanudasadoves laus s naedhu o dm Susin i Fo Tnimani)
ansouanlaus s iien19Iaoase (Direct dependency) %3o e 'laus s ivenle laus s
§10u (Indirect dependency) 9NM3AnEIee Snyk.io WU 86% veetes Tnivesuiame
npm Aaa1nm31Fan lausBuuumedey (Indirect dependency)

ya o = @

W pWUNTMINAMUATNN (15U GitHub, Dependabot, npm-audit) $143U11N

Y] o

A A ya D = ! < A A v Y A
LW'EIG])"JEJWiﬁ@uﬂW@JuTiﬁ@]ﬂ@ﬂNﬂlﬂgﬁ"Uﬂﬁ]’laﬂiﬁ ?JEJNul'iﬂGHlILﬂiﬂﬁﬂ@LﬁﬁTuuﬂJﬂﬁ!!ﬁﬂﬂWﬁ

Yo R A a

A v [Y A A . ~ 1 1
NUANANNU AIJYIUNALLUIA bluﬂﬁﬁiﬁmi@\ma Achilles mzmnaammzuﬁm%mTm

U
& v

1 v
1M 19 laus I nanasazMedey dnngsaansaeinimu lumsianud loas
a 4 = ~ a da!) < A 1 Y
ANTILHANWTH NN TUINMIIUNAND npm NTFe InIN 19 FiunmsuaaIna
v o J < a Jd 9a v Y o)
anuduiusvowian lugduuunsuaznenumsinngd §ivelavimslsziiumalag
M3ANEIING IFuaz nuNMsuaainaves Achilles ansaseslinmsdaadulevesinwann
Tuiseamstadwuanudingvestes Inaioud lvuas doyamuaunertuaududou
uaym3snen laenss (Direct dependency)/ m3fan Iagn1eseu (Indirect dependency) tifo
1 1 2 H
IMeuAUIAT0NRBY 9 UBNAINI Achilles §3esnnssures Inintieglu GitHub open
R A dAa
source 11/5i3nnuniioy

221 %N

CONTENTS

Page
ACKNOWLEDGMENTS i
ABSTRACT i1
LIST OF TABLES viii
LIST OF FIGURES ix
1 INTRODUCTION. ... e 1
1.1 MOTIVATION ...t 1
1.2 PROBLEM STATEMENTS ..., 2
1.3 OBJECTIVES OF THE PROJECTcccoiiiiiiiiiiiiineee 3
1.4 SCOPE OF THE PROJECTooiiiiiiiii e 3
1.5 EXPECTED BENEFITS ..., 3
1.6 ORGANIZATION OF THE DOCUMENTccocciiiiiiiiiiiniens 3
2 BACKGROUND ... 5
2.1 FUNDAMENTALS ..o 5
2.1.1 DEPENDENCIES VULNERABILITIES...........c..cocooenene. 5

2.1.2 OVERVIEW OF DEPENDENCIES VULNERABILITY ANAL-
YSISTOOLS ..o 6
2.2 TOOLS AND TECHNIQUES ... 8
221 GITHUB ..o 8
2.2.2 NODE.JS . o 8
223 MONGODBot 9
224 D3JSLIBRARY ...oviiiiiiiii e 9
225 GRAPHQL ..o 9
2.3 LITERATURE REVIEW ... 12
2.3.1 LAGS IN LIBRARY DEPENDENCIES UPDATE 12
2.3.2 DEPENDENCIES VISUALIZATION......c.ccocviiiiiiiiinenee. 13

2.3.3 DATASET FOR VISUALIZING NODE.JS DEPENDENCY
ECOSYSTEM IN GITHUB..........coooiiiiiiiiii 16

Vi

2.4 CHAPTER SUMMARY ... 18

3 ANALYSIS AND DESIGN ... 19
3.1 ACHILLES: ATOOL FOR NPM ECOSYSTEM VISUALIZATION

AND VULNERABILITY DETECTIONccccooiiiiiiiiiin, 19

3.2 SYSTEM ARCHITECTURE OVERVIEWccocoiiiiiiinin. 20

3.3 USE CASE ANALYSIS ..., 24

34 STRUCTURE CHART ...t 26

3.5 SYSTEM ANALYSIS ..o, 27

3.5.1 DATAFLOW DIAGRAM LEVEL 0 (CONTEXT DIAGRAM) 27

3.52 DATA FLOW DIAGRAM LEVEL 1c..cooiiiiiiiiinne, 29

3.6 COMPARISON TO RELATED WORKccocoiiiiiiiii, 30
3.7 PROJECT TIMELINE, CURRENT PROGRESS, AND FUTURE

WORK L 32

3.7.1 PROJECT TIMELINE..........cccoociiiiiiii 32

3.8 CHAPTER SUMMARYcooiiiiiiiiiii, 33

4 IMPLEMENTATION ... 34

4.1 RETRIEVE USER’S REPOSITORIES.............ccooiiiii 34

4.1.1 GET THE USER’S GITHUB REPOSITORIES 34

4.1.2 FILTER FORNPM PROJECTS ..., 36

4.1.3 STORING THE SELECTED REPOSITORYc..c.coeee... 37

4.2 VISUALIZATIONS ... 38

4.2.1 GENERATING NODES AND EDGESccooiiiiiiin. 38

4.2.2 GENERATING TOOLTIPS ..ot 45

43 CREATE REPORTcciiiiiiiiiiii e 45

4.3.1 VULNERABILITY INFORMATION DATA TEMPLATE 48

4.4 SEMVER-EXISTING-MAXot 50

S EVALUATION RESULTS ... 54

5.1 EVALUATION METHODOLOGYc.cccotviiiiiiiiiiiiiiiiiiiecee, 54

5.1.1 THE ONLINE SURVEY ...t 54

5.1.2 THE USER STUDY ...coiiiiiiiiiiiiiiiiccee 54

5.2 ONLINE SURVEY RESULTcccoiiiiiiiiii 61

vil

5.2.1 LEVEL OF CONCERN REGARDING SECURITY VUL-
NERABILITY SOURCES........cciiiiiiiiiiiiicce, 61

5.2.2 PRIORITIZATION FACTORS FOR VULNERABILITIES
UPDATES ... 61
5.2.3 DECISION TO UPDATE VULNERABLE DEPENDENCIES 65
5.2.4 FEEDBACK FROM ONLINE SURVEYc.cocoiiiiiai. 66
5.3 PARTICIPANTS’ DEMOGRAPHIC DATAcccoiiiiiiiiin. 69
54 USER STUDY RESULTciiiiiiiiiiii e 70
5.4.1 RESULTS AND ANALYSIS ...t 70
542 ANSWER TO RESEARCH QUESTIONScocooeeiits 82
5.5 ANALYSIS OF GITHUB PROJECTcciiiiiiiiiiiiiiiiniicee, 83
5.5.1 MOST STARRED GITHUB PROJECTS..............cceeiennen. 84
5.5.2 MOST DEPENDENT NPM PROJECTScocoiiiiinl, 85
6 CONCLUSIONS . 88
6.1 PROBLEMS AND LIMITATIONS ..ot 88
6.2 THREATS TO VALIDITYooniiiiiiiiii e 88
6.3 FUTURE WORK ... 89
6.3.1 POTENTIAL PERFORMANCE OPTIMIZATION............... &9
6.3.2 POTENTIALLY BETTER VISUALIZATION METHOD...... 89
6.4 CONCLUSION ..ot 90
APPENDIX A 92
APPENDIX B 99
APPENDIX C 124
APPENDIX D 140
APPENDIX E 148
APPENDIX F 205
REFERENCES 218
BIOGRAPHIES 221

Table 3.1:

Table 4.1:
Table 4.2:
Table 4.3:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:

Table 5.10:
Table 5.11:
Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:

Table 6.1:

viii

LIST OF TABLES

Page

Comparison of Dependencies Vulnerability Detection Technique and

TOOLS . et 31
Parametero 35
Parametero 35
Parameteroveieie e 35
Characteristics of vulnerabilities in Test 1.........c..coovviiiiinini. 58
Characteristics of vulnerabilities in Test 2............coooviiiiiiininn... 60
Participants’ DemographicCccovviiiiiiiiiiiieiiiee e 69
The Result of Achilles Test Case No. 1 (Complexity)....................... 71
Factors for Prioritizing Package Updatesccoceviviiiiiinininnn.. 72
The Result of npm audit Test Case No. 1 (Complexity) 74
Factors for Prioritizing Package Updatesc..ccocoeeeiiiiiiiiinn. 75
The Result of Achilles Test Case No. 2 (Direct/ Indirect).................. 77
Factors for Prioritizing Package Updates...............cooeiiiiiiiininns, 78
The Result of npm audit Test Case No. 2 (Direct/ Indirect)................ 80
Factors for Prioritizing Package Updatesc.ccoooviiiiiininan.n. 81
Comparison of Developers’ DeciSionscc.vuveviiniiiinininiininennns 82
Comparison of Developers’ DeciSionscc.vvviiiiniiiiniininiinannns 83

showing the prioritization results after using npm audit and Achilles ... 83

10 Most Stars GitHub Project Used in the Studycceeeivinnnt. 84
10 Most Dependent GitHub Project Used in the Study...................... 84
Comparing the current and the proposed methods............................ 90

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:

X

LIST OF FIGURES

Page
Dependabot alert’s exampleooeeeiriiiiiiiiiiiiieeen 6
Dependabot pull request’s example..........ccceeveiiiiiniiiiiiiieeeiene. 6
Dependabot Change Recommendation example..................c.ooeenne. 7
npm audit report eXampleooviiiiiiiiii 8
Directional Force Layout Diagram..............cccoovviiiiiiiinininiinan.n. 10
Example of schema of securityVulnerabilities 11
VerXCombo - Parallel Sets Visualizationcooceiiiininant. 15
CoeXiSteNnCe LOZIC. . .uuiuiniiiieiie e 16
React Overview of Sol Mantra [2]ccoviiiiiiiiiiiieeeeeeee, 16
Proposed npm Ecosystem Network Visualization........................... 20
System ATChiteCtureovvviiniiiiii e 21
A mock-up of the Achilles vulnerabilities analysis report................. 23
Use €ase DIagramcouviuiiiiiiniiiiiie e 25
Structure Chart..........oo.viiiii e 26
Data Flow Diagram Level 0 (Context Diagram)............................. 28
Data-flow diagram Level 1coooiiiiiiiii e, 29
Project TIMElNecoouiniiii e, 32
GHSA vs npm security advisory databaseccoeeviniininennnn. 42
Chain of Dependencies of Package Acccooviiiiiiiiiinninn. 51
Chain of Dependencies of Package A with Different Version............ 52
Procedures of User Studycoeviiiiiiiiiiieecee e 56
Achilles graph visualization of Test 1cooeoviiiiiiinininne. 59
Achilles graph visualization of Test 2ccoeviiiiiniiniiniiniinenn.n. 60
Participants’” SUIVEYcuvviriiiiiie e 62
The Students’ Level of Concern Regarding Different Sources........... 62
The Developers’ Level of Concern Regarding Different Sources....... 63
The Students’ Library Update Prioritization Factors 64

Figure 5.8:
Figure 5.9:
Figure 5.10:
Figure 5.11:

Figure 5.12:

The Developers’ Library Update Prioritization Factors.................... 64
The Students’ Decision on Updating Vulnerable Dependencies......... 65
The Developers Decision on Updating Vulnerable Dependencies 66

Bar graphs showing Direct and Indirect Vulnerable Dependency for
Top 10 Most starred Repositories on GitHub................................. 86
Bar graphs showing Direct and Indirect Vulnerable dependencies for

Top 10 Most Dependent JavaScript Libraries in npm Registry 87

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /1

CHAPTER 1
INTRODUCTION

1.1 Motivation

In modern software development, developers usually depend on third-party li-
braries to provide specific functionality in their applications. The node package manager
(npm) dependency network is evolving at a growing rate with over 1.3 million packages
that have enabled over 12 million end-users to use them in their projects [3]. Libraries
aim to save both time and resources and reduce redundancy by taking advantages of
existing quality implementations [4].

Third-party dependency vulnerabilities become a concern for software develop-
ers. In a 2018 GitHub report, more than four million vulnerabilities were raised to the
attention of the developers of over 500,000 GitHub repositories [5]. Not only the direct
users of these software artifacts, but also the software ecosystem are exposed to the risk
of vulnerabilities. Heartbleed [6] and ShellShock [7] are examples of the severe vulnera-
bilities which caused widespread damage to diverse software ecosystems which include
both direct and indirect adopters.

However, developers are slow to update their vulnerable dependencies ,which is
sometimes due to bundled release of the fix, management, and process factors. Kula
et al.’s research shows that 85% of the studied systems still keep their outdated depen-
dencies, and 69% of the interviewed developers are unaware of their vulnerable depen-
dencies. In addition, developers are unlikely to prioritize a library update due to extra
workload and responsibilities [4].

Chinthanet et al.’s research also revealed that npm developers are slow to respond
to the threat of a vulnerability. It usually takes 4 to 11 months to update vulnerable
dependencies [8]. This research disclosed that fixing release update is not consistent with
the client-side fix release update. Possible causes of lags between vulnerable release and

fixing release update is developer’s unawareness of the fixing release. Since the fixed

V. Jarukitpipat, W. Wanprasert, and K.Chhun Introduction / 2

code tends to be small in size, developers of the library bundle the fixing with other
updates, and they do not highlight the fixing updates in the update note [8].

Since developers become more aware of vulnerable dependencies, automated de-
pendency updates tools are developed, e.g., Dependabot and Snyk.io. These tools help
developers to check for outdated and insecure dependencies and send the vulnerability
report to the user. They also create a pull request, i.e., a code review and merge request
on GitHub platform, for ease of review and merge the update. Moreover, visualiza-
tion tools are developed to assist system maintainers in making the decision whether to
update or introduce a new third party library since incompatibility between internal li-
brary dependencies might occur [9]. Todorov et al.’s visualization tool, SOL Mantra,
presents an opportunity to update libraries using a visualization of coexistence logic. It
demonstrates whether libraries should be updated. the visualization adopt a solar system
metaphor, which includes system, library, and coexistence between libraries [2].

From the literature review, the existing visualization only displays dependencies
relationship for only one particular project. However, it does not show relationships
among the whole npm ecosystem. Vulnerability detection tools on GitHub currently can
report only at the current project’s level itself. It does not display potential risk which
one particular project might have due to its indirect adoption of a vulnerable library via
other libraries. Although there exists a tool that can visualize the npm package, that tool
still does not visualize in version level and state of ecosystem overtime [10]. Hence, we
would like to propose a visualization tool which can display the npm ecosystem and pro-
duce a report which provides information about potential risks from vulnerability depen-
dencies that a project might have. Also, the proposed visualization tool can demonstrate
the state of the system at several points in time in order to exhibit the spreading of npm

vulnerabilities.

1.2 Problem Statements

This project tackles the following problems in visualizing npm vulnerabilities:

1. It is challenging to understand the complexity of dependencies in an npm project.

2. Existing visualizations do not represent the potential security risks that a partic-

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/3

ular project might have due to multiple levels of dependencies, i.e., the chain of

dependencies.

1.3 Objectives of the project
The objectives of the project are as follows:

1. Create a method for detecting and visualizing the complexity, direct and indirect

vulnerabilities of dependencies in an npm project.

2. Create a prototype that can analyze a GitHub project according to the data in the

npm registry and GitHub security Advisory.

3. Conduct a user study to investigate whether graph visualization would affect the

user’s decision on prioritizing vulnerability update.

1.4 Scope of the project

The project falls under the following scope:
1. The proposed system allows only login with GitHub account.
2. The proposed system runs as a web application

3. The proposed system supports only npm packages.

1.5 Expected Benefits
This project provides the following expected benefits:

1. Providing a new visualization of relationships in npm ecosystem network

2. Helping computer science students and software developers to be aware of poten-

tial vulnerable dependencies risks in their software system.

1.6 Organization of the document

The document consists of 6 parts including Introduction (Chapter 1), Background
(Chapter 2), Analysis and Design (Chapter 3), Implementation (Chapter 4), Evaluation
Results (Chapter 5), and Conclusion (Chapter 6).

V. Jarukitpipat, W. Wanprasert, and K.Chhun Introduction / 4

The Introduction chapter includes motivation, problem statements, objectives,
scope, expected benefits, and organization of the document. The Background chapter
describes the overview of the project, which has fundamentals and related work. Anal-
ysis and design chapter contains work procedures, which are methodology, system ar-
chitecture, structure chart, and system analysis. Implementation includes discussions of
steps that the system is implemented. Evaluation Results consists of the evaluations of
Visualization of npm ecosystem using Achilles, real software project, and by users. The
last chapter is Conclusion that includes the conclusion, problems and limitations, and

future work.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /5

CHAPTER 2
BACKGROUND

This chapter provides the background and required knowledge for completing
this project. It consists of 3 sections. The first section is Fundamentals section, which
provides the basic knowledge of the project. The second section is Tools and Techniques
section, which explains the tools and techniques that are applied into the project. The
third section is Literature Review section that is the section of summary of the research

studies which are related to the project.

2.1 Fundamentals

This section is to provide the basic knowledge of the project including third-party

vulnerabilities, an overview of third-party vulnerability and detection techniques.

2.1.1 Dependencies Vulnerabilities

Third-party libraries have played an important role in contemporary software de-
velopment. Developers highly rely on third-party libraries to provide a specific function-
ality in their application, especially in JavaScript ecosystem [4]. Node Package Manager
(npm) which is a package manager for the JavaScript Programming language is initially
released in 2014. In January 2017, snyk.io reported that 250,000 packages were avail-
able in npm registry [3]. The number of libraries reached 1 millionth package milestone
in June 4th 2019 which is almost 3 times more than it was in 2017 [3]. npm becomes
one of the largest registries of Open Source projects which support easy share packages
modules of code for JavaScript developers. Libraries are intended to reduce resources,
time, and redundancy by exploit existing quality implementations.

As software development have grown larger and more complex, the number of
third-party dependencies have grown significantly. Several libraries are in constant evo-
lution. One of growing concerns for the software developer is third-party dependencies

vulnerabilities. New versions are released to fix defects, patch vulnerabilities and en-

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 6

hance features. When a security vulnerability due to the source code of the dependency
1s found, a fix is released, and developers are responsible to update their project’s depen-

dencies [11].
2.1.2 Overview of Dependencies Vulnerability Analysis Tools

Vulnerability detection tools on GitHub currently can report only at the current
project’s level itself.

Dependabot is a GitHub application that facilitates in updating dependency au-
tomatically. Currently, Dependabot has created more than 7 millions pull requests to
help users in updating dependency up-to-date (7,312,824). Dependabot works in three
ways. Firstly, Dependabot checks for dependency updates every day. Dependabot pull
downs user’s dependency files and looks for any updated or insecure requirements. Sec-
ondly, Dependabot is able to open pull requests for users’ repository. If there is any
user’s dependencies that are out-of-date, Dependabot opens an individual pull request
to update each one of the dependencies. Lastly, user can review and merge the process.
After Dependabot made a pull request, users can check whether the tests pass, scan the
included changelog and release notes, and merge the pull request or skip the new version.

The Figure 2.1, 2.2, and 2.3 below show examples of Dependabot reports.

/A angular-expressions (low severity)
B 10 days ago by GitHub &Y yarn.lock %) #3

Figure 2.1: Dependabot alert's example

Snyk is a developer security solution that allows companies to use open source
code and stay safe and secure. Snyk is the only solution that can transparently and proac-
tively discover and fix vulnerabilities and license violations in open source dependen-
cies and Docker images. Snyk is not totally free security solution. There are a different
between user roles that are using snyk. Free accounts and starter plans have only admin-

istrators, while other paid plans allow adding employees as collaborators. Contributors

O 11 Bump angular-expressions from 1.1.1 to 1.1.2
#3 opened 10 days ago by dependabot bot

Figure 2.2: Dependabot pull request's example

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /7

Bump angular-expressions from 1.1.1t0 1.1.2 #3 Bt Gpenwith -

]‘),qun dependabot wants to merge 1 commit into main from dependabot/npm_and_yarn/angular-expressions-1.1.2 [7)

() This automated pull request fixes a security vulnerability ((low severity)
Only users with access to Dependabot alerts can see this message. Learn more about Dependabot security updates, opt out, or give us feedback.

Conversation 0 Commits 1 Checks 0 Files changed 2 +5 -5 EEEE

Changes from all commits + File filter... v Jumpto..~ %~ 0/2files viewed (i) [EEEVRWFTERLETIGS

v 2 Em package.json [o 0 O viewed ==+

. @@ -1,6 +1,6 @@
{
"dependencies": {

“angular-expressions”: “1.1.1",

+ “"angular-expressions": "1.1.2",
“karma-mocha": "1.3.0",
"netmask": "2.0.0",
"uid-safe": "1.1.0"

Figure 2.3: Dependabot Change Recommendation example

can view and contribute to the project, but cannot access billing information or invite
team members. Snyk detects project vulnerabilities by scanning user projects, testing
vulnerabilities, and importing project snapshots. Snyk regularly scans image snapshot
dependencies based on user configurations (daily or weekly) and updates users when
new security vulnerabilities (email or Slack) are discovered. Snyk reports are only avail-
able to subscribers. The report area provides data and analysis for all user projects and
displays historical data and summary data about projects, issues, dependencies, and li-
censes.

npm-audit is the audit command that asking for report of vulnerabilities that are
found in the client’s project. If there are vulnerabilities are found, npm will provide the
impact and remediation information. The security vulnerabilities that npm audit uses
can be found in https://www.npmjs.com/advisories. In the user’s npm project, users can
view the report by typing npm audit in the command.

The information provided by npm audit is shown in the Figure 2.4. They can be

described as follow:
1. npm install uid-safe@2.1.5: is the command line to fix this vulnerability

2. Severity: High is the level of severity. Level of severity is divided into Critical,

High, Moderate, and Low

3. Description: Out-of-bounds Read is the description of the vulnerability

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 8

npm install uid-safe@2.1.5 ROEEEIIRTINERITANT bR NARY
SEMVER WARNING: Recommended action 1s a potentially breaking change

- High | Out-of-bounds Read

' Package | base64-url

' Dependency of ' uid-safe

' Path ' uid-safe > baseB4-url

: More info : https://npmjs.com/advisories/660

Figure 2.4: npm audit report example

4. Package: base64-url is the name of package that has vulnerability

5. Dependency of: uid-safe is the package that depends on vulnerable package

6. Path: uid-safe > base64-url is the path to code that have vulnerability

7. More info: it is a link that leads to security report.

2.2 Tools and Techniques

This section explains several tools and techniques which are applied into the

project.
2.2.1 GitHub

Git is a version control system that keeps track of the changes of files in the
repositories. GitHub is the largest code archive based on Git in the development com-
munity. GitHub hosts over 190 million repositories, including at least 28 million public
repositories, and has over 40 million users, making GitHub, the largest host of source
code in the world [5]. Repositories can be configured to be private or public, and they
can be shared with other developers. Hence, it is one of the practical tools for group or

organization work.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/9

2.2.2 Node.js

Node.js is an open-source server-side runtime environment using JavaScript lan-
guage. Node.js is primarily used to create a web-server. Conventionally, in web devel-
opment, JavaScript is a client-side language. Hence, it has to use another language such
as PHP, Ruby, C#, Python, to develop server-side. Node.js is developed by the commu-
nity, and Ryan Dahl-the initiator of the project. Node.js is built on Google Chrome’s
JavaScript V8 engine. It is created for building fast and scalable network applications.
Moreover, it accepts JSON, which is a standard format for exchanging data between a

browser and a server [12].

2.2.3 MongoDB

MongoDB is an open-source document database. It is a non-relational and schema-
less database (i.e., NoSQL), and it stores data as JSON format which mean that numbers
or types of columns are not required before inserting the data. The data is stored as a
pair of key and value, which is called a document, and many documents in MongoDB
are stored as a collection. Since MongoDB is flexible and scalable, several well-known

companies are using MongoDB, such as Adobe, Google, and ebay [13].

2.2.4 D3.js library

D3.js, which stands for Data-Driven Documents, is a JavaScript library for vi-
sualizing data in web browsers. D3.js utilizes Scalable Vector Graphics (SVG), HTML
5, Canvas, and Cascading Style Sheets (CSS) standards [14]. In D3, users can create
power visualization as well as adopt interaction techniques with a data-driven approach
to manipulate the Document Object Model (DOM). With D3, users can design an ap-
propriate visual interface, which is suitable for the data. In this proposal, the Directional
Force Layout Diagram [15] is adopted to exhibit the relationship among the chain of
dependencies. In the graph as Fig 2.5, the direction of the connections is critical — the
node that has arrow pointed to means that other nodes are dependent on this particular

node. From the figure, if Mikey is removed, Elric and Henry will be affected.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 10

Boby

. Frank

/——> . F/Jame\
‘ Roger
Sonny

Figure 2.5: Directional Force Layout Diagram

2.2.5 GraphQL

GraphQL is a data query language developed by Facebook since 2012. GitHub
provides GraphQL for its API v4 since it offers more flexibility and provides ability to
define the data that user want to fetch more precisely. In term of flexibility, GraphQL
allows user to replace multiple REST requests with a single call to fetch the data using
nested fields. GraphQL provides schema for specifying available data and types of pa-
rameter that user need to send in order to fetch specific data. User can query the schema
for details about the schema (Figure 2.6).

For example, we want to fetch some attributes of securityvulnerabilities: package

name and advisory ghsald of package rpi

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 11

Software Vulnerabilities documented by GitHub
Security Advisories

TYPE

SecurityVulnerabilityConnection!

ARGUMENTS

after: String

Returns the elements in the list that come after the
specified cursor.

before: String

Returns the elements in the list that come before the
specified cursor.

ecosystem: SecurityAdvisoryEcosystem

An ecosystem to filter vulnerabilities by.

first: Int

Returns the first n elements from the list.

last: Int

Returns the last n elements from the list.

Figure 2.6: Example of schema of securityVulnerabilities

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 12

{
securityVulnerabilities(first: 100, ecosystem: NPM, package: "rpi") {
#totalCount
nodes {
package {
name
}
advisory {
ghsald
}
}

The response back will look like this.

"data": {

"securityVulnerabilities": {

"nodes": [
{
"package": {
"name": "

3,
"advisory": {

"ghsald": "GHSA-vf26-7gjf-f£92r"

I.I)ill

2.3 Literature Review

The literature review section is a summary of the researches which are related to

the project.

2.3.1 Lags in library dependencies update

Kula et al.’s empirical research investigates the extent to which developers update
their library dependencies [4]. They conducted an empirical study on library migration,

including 4,600 GitHub software projects and 2,700 library dependencies. The result

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 13

reveals that even though several systems depend utterly on library dependencies, 81.5%
of the studied systems still keep their outdated dependencies. In the case of updating a
vulnerable dependency, the study shows that although developers are affected, they are
not likely to react to a security advisory. From the interview, 69% of the interviewees
declared that they are ignorant of their vulnerable dependencies. Furthermore, library
update is not the priority task for developers since it is considered to be extra workload
and responsibility. This study concludes that updating library dependencies is not typical

for developers despite the heavy dependence on these libraries.

Security vulnerabilities in third-party dependencies become an expanding con-
cern for both affected developers and the entire software ecosystem. Previous studies
show that developers respond to the threat of exposure slowly [4]. Chinthanet et al.
conduct an empirical investigation to identify lags that may occur between the vulner-
able release and its fixing release in order to promote quick adoption and propagation
of a fixing release [8]. In a preliminary study of 131 fixing releases of npm projects
on GitHub, they notice that the fixing release is often bundled with the other 92.86% of
commits unrelated to a fix. Furthermore, they compare the fixing release update with
changes on the client-side fixing release update. They conduct an empirical study of
the adoption and propagation tendencies of 188 fixing releases that impact throughout a
network of 882,222 npm packages. They find that the later library is updated, the more
migration effort is required even if the patch landing was quick. In addition, they find
that factors, including the fixing release landing branch, and the severity of the vulnera-
bility, influences its propagation. This study concludes that there are factors that create
lags in the release adoption propagation of npm vulnerability fixes. The research lays

the groundwork for future research on how to mitigate propagation lags in an ecosystem.

2.3.2 Dependencies Visualization

Utilizing third-party libraries becomes common in software development since it
helps lower development time and cost by reusing the implemented software. Dependen-
cies occur when code are reused from other libraries and/or when a function is called by
other libraries, which, as they increase over time, become strenuous to manage and avoid

compatibility issues or bugs. When newer versions release, new features, fix releases,

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 14

and quality improvements are introduced. However, it is challenging for large software
with many dependencies to decide whether to update a new version of the library or not
due to the library’s potential incompatibility with the existing source code. Hence, re-
searchers have invented visualizations, i.e., VerXCombo and SoLL Mantra, to assist the
system maintainers in the decision-making process by providing more information about
each opportunity update’s complexity.

Yano et al.’s research [9] found that it would be tough for maintainers to decide
whether to update or introduce new third-party libraries into the system since there is
a vast range of Open Source System (OSS) libraries. For instance, system maintainers
need to consider how this new library will best fit the existing dependency environment.
Incompatibility between internal library dependencies may cause complicate adoption.
Therefore, system maintainers especially need adequate assurance of any candidate li-
brary release. To assist system maintainers in determining the best-fit combination of
libraries, they proposed VerXCombo (Version X Combination). VerXCombo platform
can assist system maintainers by mining popular library dependency patterns of similar
systems. Through data interactions, VerXCombo leverages parallel sets to break-down
large and complex datasets into distinguishable patterns of 1) popular and 2) latest li-
brary dependency release combinations as shown in Figure 2.7 . VerXCombo is a web-
application that was built by HTMLS5 and JavaScript for the front-end and Apache Tom-
cat and a Neo4;j5 graph database for the server backend. In this research, the researchers
populated the VerXCombo database with systems that depend on java libraries that are
managed and hosted on the Maven 2 Super Repository. They analyzed library depen-
dency information from 4,367 projects hosted on GitHub. They used an extension of the
Pomwalker tool to extract system and library dependencies from respective pom.xml
files.

Most developers may care about untested and early bugs or new releases; still,
many other factors such as the compiler, development environment, and programming
language influence a system maintainer’s decision to update a library. In this work,
the researchers specifically target existing system dependency libraries to reduce library
incompatibility issues. The future work of this research is gathering feedbacks and im-

plements to use in real-world system maintainers.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 15

Version and Popularity
Library Bar Library Version

sorting
1 / devisions

Library C <<version <<popularity

3.0 1.0 2.0
-
c
(]
€
(]
(o)}
c " : .
% |1.Io rary B <<version <<popularity 26
()
=
©
)
‘
()
>

v Library A <<version <<popularit:
2.0 v el 4 1.0
Combination Links between
library bars. Thickness
indicates popularity

Horizontal rearrangement

Figure 2.7: VerXCombo - Parallel Sets Visualization

Todorov et al. [2] presents an opportunity update of libraries that visualization
by using coexistence logic as shown in Figure 2.8 . They address the issue with updating
libraries and propose the peculiar software library mantra tool to demonstrate which
libraries are up-to-date or should be updated. In their concepts, they select the layout of
the solar system metaphor for visualization. This visualization system includes system,
library, and coexistence, which means the relationship between two libraries where they

use a similar library or system.

To illustrate their visualization of the software library mantra tool, the core is
represented as a system that comes with planets used by the software system. Every
planet has an outdated flag by using color to show the library is obsolete or up-to-date.
For example, the jQuery library is red, which means it an outdated library, but if the
jQuery library is green, which means it an up-to-date library. Moreover, some planet

have their own moons to represent coexisting libraries.

Figure 2.9 shows the visualization of React. React system overview with a total

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 16

Figure 2.8: Coexistence Logic

of 5 dependencies, represented by the 5 planets orbiting the core. Two of them are green
colored (up-to-date) which is prop-types and create-react-class, and 3 are red (outdated)
which is loose-envify, object-assign, and fbjs. To look inside of Loose-envify can see
that it has 100% coexistence with prop-types and object-assign. Furthermore, fbjs has
3 coexisting packages - 95.7% cc with prop-types and object-assign, and 23.16% with

loose-envify.

prop-types 100 %
Ioose-.envify
Ioc7> nvify

o
prop-types
object-assign 100 %

object=assign

= 9
create-react-class prop-typgs 95.7 %

fBys
fD)s obbject-assign 95.7 %
loose-envify 3\46 %

Figure 2.9: React Overview of Sol Mantra [2]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 17

2.3.3 Dataset for Visualizing Node.js Dependency Ecosystem in GitHub

Chinthanet et al. [8] presented an open dataset, GH-node.js, which includes data
from the official npm registry and JavaScript applications hosted on GitHub. The snap-
shots of git repositories exhibits the dependencies between npm packages and their ap-
plications on GitHub. To complement the git repositories, the researchers also added
meta-data, including vulnerability information and other developers activities such as
issues and pull requests.

The structure of a typical Node.js Package includes nine files.

1. package.json: This file is the configuration of the document, and it also contains
meta-data relevant to the project, including project dependencies, scripts, and ver-

sion information.
2. node modules: All third-party dependencies are stored in node modules.
3. Authors.md: It contains individuals contributors information.
4. Changelog.md: All changes after each release of the package are kept in this file.

5. Code of Conduct.md: This file contains the guidelines when contributors report

issues.
6. Contribuing.md: This is a guideline of how others may contribute to the package.
7. Source code
8. License.md

9. Readme.md: This file contains the purpose of the package usage, installation in-

structions, and all related information.

The meta-data structure includes data from GitHub API and vulnerability infor-

mation from GitHub. The structure consists of seven files.
1. Repositories: storage location for software packages

2. Repositories Info: Basic information of a git repository

V. Jarukitpipat, W. Wanprasert, and K.Chhun Background / 18

3. Dependencies History: This file stores version and related information of de-
pendencies which change over time for the package based on Software Universe

Graph

4. Issues: Information which keep track of tasks, enhancement, and bugs of project

retrieved from GitHub API
5. Pull requests: Changes pushed by contributor to a branch in a repository on GitHub
6. Contributors: Information about contributor collected from GitHub API

7. Security Advisories: Information is retrieved from the GitHub Security Advisory

database

2.4 Chapter Summary

This chapter explains the fundamental knowledge of this project, including third-
party vulnerabilities and detection tools. In addition, existing vulnerability analysis tools,
which are Dependabot, Snyk, and npm-audit, are described. Lastly, related research
studies about lags in dependencies update, existing dependencies visualizations are pre-
sented in this chapter. The studies show that most developers are unaware of vulner-
abilities in the project due to the indirect adoption of dependency in the chain of de-
pendencies. The existing visualization tools only detect vulnerabilities from a particular
project’s direct dependencies. A gap of studying the whole npm ecosystem’s dependency
adoption and vulnerabilities infection still remains. Besides, potential vulnerability risks
due to a chain of dependencies that a project might encounter are unidentified. Lastly,

the spreading of npm vulnerabilities have not been presented in time series.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 19

CHAPTER 3
ANALYSIS AND DESIGN

Analysis and Design chapter discusses the key concepts used in the project, and
illustrates the system design of the project from the overview to the detailed steps in each

process.

3.1 Achilles: A tool for npm ecosystem visualization and vulnerability detection

In order to tackle the define problem statements and to fulfill the objectives of the
project. We propose an automated tool, called “Achilles”, that can visualize npm ecosys-
tem to vividly show the relationships, i.e., dependencies, among the npm packages and
the existing vulnerabilities. The Achilles system aims to raise the developer’s awareness
about the potential vulnerability that the project might have when 1) the adopted package
is vulnerable or 2) the adopted package adopts a vulnerable package. In this project, we
call this situation of indirect adoption of dependencies as “a chain of dependencies”. A
chain of dependencies can be of any length. For example, the study by Chinthanet et
al. [8] shows that there can be more than 4 level of this chain of dependencies in npm
packages.

Our work is inspired by Kula et al.[4]’s study. They conducted a developer survey
to investigate to what extent are developers updated their library dependencies, and the
result showed that 11 out of 16, which is 69% are unaware of the vulnerability in their
software potentially because of the indirect adoption of a vulnerable library via other
libraries, i.e., chains of dependencies.

Figure 3.1 shows the concept of the proposed npm ecosystem graph visualization.
Each node can represent both package and client (explained next). The starting nodes
of the paths are the npm package in the npm registry (P1, P2, P3). Other npm packages
or projects that use that package in the first level are called clients (C). The study from
Chinthanet et al.[8] shows that the chain of dependency occurs when one package or

project adopts another package, as shown in the figure 3.1 where C2 adopts package

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 20

Potentially
Vulnerable

C99

c12 c101

Figure 3.1: Proposed npm Ecosystem Network Visualization

P1 and C7 utilize package in C2. From this example, a chain of dependency includes
P1-C2-C7-C100. If P1 is found to be vulnerable (highlighted in red in the Figure), all
the packages in the chain are “potentially” vulnerable. The other vulnerable chain of
dependencies include P1-C1-C99, P1-C4 and P3—C4. On the other hand, the chains of
P2-C3—C5 and P2-C3—-C8-C12-C101 are clean. Our tool aims to detect this chain of
dependencies and reports to the developers if their project lies in any vulnerable chains.
For example, if the developers projects include C99, C100, and C101. Achilles will
detect that C99 and C100 are potentially vulnerable and need to be carefully checked
or fixed by replacing the vulnerable package with other similar packages. On the other

hand, C101 does not need any fix.

3.2 System Architecture Overview

For the front-end, we use the React library for the interface. After user login
with GitHub, we use Node.js to query the user’s list of repositories. After users select
package.json to analyze, we query vulnerability information using GraphQL and retrieve
chain of dependencies from npm registry. Then, we use the D3 library to create a visu-

alization graph, and we keep the history of the report in MongoDB Atlas.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /21

The Achilles system composes of three main parts.

Firstly, Achilles analyzes the relationships between the project and their pack-
ages using the data from npm’s package.json file, which the tool gets the first level of
dependencies. Then, Achilles uses the list of first-level dependencies to send requests to
the npm registry to retrieve other levels of dependencies using GraphQL. The chain of
dependencies information is used to create a graph using D3.js to exhibit the relationship
between packages and projects.

Secondly, the analysis showing the potential of vulnerability is performed by
identifying the chain that the package is part of and determine whether any node in the
chain of dependency is vulnerable. If one of the nodes in the chain has a vulnerability,
the packages in that chain are also potentially vulnerable.

Lastly, the Achilles system creates a report of the project risks of vulnerabilities
based on the package’s location in the graph to raise the developer’s awareness of the

project’s security issues from third-party dependencies, as shown in Figure 3.3.

Selected Project

ulnerability Report (HTML/PDF)

. GitHub Login Credential .
m Registry » Histor

Dependency
Package Package Graph
Name Dependency
B GitHub Authentication Request
GitHub Authentication Code
Request for GHSA Data @ 5

Returned GHSA Data GraphaL D3 React Front-end

T User Repositories Request

User Repositories n \'@d e 5\/ Back-end
S

mongo

Figure 3.2: System Architecture

In Achilles software system architecture (Figure 3.2), we chose MongoDB Atlas
database to store user and report information. We decided to choose this database because
the data structure of the report that we need to store in database has various form of data
such as vulnerable chaining node and vulnerability information that we get from GitHub
Security Advisory which is returning JSON format. Moreover, MongoDB Atlas can

store the data that is similar to the objects in the applications which benefits in reducing

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 22

time in the need of translating the form of data that is stored in the database and the the
form of data that is used in the code.

Users can interact with the Achilles software to see the visualization of the depen-
dency graph via the website, which we developed using React, a front-end framework
for developing a website, and D3.js library, which is used to create the visualization.
Public GitHub repositories can be retrieved without any authorization. However, users
are required to sign in with GitHub in order to allow our system to access their private
repositories.

The Achilles software is developed using node.js to query data from MongoDB,
get the users’ authentication from GitHub, retrieve users’ repositories information, and

retrieve the package.json file.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /23

Username
Repository
Summary
Dependency Type Update Severity
netmask direct (<200)—(201)
base64-url indirect (<209 (200
Total of vulnerable direct sependency: 1
Total of vulnerable indirect sependency: 1
e A
Vuluneribirity L High-Low
Potentially Vulnerable: base64-url
Severity High
Curent Usage Version: 1.2.1
Vulnerable Version: <2.0.0
Patch Version: 2.0.0
Vulnerability Chaining: Q { —— ‘
Project uid-safe base64-url
@1.0.0 @1.2.1
Vulnerabilities and Advisory link: GHSA-00-00
Dependency to be updated: uid-safe
Update uid-safe to latest version: 1.1.0->215
Potentially Vulnerable: netmask
Severity High
Curent Usage Version: 2.0.0
Vulnerable Version: <2.0.1
Patch Version: 2.0.1
Vulnerability Chaining: O 5 .
Project netmask
@2.0.0
Vulnerabilities and Advisory link: GHSA-00-00
Dependency to be updated: netmask
Update netmask to latest version: 2.0.0->2.0.1

Figure 3.3: A mock-up of the Achilles vulnerabilities analysis report

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 24

3.3 Use Case Analysis

In the use case diagram (Figure 3.4), Achilles interacts with an external actor
(User) and two entities (GitHub and npm registry). There are seven use cases.

First, the user has to log in with GitHub to allow the Achilles System to access
the user’s private and public repositories. GitHub is the secondary actor which authenti-
cates user credential and permission. Then, GitHub returns the lists of all user’s reposi-
tories (both public and private repositories) for the user to see on a web page. After that,
the user can select only one repository. In case there are multiple package.json files in
that repository, the user must choose one package.json, and Achilles System will use
that package.json as the system’s input. The user can see the dependency graph and
see the vulnerable node in the graph. Besides, the user can see the tooltip for more
information about the package and the vulnerabilities. The user can also create a vul-
nerability report in which the user can sort the vulnerabilities by severity according
to their preferences. Furthermore, the user can download the vulnerability report in

PDF format. Finally, the user can see the report history.

Faculty of ICT, Mahidol Univ.

User

Achilles System

B.Sc. (ICT) /25

Login with
GitHub

See list of
GitHub
repositories

Select one
repository

Select
package.json

See the
dependency
graph

See the report
history

Create the
vulnerability
report

Sort vulnerability
by severity

Download the

See the tooltip

vulnerability
report

Figure 3.4: Use case Diagram

GitHub

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 26

3.4 Structure Chart

Seven modules in the Achilles system are presented in the structure chart (Figure
3.5). These seven modules include Login with GitHub, See the GitHub repositories list,
Select one repository, Select package.json, See the visualization, Create the report and
See the report history. The first, fifth, and sixth modules also have submodules.

The first module, Log in with GitHub, includes two submodules:

1. Request GitHub identity: This submodule is for requesting a GitHub credential

to authenticate the user.

2. Authenticate via GitHub: This submodule is for authenticating the credentials

via GitHub and grant access permission to the public and private repositories.

3. Grant access permission to repositories: This submodule is for granting user’s

permission to access both public and private repositories.

The second module is See list of GitHub repositories. This module is for show-
ing the list of private and public of the user’ repositories and repositories that user is a
contributor.

The third module is Select one repository. This module is for the user to select
one repository which has package.json file with dependencies to analyze. In a case that
the selected repository has no package.json file, Achilles will warn the user that the the

project cannot be analyzed.

Achilles
Automated tool for detecting and
visualizing npm dependency
vulnerabilities

1.Login with 2.See list of 3.Select one 5. See the 6.Create the 7. See the
& GitHub . . 4. Select package.json dependency vulnerability N "
GitHub repositories repository graph report report history

1.1 Request 5.1 See the 6.1 Download the
GitHub identity vulnerable node vulnerability report

) 6.2 Sort
— "va;“gfmzm 5.2 See the tooltip vuinerability by
severity

1.3 Grant access
— to user's
repositories

Figure 3.5: Structure Chart

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /27

The forth module is Select package.json file. In a case that the selected reposi-
tory has multiple package.json files, Achilles will list all the files for the user to choose
only one.

The fifth module, See the visualization , are composed of two submodules:

1. See the vulnerable node: This submodule is for differentiating the vulnerable

node from others by changing the vulnerable node to red.

2. See the tooltip: This submodule is for presenting package and vulnerable infor-

mation for users.
The sixth module, Create the report, are composed of two submodules:

1. Download vulnerable report: This submodule is for providing the downloadable

PDF version of the vulnerability report.

2. Sort vulnerability by severity: This submodule is for providing level of severity

sorting according to users’ preferences.

The seventh module is See the report history. The module is for retrieving
user information and vulnerability information from internal storage which is MongoDB

Atlas to show the history of the vulnerability report which user can revisit.

3.5 System Analysis

System Analysis of the project is represented by data flow diagram level 0 and

level 1
3.5.1 Data Flow Diagram Level 0 (Context Diagram)

This figure 3.6 the data flow between the user, Achilles system, GitHub, and npm
registry. First, users have to authenticate using GitHub oath in our system. The system
requires a GitHub user id and password from users and passes it to GitHub. After authen-
ticating with GitHub, a list of the user’s repositories is sent to Achilles to be displayed
to the user. Users can then choose the repository that they would like to analyze, and
the selected repository name is sent to Achilles, and Achilles will return the list of pack-

age.json files in the same project (in case that the project has multiple package.json files)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 28

Repository Name GitHub's ID, Password
GitHub's 1D, Password 'L List of User's Repository
List of User's Repasitory
v _] / package.json Path URI N v
Selected package.json File N »|
User _ Listof package json Files ’[\ Achilles L package.json Content GitHub
" t T Dependency Graph \ t
Report History W\F—m Package Name
Vulnerability Report Vulnerability Information
Packagoam | | Pa5ase oo
¥

npm

Figure 3.6: Data Flow Diagram Level 0 (Context Diagram)

to the user to choose. Once the user selects a package.json file, the file content will be re-
trieved from GitHub. The content of that package.json will be used by Achilles to create
the graph visualization. Achilles then send the package name to GitHub to request for
vulnerability information, and that information will be sent back to Achilles to identify
the vulnerable node. Achilles will then find the chain of other packages by sending the
package name to the npm registry, which will return the package’s chain of dependen-
cies to Achilles to add indirect dependencies to the visualization. A dependency graph
will be shown to the user, and the user can create the vulnerability report. The reports’

history will be kept by Achilles for a user to revisit.

3.5.2 Data Flow Diagram Level 1

Analysis Report

Node Name

User

npm ecosystem map

Y

Repository ID

List of User's Repository

pIOMSSEd 'Ql

D,

List of User's 5.See the Chain of

; ;
Password (2 Seelistor | Reposito 4Clone |USer's repository & "ron ™ 1\ Dependency Patn g
repositories repository repository ecosystem rep‘:;rt

map

>
»

‘al

plomssed
foysoday

5,488 4O 18I
sauo)sodey

Data from

UOHELLIOU|
foysoday pue Areiqry

GitHub Repository ID “— Chinthanet etal. ——
2020

A

User's repository

Figure 3.7: Data-flow diagram Level 1

"ATU[) [OPIYRIN LT JO AInoey

62/ (1DD 08’9

V. Jarukitpipat, W. Wanprasert, and K.Chhun Analysis and Design / 30

Data Flow Diagram Level 1 (Figure 3.7) shows all the data flow within our sys-
tem. It consists of seven subprocesses: login, See a list of repositories, Select one repos-
itory, Select package.json file, See the dependency graph, See the vulnerability report,
and See the report history already been shown in the context diagram. However, there
is an internal data store for keeping user data from login (subprocess 1). The user can
see the list of repositories and select the package.json to analyze. Achilles will check for
vulnerabilities and retrieve the chain of dependencies to create the graph visualization.
Users can create the vulnerability report (subprocess 6), which will also be stored in the

internal data store and retrieve for the report history in subprocess 7.

3.6 Comparison to Related Work

The Table 3.1 below compares the functionalities of the three tools and techniques

for dependency vulnerability detection.

As discussed in the Literature Review, several existing vulnerability detection
techniques are available, including Dependabot, Synk.io, and npm audit. Dependabot is
available to be used automatically on GitHub. It only needs to the developer to enable its
execution. It can check for vulnerable dependencies in the project repository automati-
cally, and it will generate the pull request to keep the dependencies up to date. Snyk.io is
an open-source security management. It can automatically find, prioritize, and fix vul-
nerabilities in the developers open source repositories. npm audit is the command line
that is provided by npm. npm audit provides the summary of vulnerabilities with differ-
ent severity, suggests an updating package version to a patch version, and gives a short
vulnerability information as table. Even though they are capable of report each individ-
ual dependency vulnerability in the project, they cannot determine potential risks that the
project might be exposed to due to the complexity of indirect adoption of dependency

nor show the chain of the dependency.

After developers are aware of vulnerabilities, they have to make a decision whether
to update the newer version, which might expose the risk of breakage. Visualization is
one of the tools which help the developers to make the decision on the opportunity up-
date. The existing visualization includes VerXCombo and SoLL Mantra These visualiza-

tions display the relationship for only one particular project but do not consider the whole

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /31

Table 3.1: Comparison of Dependencies Vulnerability Detection Technique and Tools

Dependabot | Snyk | npm-audit
Web service ® ®
Command line service
Find direct dependency
Find indirect denpendency

® ®
Recommend patch version or ® ®
® ®

Receive update Pull Request
Recommend breaking change
Update dependencies

npm ecosystem. The risks of vulnerability can be exposed due to the indirect adoption
of libraries in the chain of dependencies.

The Achilles system can provide the full complement to these tools and visu-
alizations. The system will visualize the dependency graph from the package.json file
and analyze the potential risk of a given npm project according to direct and indirect

dependencies that users used in the project.

3.7 Project Timeline, Current Progress, and Future Work

3.7.1 Project Timeline

21
22
23
24
25

31
3.2
3.3
3.4
3.5
3.6

4.1
4.2
43
44
45
4.6
47
438
4.9
4.10
4.11

Task

Project Selection
Research Study
Do developers update their library dependencies?

Lags in Release Adoption Propagation npm vulnerability fixes
VerXCombo: An interactive data visualization of popular library version combinations
SOL Mantra: Visualizing Update Opportunities Based on Library Coexistence
Node.js Dependency Ecosystem in GitHub: Social, Technical, and Documentation Aspects
Documentation
Chapter1
Chapter2
Chapter3
Chapter4
Chapter5
Chapter6
Implementation
Create Visualization Demo
Research more on user friendly visualizations
Visualize vulnerable dependencies in the first level
Request for the chain of dependencies from npmjs.org
Compare the second level of dependencies to CVE
Analyze the potential vulnerability
Design an Interface
Develop web interface for user to select repository
Input user repository’s dependencies in the graph
Identify user repository's potential in the graph
Create time series to see the spreading of vulnerability overtime

2020

2021

October |November| December

January | February |

June | July | August | |
1[2[a[4| 1]2] s[a] o] 1] 2[o[a] 1] 2 5[]] 1]

Figure 3.8: Project Timeline

2[3] 4] 5 1] 2] 3] 4] 1] 2[3] 4] 5

IEEEEEER

March | April | May ‘
IEEEERBEERBER

unyy)y pue uaserduepy A\ redidiynrer ‘A

7€ / uS1s9(pue SIsA[euy

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /33

3.8 Chapter Summary

This chapter explains the Achilles system’s analysis and design, including an in-
troduction of Achilles, system architecture, a mock-up of vulnerabilities analysis report,
use case diagram, structure chart, level 0 and level 1 of data flow diagram, a compari-
son to related work. Achilles’s six main components, including a database for the npm
ecosystem, a visualization of vulnerable npm ecosystem graph, a web interface for users
to select a repository to analyze potential vulnerable risks from a chain of dependen-
cies, lastly, an analysis report about the project’s vulnerable risks. Lastly, a Gantt chart
exhibiting the project’s time line, current work, and future work are presented in this

chapter.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 34

CHAPTER 4
IMPLEMENTATION

In this section, the implementation are divided into 4 parts which are retreiv-
ing user’s repositories and storing selected repository, visualization, create report, and

semver-exising-max

4.1 Retrieve User’s Repositories

In order to create the dependency graph visualization, we need to have pack-
age.json file of the user’s repository. Thus, first and foremost, we require the user to
give us a permission to get their GitHub repositories. After the permission is granted
via GitHub OAuth, the list of the user’s repositories will be shown to the user. When
the user selects a repository to analyze, there will be a warning if the repository is not
an npm project. However, if the the repository has multiple package.json files, Achilles

will ask the user to select a package.json file that they want to check for vulnerability.

4.1.1 Get the User’s GitHub Repositories

In order to get the user’s GitHub repositories, we need to have the GitHub’s user
access token from GitHub OAuth. The user access token will be provided when the user
logins to Achilles with their GitHub account.

There are two steps to get the user access token.

1. Request a user’s GitHub identity which is performed in the front-end

stack (React)

GET https://github.com/login/oauth/authorize

We use this URL with the parameters to get the exchange code for getting access

token. The parameters that we use are as follows the table 4.1.

2. Users are redirected back to the pre-configured site by GitHub which is
performed in the back-end stack (NodeJS)

Faculty of ICT, Mahidol Univ.

Table 4.1: Parameter

B.Sc. (ICT) /35

Name Type | Description

client id String | The client ID is received from GitHub OAuth application.
redirect uri | String | The URL that will be redirected to after user's authorization.
scope String | The scope is a limitation of requesting users's repo scope.

Table 4.2: Parameter

Name Type | Description

client id String | The client ID is received from GitHub OAuth application.
client secret | String | The client secret is received from GitHub OAuth application.
code String | The code you received as a response to Step 1.

POST https://github.com/login/oauth/access_token

After getting the exchange code, we need to use the following API to get the

user access token. We use this URL with the parameters to get the access token. The

parameters that we use are as follows the table 4.2.

The default response that we get from Github is

access_token=<token>&token_type=bearer

After getting access token, we will use the below URL to get the user repositories.

The GitHub access token is required to use in the header request with the authorization

parameter on the table 4.3. Otherwise, users’ repositories are not fetchable with the given

URL.

GET https://api.github.com/user/repos

Table 4.3: Parameter

Name Type | In Description

accept string | header Setting to application/vnd.github.v3+json
is recommended.

authorization | String | header | Setting to access token that we received

per_page integer | query | Result per page (max 100)

page integer | query | Page number of the results to fetch.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 36

Code example by using axios:

const GITHUB_ACCESS_TOKEN = 'e72e16c7e42£292c6912e7710c838347ael78b4";

axios.get(
'https://api.github.com/user/repos?per_page=100&page=1",
{
headers: {
Authorization: “token ${GITHUB_ACCESS_TOKEN}",
Accept: "application/vnd.github.v3+json",
},
}
)3

4.1.2 Filter for npm Projects

When the user select one of these repositories, Achilles uses the API below to
check whether this repository is an npm project. This API is searching for the given
repository name by checking if the repository has package.json file name and in the

package.json file has ”dependencies” word.

const user = "username'";

const repoName = "repository name";

GET “https://api.github.com/search/code?q=user:${user}+

dependencies+repo: ${user}/${repoName}+filename:package. json"

Code example by using axios:

const user = "username";

const repoName = "repository name";

axios.get(
“https://api.github.com/search/code?q=user:${user}+

— dependencies+repo:${user}/${repoName}+filename:package. json",

headers: {
Authorization: 'token

— e72e16c7e42£292c6912e7710c838347ael78b4 ",

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /37

After verifying that the selected repository is npm project, Achilles will ask users
to choose a package.json file if the repository has multiple package.json files. Otherwise,

Achilles will use the default path to query the package.json content from GitHub.

API to get package.json content

const user = "username'";
const repoName = "repository name";

const path = "package.json path";

GET “https://api.github.com/repos/${user}/${repoName}/contents/${path}"

Code example by using axios:

const user = "username";
const repoName = "repository name";

const path = "package.json path";

axios.get(
“https://api.github.com/repos/${user}/${repoName}/contents/${pathl} ",
{
headers: {
Authorization: 'token e72e16c7e42£292c6912e7710c838347ael78b4 ",
Accept: "application/vnd.github.VERSION.raw",
1,
}
)3

4.1.3 Storing the Selected Repository

Lastly, before going to visualize the dependency graph, Achilles temporary stores
package.json content in localStorage, which is provided by the web application for stor-
ing client-side data. The localStorage allows a web application to store persistent data
and saves the data as key-value pairs in a web browser with no expiration date. However,
localStorage does not allow storing data in json format so that we use JSON.stringify()

function to convert package.json content to string format.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 38

Code example:

const packageJsonContent = {

"dependencies": {
Hdeplll: Ilvlll

localStorage.setItem('packageJsonContent', JSON.stringify(packageJsonContent));

4.2 Visualizations

The graph visualization composes of three main components which are node,
ege and tooltip. To create the force-directed graph which it used to show the relationship

between the packages, we utilize the D3.js library.

4.2.1 Generating Nodes and Edges

For generating nodes and edges in the graph, there are 7 main steps for prepar-
ing data and creating the visualization which includes setup D3 and arrow head, setup
force simulation, retrieving dependencies from package.json, animating the visualiza-
tion, checking for the vulnerability and fetching chain of dependencies.

We define the mock data which will be used for the project node and create an
empty array for the link data. For the node, D3 only requires id property. Other properties

are added according to our utilization.

const mockNodesData: INode[] = [
{
id: 'PROJECT',
name: 'PROJECT',
type: NODE_TYPE.ROOT,
status: NODE_STATUS.CLEAN,
version: '',
dependenceiesAmount: O,
level: O,
},
1;

const mockLinksData: ILink[] = [];

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /39

1. Setup D3 and arrow head

The first step is to setup D3 for the chart component and set the node and link

data.

function setupD3() {
ref.current = d3
.select (svgRef.current)
.attr('viewBox', “${[-width / 2, -height / 2, width, height]}")
.style('font', '12px sans-serif');

ref.current.call(
zoom.current.on('zoom', (event: any) => {
ref.current.select('g') .attr('transform', event.transform) ;
B
);

setNodesData(mockNodesData) ;
setLinksData(mockLinksData) ;

We also need to setup attributes of the arrow head including the reference posi-

tion, the size of the arrow, color, etc.

function setupMarker() {
ref.current

.append('defs')
.append('marker"')
.attr('id', 'arrow-head')
.attr('viewBox', '-4 -4 10 10")
.attr('refX', '-4")
.attr('refY', '0')
.attr('orient', 'auto')
.attr('markerWidth', '10")
.attr('markerHeight', '10')
.attr('xoverflow', 'visible')
.append('svg:path')
.attr('d', 'M 4,-2 L 0 ,0 L 4,2")
cattr('fill', '#EFE');

2. Setup force simulation

When there is a change in nodesData and linksData, we have to setup the force

simulation of the graph. D3 provides .forcesimulation which has its own algorithm that

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 40

will generate position x and y for the node at the certain time.

function setupForceSimulation(_nodes: any, _links: any) {
simulation.current = d3
.forceSimulation(_nodes)
.force('charge', d3.forceManyBody() .strength(-300))
.force(
"link',
d3.forcelink(_links).id((d: any) => d.id)
)
force('x', d3.forceX())
.force('y', d3.forceY());

3. Retrieving dependencies from package.json

Then, we retrieve the direct dependencies data from package.json file and keep
them in the array of depData. In the function animate, each dependency is retrieved
and add to node as the target node and create the link which connected to the PROJECT
node which is the source node. setTimeout() is used to controlled the speed of the adding

process.

async function animate() {
const ADD_NODE_SPEED = 50;
// Gently add node/link
function gentlyAddNodeLink(dependency: any) {
return new Promise((resolve) => {
const node = createNodeData(
dependency.node. id,
dependency.node.version,
dependency.node.level
)3
setTimeout (() => {
addNodeLink (dependency.link.id, node); <--
resolve(null);
}, ADD_NODE_SPEED) ;
s
}
const _depData = depData;
const newDepData = _depData.splice(1);
await gentlyAddNodeLink(_depDatal[0]);
setDepData(newDepData) ;

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /41

4. Animating the visualization
5. Checking for the vulnerability

Next step is to check the vulnerability of the dependencies. We investigate npm
audit, and we found that npm audit use npm security advisory database as the source
of vulnerabilities. However, we decided to choose GitHub security advisory or GHSA
over npm security advisory database because GHSA has a larger number of vulnerabil-
ities in the npm ecosystem than npm security advisory, according to figure 4.1. This is
because the GHSA database already includes npm security advisory database and a few
additional vulnerability resources such as National Vulnerability Database, Security ad-
visories reported on GitHub, and vulnerabilities reports that come from combination of
machine learning and human review on GitHub. Moreover, the GitHub document stated
that “If you created a security advisory in your repository, the security advisory will stay
in your repository. We publish security advisories for any of the ecosystems supported
by the dependency graph to the GitHub Advisory Database on github.com/advisories.
If a security advisory is specifically for npm, we also publish the advisory to the npm
security advisories. For more information, see npmjs.com/advisories.[16]” This means
that some vulnerabilities that are found in the user’s repository will be updated in GHSA
first so that we can get the latest vulnerabilities information from GHSA.

A project can publicize security fixes in several places - CVE feed, mailing lists,
open-source groups, or within its release notes or changelog. Some vulnerabilities might
not be disclosed in the National Vulnerability Database or published in the CVE feed.
GitHub creates machine learning models that scan text associated with public commits
(the commit message and linked issues or pull requests) to detect these vulnerabili-
ties from activity within the GitHub developer community and generate security alerts.
While npm security advisory only depends on the security advisories already published
in the National Vulnerability Database. This results in different numbers of security

advisories in GHSA and npm security advisories. [17]

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 42

GHSA (1,904)

®* National Vulnerability

query Database
_
® A combination of npm security
-——— machine learning & advisory
human review to detect (1,710)

Gra D hQL vulnerabilities

vulnerabilities in public
commits on GitHub

Security advisories
reported on GitHub

GHSA vs npm security advisory database
(Information as of 14/05/2021)

Figure 4.1: GHSA vs npm security advisory database

We loop through each node in the current level and query for the vulnerability

using graphQL api and save them to result.

export async function queryVulnerability(packageName: string) {
const vulnerability = await client.query({
query: gql~
query {
securityVulnerabilities(first: 100, ecosystem: NPM, package:
— "${packageName}") {
#totalCount
nodes {
package {
name
}
firstPatchedVersion {
identifier
}
severity

vulnerableVersionRange

advisory {

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /43

identifiers {
type
value

}

permalink

}

After getting vulnerabilities information, we filter only the related vulnerabilities
by checking whether the node version and vulnerable version is intersected. Then, we
update the node status whether it is vulnerable or not, and change the node color to red

if that node is vulnerable.

export const filterRelatedVulnerabilities = (node: INode, vulnerabilities:
— ISecurityVulnerability[]l) => {
let relatedAdvisories: ISecurityVulnerability[] = []

relatedAdvisories = vulnerabilities.filter((vulnerability) => {
if (node.version !== 'latest') {
const versionRange = vulnerability.vulnerableVersionRange &&

— vulnerability.vulnerableVersionRange.toString() .replace(',', '')

if (semver.intersects(node.version, versionRange)) {
if (vulnerability.firstPatchedVersion) {
if (semver.intersects(node.version,
— vulnerability.firstPatchedVersion.identifier)) return false;
}
return true;

}

return false

b

return relatedAdvisories

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 44

6. Fetching chain of dependencies

Finally, we retrieve the chain of dependencies by sending the name of dependen-
cies via REST API to npm registry. The processes are repeated until the dependencies

reached the forth level.

import axios from 'axios'
const GET_DEPENDENCIES = 'https://registry.npmjs.cf/'
export const getDependencies = async (packageName: string) => {
const result = await axios({
url: GET_DEPENDENCIES + packageName,

b

return result

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 45

4.2.2 Generating Tooltips

The third component of the visualization is the tooltip. We retrieve information

of the node and advisory and show them when the mouse is hover over the node.

function onMouseOverNode(event: any, d: any) {
const svgStyle = svgRef.current!.style;
const topAwayOffet = 10;
const leftAwayOffet = 10;
if (document !== null) {
const tooltipEl = document.querySelector('#tooltip')! as HTMLDivElement;
if (tooltipEl) {
tooltipEl.style.left = “${
event.offsetX - svgStyle.width / 2 + topAwayOffet

Ypx;
tooltipEl.style.top = ~${
event.offsetY - svgStyle.height / 2 + leftAwayOffet
Ipx’;
setTooltipVisibility(true);
}
if (advisoriesDatal[d.id]) {
setTooltipData({
node: d,
advisory: filterRelatedVulnerabilities(d, advisoriesDatald.id]),
s
} else {
setTooltipData({
node: d,
advisory: [],
IOF
}
}

4.3 Create Report

The vulnerability report is created by the user after seeing the dependency graph.
Storing report aims to help users keep track of the vulnerability information in their
project. For example, if the users’ project had vulnerabilities and they had fixed the
vulnerabilities, they can come back to see the report history later in Achilles. Moreover,
storing the vulnerability report intents to help users see the vulnerability information

without visualizing the project again since visualizing the dependency graph might take

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 46

time to complete. The data in the report are stored in MongoDB atlas in JSON format.

When the user click ”Create Report” button, Achilles will collect all the vulner-
ability information that are displayed in the dependency graph including the chain of
dependencies that has vulnerable nodes, package.json path, repository name, username,
patch version of vulnerable nodes, GHSA, CWE, and CVE. The CVE and CWE are the
vulnerability records that are considered standards of information security community.
Both sources are different in term of security practitioners.

The CVE (Common Vulnerabilities and Exposures) is a public resource that re-
ports the information security and exposures. The CVE information can assist develop-
ers to search the attack signatures and identify particular vulnerability exploits. On the
other hand, the CWE stands for Common Weakness Enumeration, which is a formal list
of common software weaknesses. The CWE is the common software weaknesses that
caused by software architecture, design, code, and implementation. In short, CVE is a
problem that developers have to deal with the specific instance in a system while CWE
is a problem that developers have to deal with vulnerability, not the instance within a
system. Nevertheless, CWE information is the information the that we did not get from
visualization part. This is because security vulnerability API in visualization does not
provide CWE information. Thus, Achilles uses another API to request the CWE infor-
mation when creating report. We did not query the CWE information in the visualization

simultaneously since it might affect time usage in creating the dependency graph.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /47

Querying CWE Information

An example code snippet that uses GraphQL to query CWEs information

import { ApolloClient, InMemoryCache, createHttpLink, ApolloLink } from
< '@apollo/client’
import { setContext } from '@apollo/client/link/context'’

const GITHUB_ACCESS_TOKEN = <github access token>

const ENDPOINT: ApolloLink = createHttpLink({
uri: 'https://api.github.com/graphql',
b

const authLink = setContext(() => {
return {
headers: {
authorization: “Bearer ${GITHUB_ACCESS_TOKEN}",
}
}
»
const client = new ApolloClient ({
link: authLink.concat (ENDPOINT),
cache: new InMemoryCache()

b

const ghsald = "gshald from Security Github Advisory";
const queryCwes = async (ghsald: string) => {
const securityAdvisory = await client.query({
query: gql~
query {
securityAdvisory(ghsald: "${ghsaId}") {
cwes(first: 10) {
nodes {
cweld

name

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 48

In CWESs information, we found that there is no link to view more information
for specific CWE so that we decide to attach ”cweld” to the URL in order to link to the
CWE information website.

Example:

const CWE_ID = "cwe id that getting from query"
const CWE_URL_LINK = “https://cwe.mitre.org/data/definitions/${CWE_ID}.html"

4.3.1 Vulnerability Information Data Template

The below is the data template that Achilles uses to store the vulnerability infor-

mation.

interface IReport {
username: string; // user Github name
jsonPath: string; // package.json path
repository_name: string; // repo's visualization name

items: IItem[]; // list of vulnerabilities

interface IItem {
chaining: IChaining[];
cwes: ICWE[];
direct_dependency_name: string;
direct_dependency: {
name: string;
current_version: string;
latest_version: string;
I
package: {
name: string;
};
firstPatchedVersion: {
identifier: string; // version: e.g. 1.9.0
};
vulnerableVersionRange: string; // version rager: e.g. < 1.9.0,
severity: ADVISORY_SERVERITY_LEVEL;
advisory: {
permalink: string;
ghsald?: string;
identifiers?: IAdvisoryIdentifier([];
}
3

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /49

interface IChaining {
source: string;
target: string;

}

interface ICWE {
cweld: string;
name: string;
link: string;

}
type ADVISORY_SERVERITY_LEVEL = 'LOW' | 'MODERATE' | 'HIGH' | 'CRITICAL';

interface IAdvisoryIdentifier {
type: string;
value: string;

}

Storing Vulnerability Report in MongoDB Atlas

After collecting the vulnerability information from dependency graph, we use the

below API to send the vulnerability report to store in MongoDB Atlas.

const HOST_DOMAIN = 'Input your host domain';

POST ~${HOST_DOMAIN}/api/v1/reports’;

A code snippet by using axios to store the vulnerability report is shown below.

const HOST_DOMAIN = 'Input your host domain';

const report = {}; // Input report information by following the report format
— in step 1

const JWT_TOKEN = 'jwt token that created by backend';

axios.post (" ${HOST_DOMAIN}/api/vl/reports’,
{ report },
{
Authorization: “Bearer ${JWT_TOKEN}",
}
)3

The success response from this API will be a report ID that stored in database.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 50

Achilles uses the report ID from the above API to request a specific report in

order to render the vulnerability report in the report web page.

const HOST_DOMAIN = 'Input your host domain';

GET ~${HOST_DOMAIN}/api/v1l/reports/:reportld";

A code snippet by using axios to get the vulnerability report by report ID which

was generated by MongoDB Atlas is shown below.

const HOST_DOMAIN = 'Input your host domain';
const report = {};
const JWT_TOKEN = 'jwt token that created by backend';

const reportld = "report id";

axios.get ("${HOST_DOMAIN}/api/vl/reports${reportId}",
{
Authorization: “Bearer ${JWT_TOKEN}",
}
);

Retrieving Report History

Finally, Achilles allows user to see the all the report history that users has created

by the following API.

const HOST_DOMAIN = 'Input your host domain';

GET ~${HOST_DOMAIN}/api/v1/reports’;

A code snippet by using axios to get the list of report history is shown below.

const HOST_DOMAIN = 'Input your host domain';
const JWT_TOKEN = 'jwt token that created by backend';

axios.get (" ${HOST_DOMAIN}/api/v1/reports”,
{
Authorization: “Bearer ${JWT_TOKEN}",
}
)3

4.4 Semver-Existing-Max

semver-existing-max is a npm package that finds the maximum version of given

version range that exists in other npm packages or version list. It was created by our team

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /51

in order to assist Achilles website in creating dependency graph. In order to create the
dependency graph, there was a step that requires to find the chain of dependencies. For
example, package A has a chain of dependencies which are B and C (figure 4.2). This
worked fine if the developers installed the exact version of package in the package.json

file.

Pacakge: B

- Package: A
- Version: 1.0.0

Pacakge: C

Figure 4.2: Chain of Dependencies of Package A

However, there was a problem when developers installed the package with range
version. For instance, developers installed package A with the version 1.0.0 or *1.0.0.
The problem with the range version is that we cannot find the the chain of dependen-
cies with the exact version as we did above. This is because 1.0.0 can expand to be
1.0.1, 1.0.2, or 1.0.3 until reaching the maximum of minor change in version 1 (not the
maximum version of the package). Moreover, as the observation from our team shows
that different versions of package can lead to a different chain of dependencies in the
package.

As shown in the Figure 4.3, package A with version 1.0.0 has B and C as a chain
of dependencies whereas package A with version 1.0.1 has the B, C, and D as a chain of
dependencies.

At first, our team decided to use minimum version of the package since we found
that semver package provides a minVersion function to find the minimum version of
the given range. Yet, after exploring the chain of dependencies and vulnerabilities that
found in other tools which are npm audit and dependabot, we recognized that they
both used the maximum version of the given range of the package. In addition, as the

npm installation with the existing package range version, npm usually installs the latest

V. Jarukitpipat, W. Wanprasert, and K.Chhun Implementation / 52

Pacakge: B

Pacakge: B

Pacakge: C

- Package: A
- Version: 1.0.0

- Package: A
- Version: 1.0.1

Pacakge: C

Pacakge: D

Figure 4.3: Chain of Dependencies of Package A with Different Version

version of the given range in the modules of the project. This behavior somehow can fix
the vulnerability in the user’s project, even though it is a minor change in version. Then,
our team decided to change the methodology in finding chain dependencies by creating
semver-existing-max package to help us in finding the maximum version of the given
range.

There are three steps to build semver-existing-max package.

1. Get all the versions of the specific package by npm registry AP

const package = "package name";
const response = await axios.get(url:
< “https://registry.npmjs.cf/${packagel}”);

const versionList = Object.keys(response.data.versions);

// Example result:
// => versionList = [1.0.0, 1.0.1, 1.0.2, 2.1.1, 2.1.4];

2. Find the intersection version list from the given version range.

const semver = require('semver');

const givenRange = '~1.0.0';

const intersectedVersion = versionList.filter(version => {
if (semver.intersects(version, givenRange)) return true;
return false;

B

// => intersectedVersion = [1.0.0, 1.0.1, 1.0.2];

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 53

3. Find the intersection version list from the given version range.

const semverMax = require('semver-max');

const maxVersion = intersectedVersion.reduce(semverMax) ;

// => maxVersion = 1.0.2

After building this semver-existing-max package, we also published this pack-
age to npm registry on 31st March 2021, so that we can install and use this package in
Achilles website. Currently, the package has a total of 65 downloads.

The semver-existing-max package can be found here: https://www.npmjs.com/
package/semver-existing-max. The source code of the package can be found here: https://

github.com/KlintonICT/semver-existing-max.

https://www.npmjs.com/package/semver-existing-max
https://www.npmjs.com/package/semver-existing-max
https://github.com/KlintonICT/semver-existing-max
https://github.com/KlintonICT/semver-existing-max

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 54

CHAPTER 5
EVALUATION RESULTS

In this chapter, we discuss the results of user study to evaluate the performance

of the Achilles detecting and visualizing npm dependency vulnerabilities tool.

5.1 Evaluation Methodology

This chapter will focus on the evaluation of the project in several aspects. First,
we performed an online survey to understand the awareness of the npm developers on
security vulnerabilities, direct/indirect dependencies, and how they prioritize the updates
of vulnerable npm packages. Second, we evaluate Achilles tool by performing a user
study and compare it to the state-of-the-art tool, which is npm audit. Third, we applied
Achilles to real-world GitHub projects in order to check its effectiveness in locating npm

security vulnerabilities. We explain each of them in detail below.

5.1.1 The Online Survey

The online survey is created to evaluate developers and students’ awareness and
perception on security vulnerabilities and gather feedback for the visualization and vul-
nerability report of Achilles. We recruit participants who have experience in programing
for more than six months. We contacted them directly via chat messages, and also posted
the survey on the social media. We received nineteen responses; thirteen of them were
students in ICT faculty and six were developers. The result of the online survey will be

discussed in Section 5.2

5.1.2 The User Study

The objectives of the user study is to

1. Investigate how graph visualization (Achilles) support developer’s decision on

prioritizing vulnerability to fix.

2. Investigate how different types of visualization (Graph and Table) effect devel-

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /55

oper’s decision on prioritizing vulnerability to fix.

The user study follows the guidelines from Ko et al.[18]. The guideline consists of ten
key steps including Recruitment, Selection, Consent, Procedure, Demographic measure-
ments, Group assignment, Training, Tasks, Outcome measurements, and Debrief and

compensate. We followed the guideline as shown below.

1. Recruitment - We sent email to potential participants who are developers and we
recruit students by contacting the instructors of the related faculty and directly

contact potential participants.

2. Selection - The inclusion criteria for selecting the participants of this experiment

1s as followed:

* Participants must be students in Information and Communication Technol-

ogy program or full-time employees at a software development company.

* Participants must have experience using npm to install packages in the projects

but do not require to have an experience in using npm audit.

* Participants must have the aforementioned experience at least six months.
Due to the limitation of recruiting ideal participants, we anticipate that it
would take six months for students and developers to learn new programming
languages and have experience using third-party libraries. In addition, six
months is used as the criteria in the previous user study in Gopstein, D. et al.
[19]

+ Participants should understand and have fundamental knowledge in software

vulnerability.

3. Consent - The user study has been approved by the Mahidol Central Institutional
Review Board (IRB) - 12 March 2021 Number 084.1502

4. Procedure - Fig. 5.1 shows the flowchart of user study procedure between the

controlled group and experimental group.

» We let the participants read the consent form and ask for their confirmation

to join the experiment.

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Use npi
com

Prioriti

ulnerabil

See Ac

visuali

L
Prioriti
vulnerabili

I

it

il

B Y

v
Read consent form
and confirm the
articipation

Gather demographic
background

¥

e tools'
and video

Provid
guideline

Perform
t

example
asks

Al
Ll

A

See Dependabot's
report

v
Prioritize the
vulnerability updates

L
audit
and

Evaluation Results / 56

zation

k.

ze the
y updates

hilles
zation

ze the
Y updates

v
See Achilles
visuali
y

Prioritize the
vulnerability updates

Interview participants

End

Figure 5.1: Procedures of User Study

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /57

» We gather their demographic background.

* We provide the guidelines and videos of the tools demonstration and ask

them to perform example tasks.

* When the real experiment begin, both group of participants are asked to see
the security vulnerability report from dependabot and prioritize the updates
of the vulnerabilities. Then for the controlled group, they are asked to use
npm audit, and for the experimental group, they are asked to use Achilles to
find security vulnerability. After that they are asked to prioritize the updates

of the vulnerabilities again.
* We interviewed the participants on their criteria that they use for the priori-

tization.

5. Demographic measurements - We asked participants the following questions
prior the experiment in order to gain more understanding of participants’ back-

ground.

* How long have you been using npm?

What do you use npm for?
* How often do you check security vulnerabilities in the project?
* Do you know indirect dependencies?

6. Group assignment - By following the between-subject experiment, we randomly

assign participants to two experimental groups.

» Controlled group: Ten participants are randomly assigned to the controlled

group. They used npm audit to analyze security vulnerabilities.

* Experimental group: Ten participants are randomly assigned to the experi-

ment group. They used Achilles to analyze security vulnerabilities.

7. Training - We provided the tools guidelines and videos for the tools demonstra-
tion. We also prepare example tasks to check their understanding of the tools

before we begin the experiments.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 58

Table 5.1: Characteristics of vulnerabilities in Test 1

Severity | Complexity
1 | three high no
2 | type-graphql low yes
3 | xmldom low no
4 | Pug high yes

8. Tasks - In this experiment, the participants are asked to use two tools for security
vulnerability check in npm projects. The goal that they have to do is prioritizing

the updates of the vulnerabilities after using each tool.

To assess Achilles’s usability in practice, we used Achilles to perform the vulnera-
bility analysis on real-world GitHub projects and compare the analysis result with
Dependabot and npm audit tools to see whether the results are different. The re-
sults showed that the vulnerabilities that were found in Achilles were also found
in the Dependabot and npm audit tools. However, we spotted that there is a small
different behavior between Achilles and npm audit. Some vulnerabilities that were
detected in the npm audit were not found in Achilles. This is because npm audit
is not just only finding vulnerabilities for dependencies that the project is using,
but it also detects the vulnerabilities in devDependencies in the package.json file.
The dependencies that are installed in devDependencies in the package.json file
are the dependencies that are used in local development and testing. It provided
some facilitating things in the development process. Nevertheless, those depen-
dencies will not be used or affect the production stage once the project deploys.
Since devDependencies are important during the development process, Achilles

may considered to detect vulnerabilities in devDependencies in the future work.

For the experimental group, they will be asked to see the vulnerability report of
dependabot in GitHub first and then Achilles. For the controlled group, they will
be asked to see the vulnerability report of dependabot in GitHub first and then npm
audit. Additionally, we ask the controlled group to see Achilles visualization after
they have finished the npm audit task.There are two tasks for the participants to

perform.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /59

three @0.124.0

PROJECT

rS &
xmldom@&A"0.4.0

Figure 5.2: Achilles graph visualization of Test 1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 60

Table 5.2: Characteristics of vulnerabilities in Test 2

10.

Severity | Types
Minimist@]1.2.0 .
! (karma-mocha@2.0.1) low indirect
2 | netmask High direct
3 | angular-expressions low direct
4 | base64(uid-safe@?2.1.5) high indirect

minimist@1.2.0
b

&
4

gngular-expressions@1.1.1

PROJECT
Q netmask@2.0.0

|4

6ase6h<l@1 2.1

Figure 5.3: Achilles graph visualization of Test 2

Table 5.1 and Figure 5.2 shows the characteristics of vulnerabilities in Test 1. We
would like to test whether the graph which shows the complexity of the vulnera-

bility would affect the participants’ decision on ranking.

Table 5.2 and Figure 5.3 shows the characteristics of vulnerabilities in Test 2. We
would like to test whether the graph which shows the types of the vulnerabilities

(direct/ indirect) would affect the participants’ decision on ranking.

Outcome measurements - We compared the prioritization results and criteria that
they use before (security vulnerability report from dependabot) and after they see
the visualizations (npm audit or Achilles). We also compared the results between

different types of visualization which are table by npm audit and graph by Achilles.

Debrief - We told the participants about the purpose of this experiment and inter-

view them for them about the criteria that they used and the tool feedback.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 61

5.2 Online Survey Result

We conduct an online survey as part of the evaluation process. This survey aims
to gather information on developers’ and students’ awareness and perception of security
vulnerabilities and their feedback on the visualization and vulnerability report.

We received the survey response from nineteen participants. There are six devel-
opers and thirteen students (Figure 5.4). Since these two participant groups may have

different level of skills and experiences, we report their results separately.

5.2.1 Level of Concern Regarding Security Vulnerability Sources

First, we ask their level of concern regarding security vulnerability sources, i.e.,
vulnerabilities from third-party dependencies and indirect vulnerabilities.

From Figure 5.5, the graph shows the students’ level of concern regarding differ-
ent sources of vulnerability. Most students are very concerned about vulnerabilities from
indirect dependencies. However, their concern regarding vulnerabilities from third-party
dependencies is almost equal in different levels, from slightly concerned to extremely
concerned. Even though two students are not worried about indirect vulnerabilities, all
of them are worried about vulnerabilities from third-party dependencies.

From Figure 5.6, There is no developers who are not concerned about security
vulnerabilities from third-party dependencies and indirect dependencies. There are 3, 2,
and 1 developers who are moderately concerned, very concerned, and extremely con-
cerned about vulnerabilities in third-party dependencies. Regarding indirect vulnerabili-
ties, the result follows the same trend. The largest number of developers falls into slightly
concerned (3), followed by moderately concerned, very concerned, and extremely con-
cerned (1, 1, and 1).

We can see that the results from the two groups show that both students and devel-
opers are concerned about vulnerabilities from third-party dependencies. However, the

student group is concerned more with indirect vulnerabilities than the developer group.

5.2.2 Prioritization Factors for Vulnerabilities Updates

Second, we ask their prioritization factors for vulnerabilities updates. There are

five factors: number of vulnerabilities, severity, relevancy to business requirement, the

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 62

Occupation

Developers
30.8%

Students
69.2%

Figure 5.4: Participants' Survey

Students

Level of concern regarding security vulnerability sources

B Third-party dependencies [l Indirect vulnerabilities

-

Not concerned Slightly Moderately Very concerned Extremely
concerned concerned concerned

Figure 5.5: The Students' Level of Concern Regarding Different Sources

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /63

Developers

Level of concern regarding security vulnerability sources

B Third-party dependencies [l Indirect vulnerabilities

Not concerned Slightly Moderately Very concerned Extremely
concerned concerned concerned

Figure 5.6: The Developers' Level of Concern Regarding Different Sources

gap between vulnerable version and patch version, and recency of the vulnerability. We
ask how important each factor to consider when they decide to update vulnerabilities.

From Figure5.7, seven out of thirteen students think that severity is extremely
important and relevancy of that dependencies to the business requirement is very impor-
tant for prioritizing vulnerabilities to update. These two factors range from moderately
to extremely important, while other factors are scattered across the scale. Six students
think that recency of vulnerability is moderately important.

From Figure 5.8, six developers think that severity, relevancy to business re-
quirements, and recency of vulnerability are very important factors to consider when
deciding which vulnerabilities to be updated. Interestingly, 3 participants rank severity,
relevancy of business requirements, and recency of vulnerability equally as very impor-
tant. Severity seems to be the major factor in this group as it is selected as very important
and extremely important from 5 out of the 6 participants.

Even though both students and developers prioritize severity as the extremely
level factor, their prioritization is different in other important levels. Students are more
interested in relevancy to business requirements at the very important level, while devel-

opers emphasize severity, relevancy to business requirements, and recency of vulnerabil-

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 64

Students

Library update prioritization factors

B #ofvul [l Severity [Relevancyto BR [l Gap between version [l Recency of vul

8
6
4
| I I
1 1
Not important ~ Slightly important Moderately Very important Extremely
important important

Figure 5.7: The Students' Library Update Prioritization Factors

Developers

Library update prioritization factors

B #ofvul [Severity [Relevancyto BR [l Gap between version [l Recency of vul

N

Not important ~ Slightly important Moderately Very important Extremely
important important

Figure 5.8: The Developers' Library Update Prioritization Factors

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /65

Update vulnerable dependencies
Other

Do not update

Update

Students

Figure 5.9: The Students' Decision on Updating Vulnerable Dependencies

ities. At the moderately important level, students prioritize the recency of vulnerabilities
and the number of vulnerabilities. On the other hand, developers prioritize the gap be-
tween vulnerable versions and patch versions. These differences in result will be used

as a guideline to train users to the tools according to each group prioritization factors.

5.2.3 Decision to Update Vulnerable Dependencies

Finally, we ask them whether they would update vulnerable dependencies.

From Figure 5.9 and Figure 5.10, nine out of thirteen students answered that they
would update the vulnerabilities. Two students provide the reason for not updating the
vulnerabilities as follows. One student declared that he or she does not know how to
fix the vulnerabilities. Another student mentioned that fixing security vulnerabilities is
not their priority job. There are other choices that two students would consider. First,
they would choose to update vulnerabilities depending on the severity and the level of
the vulnerability chain. Another student will update only significant vulnerabilities. If

those vulnerabilities do not affect the project, they would not update them.

On the developer side, two out of six developers would update the vulnerabili-
ties. One developer would not update vulnerabilities because it might cause conflict in

the project, and for some projects, the developer no longer maintains that project. Fixing

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 66

Update vulnerable dependencies

Update

T
% T P by,

Other
50.09

Do not update

16.7"

Developers

Figure 5.10: The Developers Decision on Updating Vulnerable Dependencies

vulnerabilities might lead to excessive expenses. Three developers consider other op-
tions. One developer mentioned that updating vulnerabilities depends on their severity
and their effect on the overall application. He or she always update the package if it is
not a breaking change. In case there is a breaking change, they would find the existing
workaround first. Another develop stated that he or she would update only the matter
vulnerabilities since conflict might occur after updating the vulnerabilities, and it is not
their priority. The last developer mentioned that it depends on the nature of vulnerabili-
ties and source. Some packages might be better to change than to update.

The full results of the online survey can be found in the Appendix B.

5.2.4 Feedback from Online Survey

As we received feedback from an online survey, there are two main parts that
participants suggest to update which are visualization and vulnerability report. In the

visualization, participants suggest to update and add some information as follow:

» Explain color of each node in each level

» Explain which node is direct or indirect dependency

* Add more information in tooltip

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /67

In the vulnerability report, there are a few suggestions from participants as fol-

low:

* Provide a link that allows participants to link to vulnerability information

* Change summary section in the report to display as table row and provide more

useful information

» Change vulnerability color representation

After we collected this information from participants, we decided to update some
parts according to the participants’ suggestions. In the visualization section, there are

some changes in the following:

* In the top of the dependency graph, we added the short description that describes
which node and color are represented to direct and indirect dependency, and also

describes which node and color are represented to vulnerable nodes.

* In the tooltip sections, we provided the patch version for vulnerable nodes and
provided the link for GHSA and CVE in order to allow participants to click on the
vulnerability web page. Moreover, we changed the severity color that displays in

tooltips according to the level of severity that displays in the report.

In the vulnerability report, we decided the changes are consists of some parts as

the following:

* In each vulnerability dependency section, we added remarkable links for GHSA,
CVE, and CWE that direct to vulnerability information web pages. We also pro-
vided a short description for CWE that helps participants to be aware of vulnera-

bility type.

* In the summary section, instead of displaying the number of vulnerabilities that
exist in the project, we decided to change more useful information for each vul-
nerability as a table row. There are four columns in summary section which are

vulnerable dependency name, type of dependency whether it is direct or indirect

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 68

dependency, updating from vulnerable version to safer or patch version, and pro-
vide the level of severity column whether the dependency is critical, high, moder-

ate or low.

 For the vulnerability color representation, we changed the low level color from

yellow to blue color which is easy for users to notice.

5.3 Participants’ demographic data

Table 5.3: Participants’ Demographic

Participants Demographics

Al NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency

N1 NAIST graduate student, proficient in npm, know indirect dependency

A2 NAIST graduate student, 3 years experience in npm, know indirect dependency

N2 Fourth-year undergraduate student, Little experience in npm, No prior knowledge of indirect dependency
A3 Fourth-year undergraduate student, 2-3 years experience in npm, know indirect dependency

N3 Developer, proficient in npm, know indirect dependency

A4 Developer, Little experience in npm, No prior knowledge of indirect dependency

N4 Fourth-year undergraduate student, Little experience in npm, No prior knowledge of indirect dependency
AS Fourth-year undergraduate student, proficient in npm, know indirect dependency

N5 Fourth-year undergraduate student, Little experience in npm, No prior knowledge of indirect dependency
A6 Fourth-year undergraduate student, 3 years experience in npm, No prior knowledge of indirect dependency
N6 Fourth-year undergraduate student, Little experience in npm, know indirect dependency

A7 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
N7 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
A8 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency

N8 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
A9 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency

N9 Fourth-year undergraduate student, little experience in npm, No prior knowledge of indirect dependency
Al0 NAIST graduate student, little experience in npm, No prior knowledge of indirect dependency

N10 Developer, little experience in npm, No prior knowledge of indirect dependency

"ATU[) [OPIYRIN LT JO AInoey

69/ (1DD) 08’9

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 70

5.4 User Study Result

5.4.1 Results and Analysis

According to the defined methodology, we have performed a user study and

found the following results.

Test 1 - Vulnerable Packages with and without Complexity

Test 1 contains direct vulnerabilities with different levels of severity and com-
plexity (the number of dependencies that packages in the project are relied on). The
participants of both the Achilles group and npm audit group see the same project with

the same dependencies. We discuss their results below.

Achilles

According to Table 5.4, there are two groups of participants categorized by the
prioritization order.

The changed group includes the participant A1, A2, A4, AS, A7, A8, and A9.
They change the prioritization order after using the Achilles tool. We observed that they
only emphasize the severity when they see the vulnerability report from Dependabot.
However, after they use Achilles, they also take other factors into account. Within the
changed group, six participants (A1, A2, A4, A5, A7, and A8) take the package’s com-
plexity into account. However, A9 is only concerned about the severity more after using
Achilles, and the participant mentioned that the package’s complexity does not have in-
fluenced the prioritization.

Within six participants, three participants (A1, A4, AS) use severity as the first
priority factor and high complexity as the second priority factor. On the other hand, one
participant (A7) uses low complexity as the second priority factor. For two participants
who use complexity as the first priority factor and high severity as the second priority
factor, A2 prioritizes high complexity first, while A8 prioritizes low complexity first.

The unchanged group (A3, A6, and A10) does not change their prioritization
order. Nonetheless, they all mentioned that after they see Achilles, they get information

about the package’s complexity easier.

Table 5.4: The Result of Achilles Test Case No. 1 (Complexity)

Participants | Tool Answers Comparison | First Priority Second Priority
Dependabot | HC >=HS >LC>=LS : High severity -

Al Achilles | HC >HS >LC >LS Different - F severity High complexity
Dependabot | HS >= HC >LC >LS : High severity -

A2 Achilles HC >LC >HS >LS Different High complexity High severity

A3 Dependabot | HS >=HC >LC>=LS Same High severity -
Achilles HS>=HC>LC>=LS High severity Low complexity
Dependabot | HS >=HC >LC>=LS : High severity -

Ad Achilles HC >HS >LC >LS Different High severity High complexity
Dependabot | HC >HS >LS >LC : High severity -

AS Achilles HS >HC >LS >LC Different High severity Low complexity

A6 Dependabot | HC >=HS >LC>=LS Same Severity
Achilles HC >=HS >LC>=LS Severity

A7 Dependabot | LS >LC >HS >HC Different Number of indirect dependencies
Achilles HS>=LS>HC>LC Number of indirect dependencies | Severity
Dependabot | HS >HC >LC >LS : High severity Recent

A8 Achilles HS>=LS>HC>LC Different Low complexity Severity

A9 Dependabot | HS >LC >LS >HC Different Version number
Achilles HS>HC >LC >LS High severity Less version number

INT: Dependabot | HC >=HS >LC>=LS Same High severity High complexity
Achilles HS>=HC>LC>=LS High severity Low complexity

"ATU[) [OPIYRIN LT JO AInoey

H = High severity, L = Low severity
C = Complex (has several dependencies), S = Simple (no dependency)

1L/ (1DD oS'd

Table 5.5: Factors for Prioritizing Package Updates

First priority factor Second priority factor Participants Amount
) : Low Severity Al AZ, A3, 7
High Severity A4, A5, A6, A10

Recent use A8 1

Dependabot Other (Version number) A9 1
Other (Number of indirect dependencies) A7 1
Total 10

Low Severity A3, A6, A10 3

. . High Complexity Al, A4, AS 3

High Severity Low Complexity A7 1

Achilles Version A9 1
High Complexity High Severity A2 1

Low Complexity High Severity A8 1
Total 10

unyy)y pue uaserduepy A\ redidiynrer ‘A

TL / SMNsaY uopen[eas

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /73

According to Table 5.5, after seeing the vulnerability report from Dependabot,
seven participants use severity as the significant factor for the prioritization. After wit-
nessing the graph visualization in Achilles, there are six cases where the package com-
plexity has become one of the factors when prioritizing the package update, either as the

first or the second priority factor.

npm-audit

According to Table 5.6, there are two groups of participants categorized by the
prioritization order.

There are three participants in the changed group, including N2, N4, and N8.
They shift the prioritization order after using npm audit. Even though there is no sig-
nificant change in the prioritization order, the report from Dependabot and npm audit
provide vulnerability information at different granularity. It affects the prioritization
order since these participants use vulnerability information (CVE) as the prioritization
criteria.

On the other hand, there are six participants (N1, N3, N5, N6, N7, N9 and N10)
in the unchanged group. Five of them (N1, N3, N5, N6 N10) use severity as the top
priority factor for both tools’ prioritization. Participant N7 uses the ease of patching the

packages as the main priority factor for both tools.

Table 5.6: The Result of npm audit Test Case No. 1 (Complexity)

Participants | Tool Answers Comparison | First Priority Second Priority
Dependabot | HS >HC >LS >LC Same High severity Alerted Time
N1 npm-audit | HS >HC >LS >LC High severity -
Achilles HS >=LS>HC>=LC Different
Dependabot | HC >HS >LC >LS Different Severity Impact on the server?
N2 npm-audit | HC >HS >LC>=LS High severity
Achilles HS >HC >LS >LC Different | Severity Less complex
Dependabot | HC >HS >LC >=LS Same High severity Impact with the project
N3 npm-audit | HC >HS >LC>=LS
Achilles HS>HC>LS >LC Different | High severity Low complexity
Dependabot | HS >HC >LC >=LS Different High severity CVE
N4 npm-audit | HC>HS>LS>LC High severity npm description
Achilles HC >HS >LS >LC Same High seveirty newer CVE
Dependabot | HS >HC >LC >LS Same High severity
N5 npm-audit | HS >HC >LC >LS High severity
Achilles HS >HC >LS >LC Different | High severity Less indirect dependencies
Dependabot | HS >=HC >LS >=LC Same High severity
N6 npm-audit | HS>=HC>LS>=LC High severity
Achilles HS >LS >HC >LC Different | Less indirect dependencies Severity
Dependabot | LC >HS >LS >HC The ease of patching the packages
N7 npm-audit | LC>HS >LS >HC Same The ease of patching the packages
Achilles LC>HS >LS >HC The ease of patching the packages
Dependabot | HC >HS >LS >LC Severity Vulnerability risk
N8 npm-audit | HS >HC >LC>=LS Different | Severity expected error
Achilles HC >HS >LC >LS High severity More indirect dependencies
Dependabot | HS >= HC >=LC >LS High severity
N9 npm-audit | HS >=HC >=LC>=LS Same High severity
Achilles HS>=HC>=LC>=LS High severity
Dependabot | HC >=HS >LC >=LS Same High severity
N10 npm-audit | HC >=HS >LC>=LS High severity
Achilles HC>LC>HS >LS Different | Complexity Severity

H = High severity, L = Low severity

C = Complex (has several dependencies), S = Simple (no dependency)

unyy)y pue uaserduepy A\ redidiynrer ‘A

fL / SINSIY vopen[eAs

Table 5.7: Factors for Prioritizing Package Updates

First priority factor Second priority factor Cases Number
Low Severity N5, N6, N9, N10 4
Detail of vulnerability N8 1
High Severity Alert time N1 1
Dependabot Impact Wé[l’\l/gle project Ei }
Impact on the server High Severity N2 1
The ease of patching the packages. N7 1
Total 10
Low Severity N1, N2, N4, N5, N6, N9, N10 7
High Severity Expected error N8 1
npm Impact with the project N3 1
The ease of patching the packages. | Update packages with no breaking changes N7 1
Total 10

"ATU[) [OPIYRIN LT JO AInoey

SL/(LO1) 9S'd

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 76

According to Table 5.7, after using both Dependabot and npm audit, nine partic-

ipants use severity as the first priority factor.

Test 2 - Direct and indirect vulnerabilities

Test 2 contains both direct and indirect vulnerabilities with different levels of
severity. Similar to Test 1, the participants of both the Achilles group and npm audit

group see the same project with the same dependencies. We discuss their results below.

Achilles

According to table 5.8, there are two groups of participants categorized by the
prioritization order.

The changed group, including seven participants Al, A2, A4, A6, A7, A8, and
A10, change the prioritization order after seeing Achilles visualization. When they see
the vulnerability report from Dependabot, participants A1, A2, A4, and A10 only em-
phasize on severity of the vulnerable packages. Participant A6 also considers issue type.
Participant A8 takes the recentness of the vulnerability into account. However, Partic-
ipant A10 does not concern about the severity. The number of indirect dependencies is
the only factor that A10 considers.

Nonetheless, after using Achilles, they also take types of dependency (whether
directly or indirectly) into account. Within the changed group, four participants Al,
A6, A8, and A 10, use severity as their first priority factor and for the second priority fac-
tor, consider updating direct dependencies first. Two participants, A2 and A4, choose to
update direct dependencies first and select high severity as the second priority factor. On
the other hand, participant A7 updates the indirect dependencies first before considering
the severity level.

The unchanged group (A3, AS, A9) does not change their prioritization order.
Participant A3 choose to update direct dependencies first since seeing the vulnerabilities
report from Dependabot. Participant AS updates the high severity vulnerabilities first
and takes direct dependencies into account since seeing the report, but without changing
the prioritization. Participant A9 considers the severity level and the version number.
Nevertheless, they mentioned that Achilles allows them to differentiate between direct

and indirect vulnerabilities easier, similarly to Test 1.

Table 5.8: The Result of Achilles Test Case No. 2 (Direct/ Indirect)

Participants | Tool Answers Comparison | First Priority | Second Priority
Dependabot | HD >= HI >L1>= LD . High severity | -

Al Achilles | HD SHI>LD >LI Different | - ceverity | Direct
Dependabot | HD >=HI >= L1 >= LD . High severity | -

A2 Achilles HD >LD >LI>HI Different Direct High severity

A3 Dependabot | HD >LD >HI >= LI Same Direct High severity
Achilles HD >LD >HI >= LI Direct High severity
Dependabot | HD >=HI >L1>= LD . High severity

Ad Achilles HD >LD >HI >LI Different Direct High severity

AS Dependabot | HD >HI >LD >LI Same High severity | -
Achilles HD >HI>LD >LI High severity | Direct
Dependabot | HD >= HI >LD >LI . High severity | -

Ab Achilles HD >HI>LD >LI Different High severity | Direct
Dependabot | HD >HI >LD >LI . High severity | number of indirect dependencies

AT Achilles | HD >LD >LI >HI Different 5t oot -
Dependabot | HD >HI >LI >= LD . High severity | Recent

A8 Achilles HD >=HI>LI>=LD Different High severity

A9 Dependabot | LI >= LD >= HI >=HD Same Low severity | number of Indirect dependencies
Achilles HI>=HD >=LI>=L1LD High severity | Less version number
Dependabot | HD >=HI >LI >= LD . High severity | -

Al0 Achilles HD >LD >HI >LI Different Direct Severity

H = High severity, L = Low severity
D = Direct dependency, I = Indirect dependency

"ATU[) [OPIYRIN LT JO AInoey

LL /(DD o8S'd

Table 5.9: Factors for Prioritizing Package Updates

First priority factor Second priority factor Cases Number
Low Severity Al,A2, A4, A10 4
. . Direct AS 1
High Severity Tssue type A6 I
Recent use A8 1
Dependabot Direct High Severity A3 I
Indirect Severity A9 1
Number of indirect dependencies A7 1
Total 10
. . Direct Al, AS, A6, A8, A10 5
High Severity Version A0 I
Achilles Direct High Severity A2(with third factor of low severity), A3, A4 3
Indirect Severity A7 1
Total 10

unyy)y pue uaserduepy A\ redidiynrer ‘A

8L / SINSaY uonen[eAg

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /79

According to Table 5.9, after seeing the vulnerability report from Dependabot,
six participants use severity as the major factor for the prioritization. After seeing the
graph visualization in Achilles, there are seven participants whose types of dependency
have become the factor when they are prioritizing the package update as the first or the

second priority factor.

npm-audit

According to table 5.10, there are two groups of participants categorized by the
prioritization order.

Five participants in the changed group are N3, N4, N6, N7, N8 and N10. When
they see the vulnerability report from Dependabot, they prioritize severity as the first
or second factor. Participants N3 and N6 use severity as their only factors. Participant
N4 also considers the CVE, and participant N7 prioritizes the ease of fixing. Participant
N8 only takes vulnerabilities information into account. Participant N10 considers the
risk of vulnerabilities from attacker. However, after they use npm audit, participants N3
and N6 consider the types of vulnerabilities as a factor for prioritization. N4, N7 and
N8 mentioned that short description that provided by npm affect their decision on the
prioritization. Participant N10 only considers the severity.

There are four participants in the unchanged group, which are N1, N2, N5, and
N9. Even though participant N1 does not change the order, the criteria is different. After
seeing dependabot report, participant N1 uses existing solving pull request and severity
as the factor, and after seeing the npm audit report, the participant considers direct de-
pendency and severity. Participants N2, N5, and N9 only assess the severity.

According to Table 5.11, after seeing the vulnerability report from Dependabot,
eight participants use severity as the major factor for prioritization. After seeing the
graph visualization in Achilles, there are four participants whose types of dependency
have become the factor when they prioritize the package update as the first or second

priority factor.

Table 5.10: The Result of npm audit Test Case No. 2 (Direct/ Indirect)

Participants | Tool Answers Comparison | First Priority Second Priority
Dependabot | HD >LD >HI >LI

N1 npm-audit | HD >LD >HI >LI Same Direct Severity
Achilles HD >LD >HI >LI
Dependabot | HD>HI >LI >= LD High severity

N2 npm-audit | HD>HI >LI >= LD Same
Achilles HD >=HI>LD >= LI
Dependabot | HI >=HD >LD >=LI Different High severity

N3 npm-audit | HD >LD >HI >LI Direct severity
Achilles HD >LD >HI >LI Same Type of dependency Severity
Dependabot | HD >HI >LI >LD Different High severity CVE, impact

N4 npm-audit | HD >LD >HI >LI Direct Severity
Achilles LD >L1>HD >=HI Different | CVSS score
Dependabot | HD >=HI >LD >= L1 Same High severity -

N5 npm-audit | HD>=HI>LD >=11 High severity -
Achilles HD >LD >HI >LI Direct
Dependabot HD>=HI>LI>=LD Different H%gh severity ‘

N6 npm-audit HD >LD >HI >LI Direct Severity
Achilles HD >LD >HI >LI Same Direct Severity
Dependabot | HD >LD >= LI >HI Different Ease of fixing Severity

N7 npm-audit | HD >LD >LI>HI Ease of fixing Severity
Achilles HD >LD >LI>HI same Ease of fixing Severity
Dependabot | HD >LI >= LD >HI Different Details of vulnerabilities

N8 npm-audit | HD >HI >LI>=LD Severity Effect of vulnerabilities
Achilles HD >HI>LD >LI Different | High severity Direct
Dependabot | HD >=HI >= LI >= LD Same High severity

N9 npm-audit | HI>=HD >LI>=LD High severity
Achilles HD >HI>LD >LI Different | High severity Direct
Dependabot | HD >HI >LD >LI Same High severity

N10 npm-audit | HD >HI >LD >LI High severity
Achilles HI>HD >LI>LD Different | High severity Indirect

H = High severity, L = Low severity
D = Direct dependency, I = Indirect dependency

unyy)y pue uaserduepy A\ redidiynrer ‘A

08 / SINSY uopen[eas

Table 5.11: Factors for Prioritizing Package Updates

"ATU[) [OPIYRIN LT JO AInoey

First priority factor Second priority factor Cases Amount
Low Severity N3, N5, N6, N9 4
High Severity how it can impact the project N2 1
CVE N4 1
Existing solving pull request High Severity N1 1
Dependabot Ease of fixing High Severity N7 1
Detail of vulnerability N8 1
Chance of getting attack from the outsider N10 1
Total 10
Low Severity N2, N5, N8, N9, N10 5
High Severity Direct N6 1
npm Impact the project N4 1
Direct High Severity N1, N3 2
Patch the packages with no breaking changes High Severity N7 1
Total 10

18 /(1LDD 08’9

V. Jarukitpipat, W. Wanprasert, and K.Chhun Evaluation Results / 82

Table 5.12: Comparison of Developers' Decisions

Dependabot - Achilles | Dependabot - npm audit
Same 3 7
Different 7 3

5.4.2 Answer to Research Questions

From the results, we can answer the two research questions as follows.

RQ1: How graph visualization (Achilles) support developer’s decision on

prioritizing vulnerability to fix?

From the user study, we found that the graph visualization of Achilles helps
supporting developers’ decisions on prioritizing vulnerability to fix by providing
more information about complexity and direct/indirect dependencies compared to
the traditional list of vulnerabilities provided by Dependabot. Six participants take
complexity into account after seeing the graph visualization. Nine out of ten partici-
pants consider types of dependencies (direct or indirect dependencies) as the factor for

prioritization after seeing the graph visualization.

RQ2: How different types of visualization (Graph and Table) effect devel-

oper’s decision on prioritizing vulnerability to fix?

The types of visualization affect developers’ decision on prioritizing vulnerabil-
ities to fix as below.

Table 5.12 Comparison of developers’ decisions after seeing the graph and table
visualization on the task having vulnerabilities with complexity

We can see from table 5.12, for test 1 where vulnerable packages have different
complexities, the number of participants who use Achilles and change their prioritization
order is larger than the number of participants who use npm audit. The table visualization
can affect the developers’ decision three out of nine cases, while the graph visualization
can affect the developers’ decision to update vulnerabilities seven out of ten cases.

Table 5.13 Comparison of developers’ decisions after seeing the graph and table
visualization on the task with indirect vulnerabilities

We can see from table 5.13, for test 2, where vulnerable packages have different

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 83

Table 5.13: Comparison of Developers' Decisions

Dependabot - Achilles | Dependabot - npm audit
Same 3 5
Different 7 5

Table 5.14: showing the prioritization results after using npm audit and Achilles

Test 1 | Test 2
Same 3 5
Different 7 5

types of dependencies. The number of participants who use Achilles and change
the prioritization order is also larger than participants who use npm audit. We
can see that the graph visualization in Achilles does outperform npm audit in providing
information about the types of dependencies since both of the tools represent direct and
indirect dependencies differently. However, the differences between the two group is not
as large as in Test 1. The table visualization can affect the developers’ decision five out
of nine cases, while the graph visualization can affect the developers’ decision to update
vulnerabilities seven out of ten cases.

We also asked participants who use npm audit to see Achilles visualization of Test
1 and Test 2 and asked for their prioritization again. What we found are as followed.

Table 5.14 shows the prioritization results after participants using npm audit and
Achilles. In Test 1, there are seven participants change their prioritization since they
consider complexity of the packages which introduced by Achilles as a prioritization
factor. There is no significant differences in Test 2 since both Achilles and npm audit

provide types of dependencies (whether direct or indirect dependencies).

5.5 Analysis of GitHub Project

To assess its usability in practice, we used Achilles to perform the vulnerability
analysis on real-world GitHub projects to see if the tool can detect any existing security

vulnerabilities. There are a few criteria that we chose to sample the repositories.
1. The repositories must be developed by using npm.
2. The repositories must have the dependencies in package.json file.

Then, we choose two sets pf projects. First, we retrieved the repositories based on the

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Table 5.15: 10 Most Stars GitHub Project Used in the Study

Evaluation Results / 84

Project Description No. of Stars
np A better npm publish 6k
sinopia A private/caching npm repository server 5.4k

A toolkit for React, Preact,
nwb Inferno & vanilla jS apps >3k
concurrently Command line 4.4k
npm JavaScript package manager 17.3k
npm-run-all A CLI tool to run mu'ltiple npm-scripts 41k
in parallel or sequential
node-semver The semver parser for node 3.6k
cnpmjs.org Private npm registry and web for Enterprise 3.4k
windows-build-tools | Install C++ Build Tools for Windows using npm 3.2k
npx Execute npm package binaries 2.6k
Table 5.16: 10 Most Dependent GitHub Project Used in the Study
Project Description No. of Stars
mocha | Javascript test framework for node.js & the browser 2074
chai BDD / TDD assertion framework for node.js 1577
and the browser that can be paired with any testing framework
grunt The JavaScript Task Runner 1623
eslint Find and fix problems in JavaScript code 916
gulp A toolkit ot automate & enhance workflow 2758
request | HTTP request client 15820
istanbul | JS code coverage tool 391
should | Test framework for node.js 612
express | Fast, unopinionated, minimalist web framework for node 10250
sinon Test spies, stubs and mocks for JavaScript 511

number of stars. Then, we selected the top 10 projects with the highest number of stars

in the study. The information of the 10 projects is shown in the Table 5.15.

Second, we retrieved the repositories based on the number of dependent pack-

ages using the information from npm registry. This is done using the all-the-package-

names[20] package in npm registry. Then, we picked the 10 projects with the highest

number of dependent packages. The information of the 10 projects is shown in the Table

5.16.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 85

5.5.1 Most Starred GitHub Projects

As shown in Figure 5.11, we found that Achilles could find the vulnerabilities in
4 most-starred GitHub repositories including sinopia, cnpmjs.org, windows-build-tools,
and npx.

For sinopia, Achilless found 9 direct vulnerabilities (1 low, 1 medium, 6 high,
and 1 critical), and 3 indirect vulnerabilities (2 low and 1 high).

For cnpmjs.org, Achilles found 4 direct vulnerabilities (1 medium and 3 high),
and 7 indirect vulnerabilities (4 low, 1 medium, and 2 high).

For windows-build-tools, Achilles found 1 indirect vulnerability (1 low).

For npx, Achilles found 1 indirect vulnerability (1 low).

The full Achilles analysis report of the 4 vulnerable projects can be found in the

Appendix F.
5.5.2 Most Dependent npm Projects

As shown in Figure 5.12, Achilles did not report any vulnerability in the 10 most
dependent npm projects. This shows that these projects are actively maintained with

regular security checks.

Direct and Indirect Vulnerable Dependencies for Top 10 Most Starred Repositories on GitHub

B Critical @ High @ Medium OLow

A . R R A R . 4 . 4 R
9 7, Y% %, G Py, Y 9 7, Y% %, G Py, 9 7, Y %,
< 7 () 7) 7 () 2 () 7 () 7) 7 () 7 § 7
Cx &, Cx) Cx) Cx) Cx) Cx) Cx) Cx) Cx)
* < <& & & Rs <& & Rs
np sinopia nwb concurrently npm npm-run-all node-semver cnpmjs.org windows-build-tools npx

Figure 5.11: Bar graphs showing Direct and Indirect Vulnerable Dependency for Top 10 Most starred Repositories on GitHub

unyyDy pue ‘woserduepy A\ yedidinynrer A

98 / SINSY uonenjeAy

Direct and Indirect Vulnerable dependencies for Top 10 Most Dependent JavaScript Libraries in npm Registry

M Critical W High B Medium OLow

oo 00 00 0o 00 00 00 oo 00 00

y . 4 % . o 4 . 4 . 4 0. 4 Q. Q.
7 7, 7 @) 7 @) % @ 7 7, 7 2, 7, %, 7 @ 7 7
(o 7 . 7 . 7 (o 7 [% . 7% . 7 . % <. % <.
() 7 () 7 () 7 () 2 (S 7 () 7 (S 7 () 7 () 7 (S 7
RN RN <& Ee & S & S & o & S & e & e & N
mocha chai grunt eslint gulp request istanbul Should express sinon

Figure 5.12: Bar graphs showing Direct and Indirect Vulnerable dependencies for Top 10 Most Dependent JavaScript Libraries in npm
Registry

"ATU() [OPIYRIA ‘LOI JO Anoeq

L8/ (1LDD) °S'9d

V. Jarukitpipat, W. Wanprasert, and K.Chhun Conclusions / 88

CHAPTER 6
CONCLUSIONS

This chapter summarizes the project and discusses the limitations and the future

directions of this project

6.1 Problems and limitations

There is a limitation while selecting the user’s repository to analyze. Achilles
takes the repository name to search and verify whether the project is an npm project and
has dependencies in package.json. However, in GitHub’s code search API, there is a
limitation that the API is not allowed to search the repository’s content that hasn’t had
activity on the repository over a year. Thus, Achilles will not be able to analyze and draw
dependency graph of the project that is not maintained for over a year [21].

A limitation during the visualization development includes scarcity in D3 docu-
mentation, leading to some problems during the visualization implementation. We can-
not handle some factors properly, such as the force simulation when the graph contains
a large number of dependencies. The performance of the graph drops significantly when
it has to handle a complex relationship between dependencies. In the report part, the pdf

version cannot be downloaded on mobile.

6.2 Threats to validity

The result of user study may not be fully representative for the npm audit group.
This is because some of the participants in the study may be inexperienced in using npm
audit. We mitigate this problem by having a short training for participants to understand
how to use and interpret the result of npm audit. The result from the online survey sug-
gested that students and developers are interested in different prioritization factors. We
will use that information as a guideline to design the training process according to their
interests. For students, we will mainly focus on severity, recency and number of vulnera-

bilities. Contrarily, for developers, we will focus on severity, recency of vulnerabilities,

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /89

and gap between patch versions and vulnerable versions.

6.3 Future work

In the future, we aim to have the tool be integrated into GitHub repositories and
be able to open a pull request for updating the vulnerabilities from the visualization. We
also intend to improve the graph navigation for easy understanding and the ability to filter
information that the user only wants to know. Performance of the visualization is also one
of the areas that we aim to enhance to handle projects with more extensive dependencies
and provide insightful information for developers to manage the projects. We anticipate
that Achilles can be used with not only npm projects but also other package managers,
including Composer, Maven, NuGet, etc. There are also many other unexplored aspects
of D3 that remain potential key factors to better performance and represent information

of the visualization.

Since the COVID-19 and financial support prohibiting us from recruiting more
specific and expected target user groups, our future work is to contact companies and
industries which mainly focus on security vulnerabilities in order to hear comments from

real user experiences and get feedback to develop our tool to meet the needs of the users.

Moreover, if our tool can be integrated with GitHub directly, it would be more
convenient for users to see the graph visualizations in the GitHub repositories without
opening a separate browser and be able to manage their packages instantly. This can be

done as an issue report or a pull request comment.

6.3.1 Potential performance optimization

It is feasible to optimize the performance of the querying and visualization pro-
cess by separating these two processes. After querying the dependencies and vulnerabil-
ities information, we can keep this information in the data structure which supports the
graph format. Hence, it will not be required to query the information when the web page
is refreshed. We also compare the current and new methods for the querying process and

visualizing process in the Table 6.1.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Conclusions / 90

Table 6.1: Comparing the current and the proposed methods

Pros Cons
- Information is up to date
- Use the existing GraphQL API

Current method
(New query every time)

- Expensive computational power
- Slower information retrieval

provided by GitHub
. - Cheap computational power - Information is not updated
Local database - Indexing | _ Faster information retrieval - Need to design new database

6.3.2 Potentially better visualization method

We plan to change the default view to show only vulnerable nodes and provide
other options for users to visualize according to their preferences. The possibilities in-
clude showing an entire graph, only the direct dependencies or indirect dependencies.
We also plan to investigate other visualization which would better represent dependen-

cies and vulnerabilities information, e.g., hierarchical visualization.

6.4 Conclusion

The main goal of this project is to provide developers a tool that can help them
detect, visualize and report vulnerabilities in their projects. We create an automated
tool called Achilles to detect both direct and indirect vulnerabilities and visualize the
dependencies graph with identified vulnerable node. Users can also see and download

the vulnerabilities report.

Achilles requires a user to log in with a GitHub account in order to retrieve the
list of user’s repositories. After the user selects a repository and package.json file to
analyze, Achilles will check the packages vulnerability from GitHub Security Advisory,
retrieve the chain of dependencies of the packages from npm registry, and visualize the
dependencies graph. Achilles also provides the security vulnerability report, which can

be downloaded in pdf format.

We evaluate the Achilles tool by three methods: gathering information from an
online survey, conducting a user study, and analyzing GitHub projects. The responses
from the online survey suggested that most students and developers use severity as a
highly important factor that they consider when updating vulnerabilities. Comparing the
prioritization for vulnerabilities update after participants use the Dependabot report, npm

audit, and Achilles, we found that most participants change their prioritization order after

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /91

using Achilles due to information about packages’ complexity and types of dependencies
(direct and indirect vulnerabilities) Achilles introduced. We also used Achilles to analyze
the vulnerability in the real-world GitHub projects. We tested with the Top 10 most
starred repositories on GitHub. Achilles can detect vulnerabilities in four repositories.
Direct and indirect vulnerabilities are detected in two repositories which are sinopia and
cnpmjs.org. An indirect vulnerability is detected in windows-build-tools and npx. We
also tested Achilles with Top 10 Most Dependent JavaScript Libraries in npm registry.
Achilles did not report any vulnerabilities.

The evaluation results show that Achilles tool is a beneficial addition to contem-
porary software development to detect indirect dependencies and comprehend potential

vulnerabilities via the dependency graph visualization and analysis report.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A /92

APPENDIX A
IRB DOCUMENT

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /93

COE No. MU-CIRB 2021/085.1103

Mahidol University Central Institutional Review Board

Certificate of Exemption

Title of Project: Achilles: An automated tool for analyzing npm library vulnerabilities

Protocol Number: MU-CIRB 2021/084.1502
Principal Investigator: Lect. Dr. Chaiyong Ragkhitwetsagul
Co- Investigators: 1) Miss Vipawan Jarukitpipat

2) Miss Wachirayana Wanprasert

3) Mr. Klinton Chhun

Affiliation: Faculty of Information and Communication Technology, Mahidol University

The criteria of Exemption: Research involving the use of survey and interview procedures and:
- Recorded information CANNOT readily identify the subject (directly or indirectly/linked) OR
- Any disclosure of responses outside of the research would NOT place subject at risk (criminal,

civil liability, financial, employability, educational advancement, reputation)

MU-CIRB is in full compliance with International Guidelines for Human Research Protection
such as Declaration of Helsinki, The Belmont Report, CIOMS Guidelines and the International

Conference on Harmonization in Good Clinical Practice (ICH-GCP)

Date of Determination: 11 March 2021

Signature of Chairperson: >(}/)‘4/‘YM M
(Emeritu%rofessor Dr. Wariya Cfﬁr%m)

MU-CIRB Chair

MU-CIRB Address: Office of the President, Mahidol University, 4th Floor, Room Number 411
999 Phuttamonthon 4 Road, Salaya, Nakhonpathom 73170, Thailand
Tel: 66 (0) 2849 6224, 6225 Fax: 66 (0) 2849 6224

E-mail: mucirb@gmail. com Website: http.//www.sp.mahidol.ac.th

Page 1 of 1

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A / 94

MU-CIRB ARENTAMIDILETTUMSITE IUAUTIURII HInendundiaa ufluud 21/02/2021

enmsiasimiuidniaiiviieny o2 YUl (Participants Information sheet (age 18 years or older)) IO 1 w032 win

2 o W YU I au A %
!@ﬂﬁ]i%l!ﬂﬂﬁ]ﬂﬁnﬂlm-lﬁguﬁﬂﬂ‘nf’nq o1~} ‘llclﬁr!uh.l

(Participants Information sheet (age 18 years or older))

Yy o o A)
] dunitiu L 5050/ R0UAT e FUR — A

Tuenmsiienaiivonauimue s lsidhle Isaaevamianinlnssmioe H?ﬂ;ﬁmu?ﬁima?mwum’mz

"
ady

v 9 a v ~ o o o 1 oAy 4 A o o o
ﬁn?i)ﬂ W?Hﬂgvﬂfﬂlﬂﬂa'Tfu 18UY u?nﬁﬂql]a77nl”U7ulW@1ﬁﬂy7ﬁ7iaﬂUﬂ”ﬂwuaq lwa”ﬁ'”n U‘W"U?jﬂ’/"ﬂ'lﬂ?

5 v Jr A A yA Ty A v a v 1 av
VOINIH UNNENIHD U ﬁi@fjnﬂ?uﬂﬂ\‘iﬂ7ﬁj§ﬂy7 I‘WQW'Jfl?uﬂ75ﬂﬂﬁ'”?m‘lﬂ??3~lﬂ75?ﬂfl

& as A a4 a 7 'y o ¢ acg <
%aiﬂﬁ\’ﬂ]i RIEGGE Lﬂﬁﬂﬂuﬂlw@ﬂ‘]i'}lﬂi_|$1’i“]5@\3Tﬂ'«]ﬂ’]uﬂ’)‘]nﬂﬁ'ﬂﬂﬂUﬂlﬂuﬂuwrﬂ““laU515

Yo ide Q3. Foud Snlanvana
44 sk

aoiise amuimauezinsnunsiniaaadeld ez vennassms linaea 24 Falug

€

anzma Tuladmsaumanazns Toas v.ufiaa Insawy 089-1763372

Alvinu s

Tasan1538eiiludaunilavea3a ITCS492 Senior Project I Antzina luTala1saumeauaznisdeais

unanondouiina auzdiavi ldanunsosiie lumsdumuazuanwwares Tniduauasassyod npm dependency

9
v @

o s
aniugalszasdveumudounniis qﬁLﬁaﬁaumnmmmmuﬂﬂuﬂmwmmmﬂﬂwmnﬂmﬂmmuﬂ’nnﬂaaﬂnumm

a =1 " ' @ '
npm dependency iwﬁquuﬂﬂmuﬂamamqmﬂmmm?mﬁamnan

g

wTu"lmumsm‘h/im!15mnUumsvmunﬂuunwwuwawﬂLn 'Vln anNYUS LT’INVﬁllﬂ‘UTﬂiQﬂ']S’NUU

aw é’vlw

' W Yo 7 s & ' = g ¢ A 4 A4 aa
‘Vnuﬂ'Ii]ﬂzvlll‘lﬂiﬂﬂiziﬂ‘h’u‘lﬂﬂﬁ'Iu'mUuIﬂfJﬂiQ UANINNUIGU ﬂNﬂﬂﬂzlﬂuﬂigiﬂ%ulu94ﬂ1ﬂlﬂﬁa\iuﬂ'ﬂﬂﬁﬁ

o

= 2 ' A o o s 499 a e) Y 1y o
NWAUIVU i]zﬁul'liﬂ‘lﬂ]mﬂa@uﬂw@lLIV]fE]‘I/\IﬂLL'JSGl‘Hﬁ'lll'liﬂ’Jlﬂ313W£lﬁ$£‘lﬂii}ﬂiy1ﬂﬂ1u'ﬂﬂiﬂ'Jﬂ'luﬂ’ﬂilﬂa?]ﬂﬂEJ‘iJEN

npm dependency Idod1esa lia

¥ ¥
[

2 Hqoq 9ot aw 4 " YY1 aw '
mﬁuﬂizmm 40 AU 5$ﬂ$£3ﬂ1ﬂi‘]’5klul‘lﬂ§'nlﬂﬁ’mﬂ Uszanm 1 ‘H'JIIN ADRVITININY 1mu

a Y w

5} ' n”
AWMU

1 v a v 1 a v v IS av v 1 dvd
mamuaaaulodnsiumsidaudn il"N’ﬂuﬂi'JHﬂﬁ’mElﬂdﬂf:)‘lﬂuﬂﬁ)

=

ya o VY Yo aw I v 9 ' v '
1) Aug3tvezuniasdidrsounsise eoniilu 2 nqu lAun AQUAUAY (controlled group) HATAQUNAAGY

Y Y 1 @

' g ' a 4 v Y
(experimental group) Taungualuguaziiungufids13sen 185 udoya software vulnereability #11

t

4 ' = ‘oYY A d
1n503il0 GitHub dependabot ua:ﬂqm’maawznﬂunqugm’ﬁi:maﬂﬁ"lﬁ' UUDYA software vulnerability

' 4 A .
WIUINTDIND Achilles

Yo g VY Y 1 2 &£
2) 'Jﬂﬂ‘h’igﬁﬂi'}ll U‘VNﬁfNﬂﬁll‘ﬂ]ﬂ'.l’ll]lf’u‘li%ﬂﬂﬂﬂlﬁ'ﬂlﬁ"ﬂﬂﬂi ‘Vl'U'Vllﬂﬂ“Uuﬂ']ﬂ software vulnerability

v

' dy v

wazvhms dumeididiiaiseiannudle doyaii 18 uaziimsuddym

e ¥

2 -
TIUMIVIVTTTUNITIVWUAUT N

ninedvuiing (MU-CIRB)

T¥alA3anTs MU-CIR...

> 1120, 7564

Participants Information sheet (age 18 years or older) version 05/03/2021

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /95

MU-CIRB ANZNTINNFIIUETTUMTISTHAUEIURAIL A INendBaTing uflu¥uii 21/02/2021

u:)nmi?ﬂmaﬁm%’uéﬁfﬁau%’uﬁmq o Tl (Participants Information sheet (age 18 years or older)) WO 2 vea 2 win

a

Yo o a A o oA A) ' Yo o
3) fudisvimsuSeuiouransnaass ieAny1iuaieiie Achilles annsamelitinwannllsunsy

i$hlauazszalaymidiu software vulnerability 18@n31 dependabot 13 i

&

4 A a 2 A g aw A Y 2 o Yot = o o aa £
ANUTYINDNITINAVUILBIVITINATTIVY AD NIUBIVZANDADA Vlllﬁll'lﬂblﬁl ATUA NUUWAIDIN MUNTNTNIL
' 5 v yy A oa
"hma‘ummnmmuuulﬂ PRIGH PN

o

' vy - 1t ' a A 9 ' [
W1ﬂﬂ'\uvlllﬁﬂi'flﬂcluﬂ"li'Jﬁ]U'Llﬂﬂxhlllllwaﬂﬂﬂ'\iljUuﬂTﬁﬁﬂuﬁiﬂWu1Wﬂ‘]iﬂ]u‘ﬂﬂﬂﬂ']ulm@ﬂ']\iclﬂ

a vyl = v ya o

a a ' A a 1 8 a 5 A} a o) v
mindiomsiialnd mn"luavmmﬂ wsa:mani:“nume%m‘lwaamummmzﬁ'ndmiimﬁ NMUIZUIINIVY

a o

'
v =)

Taesafiga wazmandidedeslefiezaouaniimertesiunside niemniamamaiuiduihe wievinia
] av o a 4 o o o ¢
mgmasilifalszaadnnms3feiuim imuensenadeldi as. fosen Indanyana mnaulnsinm 089-1763372

lanana 24 Falug

o 9

a oy A dy = 3 aw A ga a 1 o gd & Y o Ay i
‘Yl']ﬂLﬂﬂNﬁ‘U'NLﬂfJ\lellJWQﬂizﬂﬂﬂiﬂﬂﬂ'li’mﬂ nuRIvY &’WWWI@ﬂ‘UQL‘HU’J‘B'IQJLWEW]?'Jﬂﬁﬂi]fﬂﬂ'lﬁﬂﬂlﬂﬂ\‘lﬂ‘lﬂ'w%

¢ e w1
Uszaeanninmsateainan

2y = 4 9 o aw 4 A g g adg a 1 yya o
‘H'Iﬂll"U?NJfNEli]‘VlﬂgﬁﬂUQWNlﬂﬂ’J“\JﬂﬂﬂUfl'li’Ji]fJ ‘Wif]lilﬂ“IJ'I@IW‘U/H!‘Uﬂ’JEJﬂ']ﬂﬂWi?ﬂﬂﬂWuﬁTUﬁﬂﬂﬂﬂﬂqﬂVl AT, YO

B9 $nvanvana vinoayInsdwd 089-1763372 1dnaea 24 42 Tua

' & Yo =
maouununeg @y bt
P QYT A Y Y aw Y o oa =
flFengiins umsitvazaes uRATo LD il

@ (2 k4

a9 4 a ¥y ¢ 44 9 o ao & 9n 9 g yoa e
ﬁ'lﬂuﬂlagﬁiwulﬂﬂﬂﬂﬂ’]uﬂi$Tﬂ°ﬂullﬁgiﬂﬂﬂlﬂﬂ'3'ﬁlﬂﬂﬂﬂfni') gU W2 Uﬂxlﬁ]\ii'ﬁﬂi‘\ﬂiﬂﬂi?ﬂﬁq‘lﬂﬂﬂ‘uq

b v o o

' au g4 o " a ' o N a
Foyadaudaveafidrsiumsisvezgnitusne 1y hidlamsdemsisuziiusioyana uaszssnuRam Iy

o

g 9 : P} Y 9 1 aw g = oy Y 1 Yy A
Lﬂuﬂlﬁ)iﬁﬁﬁ’lui’lﬂ ﬂﬂyaﬂmil’dl‘lﬂi?nﬂ1i’mUlﬂuﬂﬂl.lﬂﬂﬁ’ﬂ'ﬁ]llﬂiu:uﬂﬂfﬂﬂ\‘iﬂijmﬁﬂlﬂﬁ'i’ﬁ]ﬁﬂ‘ﬂulﬂ 1¥U é”lﬂﬂll’elﬂﬂ,

g

v

o A s o _da a g v
TOIUY ¥IDDIANTVOITTNUNUINASTIVADY, AUTATIUNIVIUTITUA Wuau

9 o @

P caw aa £ au & 3y v "y Y. q.9 ' 9 Yo
Qﬁl15’311ﬂ1S’Jilfjuﬁﬂﬁﬂﬂu91’mﬂﬂmﬂiﬂ‘ﬁﬂﬁ’;i]tlm’f)glﬂﬂhlﬂ Tﬂﬂ"lmaumﬂwmmmwm ua:mi"lmﬂnim

A v

¥ H [
mM3isevtenounioeninlnsamsiseil se lufinansznudemsuimsuazmsinniauadseglesuualszmsla

Y

v .
Tnsamsa Uﬁhlﬁw‘llﬂﬁ“/‘ﬁﬂim'l%’ﬂ‘if]ﬂ%Tﬂ ﬂmzﬂiiijﬂﬁ‘ﬂiU'ﬁiinﬂﬁ’mﬂiuﬂuﬁ?uﬂﬂn urnnneasuviag %Qﬁ

v @

dninnuegh dninauelmsuduminedouiiaa auuynsumuma o 4 dwama suneynsuuna Sandauaslgy

Y 1

73170 Moy INsANY 02-849-6224 ,6225 T35 02-849-6224 M IasumsUFuia liassaiszy 13 iuaunse

a

a 1w Ay v = o dY 9
ANABNULTEEIUANZATIUMTA nIoRUnU "lﬂﬂ']llﬁﬂ'luﬂllazwu'lﬂmﬁliﬂiﬁ‘V‘WﬁJ'Nﬂu

DA A = £ y)
‘ll']WLinulﬂaTlﬁ1Uﬁ3mﬂﬂjumﬂﬁ.ﬁuﬂiﬂﬂﬁullﬁq

Participants Information sheet (age 18 years or older) version 05/03/2021

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix A / 96

MU-CIRB AUTNIIUNTIIUETTUMTINBIUAUTIUNA M Innduniing uluTuii 10072020

Hiﬁaumamﬂmﬁuﬂaumaag’{ﬁhi'm‘ii':’uﬁmq o= T 4111 (Informed consent form for research participants (age 18 years or Y 4 Y
HUIN 1 V83 2 Hi

older))
o A a YY1 au a2
ﬁu@ﬁ@!tﬁﬂi!ﬂﬂu]ﬂuﬂﬂ‘“‘uﬂﬂﬂl‘lﬂ‘i?%ﬂﬂﬂ‘ﬂﬂﬁg o ‘IJ "U‘Iﬂﬂ
(Informed consent form for research participants (age 18 years or older))
. v H d‘
] duaitiy L] s 050 ReuAT e F1TL A A

DUU..

svialasudld....

a v Ao 4 act A o A a o 'y o
‘Ummﬂthﬂu'IUuEJEJ;JL‘U‘li’mIﬂNmﬂ%EJLSEN RRGIGH LﬂﬁaﬂllﬂLWﬂﬂ‘ﬁ'uﬂﬁ']x'ﬂ‘]faQTﬁ'Jﬂ']uﬂ'\nu'ﬂaﬂﬂﬂﬂ

2 ad <
mamuwmn"lamﬁ

. .) .
Taodmud1 185 unswseazBeafoduiinuazyasnunolumsisesazBoatunounieg Nezdes

A

a wa Yo a aa s ' Yo aw a4 A = & v 1 aw
ﬂgﬁﬂ'ﬁi'ﬂ‘lﬂiﬂﬂ'ﬁﬂgﬂﬁ 1J3ZIU“BHV]ﬂ']ﬂ’J'm:;’vlﬂﬁUﬁJENﬂ'ﬁ’Ji]EJLLﬁ$ﬂ'ﬂ§JLﬁEJ\W]E)']i]ilglﬂﬂ‘lluil'lﬂﬂ'ﬁﬁﬂi')llﬂ'li'ﬁlﬂ

2 o a o - = Yo 1 qui Ay Y Y v oa '
5’3“1’]\1“1«!')7\1\3{1@\1ﬂullazllmﬂ]ﬂ']ﬂ!ﬂﬂﬂuﬁﬁ'lﬂﬁ]u ﬂ’\ﬂ@u“‘ﬂu‘ﬂﬁ]z‘l@iﬂ ﬂ1‘1‘11%']ﬂT‘I‘U’]Wm”m3@']@\151]Wﬂ‘]5@1ﬁ]’]fﬂ@\1
)

' Y
Tavl&emtennuiiiswazdvaogluonasusdishisumsiselasanen snnsdaldsudetuonazaoudo

o @ Aaw g & PP a w1
aedonniaminTassmsaseslunBeudeouds Tahifidalatategowsu

v
=1

FrwddaeinsladsuluTasensited

Y v Yy 2 a 4y 9 Yo o L a2 Y ¢ 9 1 aw
ﬂWWL%ﬂﬂ‘ﬂﬂ‘Uﬂﬂﬁ‘VI‘ﬁWﬂWWL%1ﬂ$1ﬂ§UMBHﬁLWNLﬂMWQ‘V]NﬂTuﬂSZIH‘]ﬂuuﬁ:ﬁIﬂH%1ﬂﬂ’liwﬁ’mﬂ1if]%ﬂ

A

o A v awyy = g v, Yo 1
ngﬁ'liﬂiﬂﬂﬂu@l?ﬂiﬁ]ﬂﬂﬂﬂﬁ'éuﬂ'ﬁ’l‘ﬂﬂ‘lﬂ NLND Tﬂﬂﬁlﬂ'l'ﬂllwaﬂiz‘lﬂllalﬂ“]'V]ﬂl']WLi]']ilgulﬂi‘lJ@la‘lﬂcluﬂu'lﬂﬂ o

{ o) Y a

a Y ya o Y Yo av ' ' o 3
EJ‘L!EIE]llnl‘ﬁ@,’Ji]ﬂj‘lﬁlﬂﬂﬂﬁ’JUﬂ’JﬂlEN“U']WL%TWllﬂiﬂiﬂﬂﬂﬁ’mU LWIﬂ:‘,thLNEJLW‘IiGIE)ﬁ'I‘E']‘Jm$L1Ju51f.|‘1éﬂﬂﬁ Tavag

U

o g aw 1 ¥
eeifudeyalassiuanmsdsominiu

v Y a a yt ' A4 ' a v Yy a &K ' av
winddeImsiailna 3an"l‘uﬁmamﬂ ﬁiﬂNNﬁf\‘a’z‘ﬂﬂﬂi’)ilﬂnl‘i]‘llﬁlﬂsll1W!ﬁ]1!ﬂﬂﬂl“i$ﬂ?1&ﬂ]i?%&l

k2

% v Y vaw a A % Yy Ay v P av A a Yy A Ay
‘lﬂwm1%3&5‘“\19!'3@315]21!5'37]@191 uaz‘mnmw&mumamaﬂmnmnll"’lmn’e)mlmmnﬂﬂ ‘ﬁif’)ﬂ1ﬂlﬂﬂﬂﬁ‘lﬂ\1!ﬂﬂﬁﬂ‘13~l

U

=< < Ay & o Y y_ v v a 1w @ ¢ v a v
N9 529N 1NMSIVBURNVIING T TINDDZTNIDAANDNY B.A5.FBEIA Invanyana ﬂmmmiﬂmwn 089-

1763372 A00A 24 F21U4 —

% T

2 Py
sumisdesTsun1sadluauganan

wmnedouiing (MU-CIRB)

SWalATaN"T MU-CIRB.

-
Fun

Informed consent form for research participants (age 18 years or older) version 10/02/2021

Faculty of ICT, Mahidol Univ.

MU-CIRB

a ao v a o oA
ﬂm:ﬂiiﬂf\15ﬁiﬂﬁiﬁuﬂﬁ]ﬂfﬂﬂﬂuﬁ]\uﬂaﬁ UNINLAUNTA

B.Sc. (ICT) /97

ufluTuh 10/07/2020

ﬁ{faﬁauimamﬂu1ﬁuuamaaé’ﬁfﬁ'w’iﬁ’uﬁam o2 ¥ Al (Informed consent form for research participants (age 18 years or

older))

wiNh 2 ¥93 2 win

o a wan 1 1 Y 9 a
windmd 1d5ums§ia lias s Idszy 13 luenassusedidimmsd

o

38 Twzausafnne

fudsesuamenssumsniosssunsaseluaunedunu Idhdninauaugnssumsisesssumsitsluau

, o v a a v a o @
TIUNAN mumwuaﬁmiuﬁ Urnneraguviag neav InsAnM 02-849-6224 ,6225 Insa13 02-849-6224

Y. Y 9 Y 4 Y Y 1 aw o A a & Yy K
‘U'IWﬁﬂl‘l]ﬂi]‘il’t)ﬂ'ﬂiinlul.’e]ﬂ’cT']i‘]fLﬁNEﬁl'li’]lJﬂT‘i'Ji]EJ LLﬁSﬂ’i‘LNETE]Ll.ﬁﬂ\‘imﬂu1ﬂuﬂ'€]uuiﬂﬂﬂﬁ6ﬂuﬁ’,} 09

A A v
aneilere’ld

Tunsdidiing

umsase ldaunsesumisdel

] v
9

Y gt 1 9

U

.. 3918 aaoiiode 13Tl uwenu

Informed consent form for research participants (age 18 years or older) version 10/02/2021

A
... SN £ TP
@ v a
...) (3. BYYIA INVALIFANA)
1 aw 9 Y Y =Y n/ Y aw
i’Jilﬂ']S’Jﬁ]EJ/@LmuTﬂU“M)U‘ﬁ3511 :flwmay‘mmmammauﬂau/mwuﬂﬂnmm%
T foeereeenes Lo . UM A

dinemdennuisuaunudidisaunsivede........

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Appendix A / 98

MU-CIRB

AMENITUNITILETTUMTIVBIUAUAIUAI A Indentiaa

utluiudi 10/07/2020

mnerﬁ?xuméﬁhéau?é’u TaumsaeunuuEeuMIn (Self-Administered Questionnaire Participant Information Sheet)

v & v
HHIN 1 983 1 1N

PNM TN INIE JaemsneulUUTR YN

(Self-Administered Questionnaire Participant Information Sheet)

P) o = Y &
L] duniiu L 55 U MRS IR SR A A

BEY FRouNULTeLNNNIY

o d v a o 4 a o a
Fau nszru a3, Foosd Sndanyana 010150Uszdnuzmalulabms aumeiazms foms v Inndsuiiean i
¢ o ao 4 aa 4 a4 a 4 'y o 2 ad A 02
AnuYszaadiauite Go1 efda: nTesdamenisTinsgdealniduniudasadvvouduiionlauiis- aa
sz TemiRmadez 1&5ude (1) wait ldnnmsisazgaldifie farlsz@nsamusunseaile Achilles inzanuiianelaly
v) Y Y. _— o ° 9
msldunsesiiolumsdunuazidn1e software vulnerability t1ag (2) fuuziuasdaiauoiuzNMIABULLUABUNY

o & i a 4 2 &
wgminninsamedsulyunsesiie Achilles IHABIIY

¥
av A ' a o

' Yo o Y 9o g @ o s o4 o ao & &
‘Vl'luulﬂﬁUL‘IfﬂJGlWL‘lﬂi’JUﬂﬁ'WEJL!L‘W‘)"IzVI'IuLﬂuuﬂWﬂluVﬁawﬂLl.'ﬁ'Vlllﬁﬂ‘HﬂlH‘HNW&’ﬁllﬂUTﬂiﬁﬂﬁ’li]ﬂu Tumsil

o

Yo o o g ¥ d 9 ¥ A = o 'Y o

N’J"l]f]llﬂ'J'Ill‘\]'l!ﬂuﬁf)\uﬂﬂiﬁlﬂi'JiJ‘UE)HﬂIﬂﬂsl‘lﬂl.u'ﬂﬁﬂ’ﬂﬂ'mliﬂq “LUJ'Uﬁi’)'1Jﬂ'lllLﬂU'JﬂU‘KﬂQIW?ﬂTuﬂ?]ﬁﬂﬁﬂﬂﬂﬂ VB
A4) . da & = = . - A A Y =2

“HEJV\]'VHI.'JS (Secunty Vu[nerablllty) NAAVUIIN Vlﬁ‘]Ji']i"UE]\ﬁJﬂﬂa‘Vl 3 (Thxrd-party llbrary) LLﬁa‘iLﬂiﬂQﬂﬂ1uﬂ1iﬂi’ﬁmU” BN

Usznoudaemain 5 dau $1uau 15 9o Inmlumsasuilszua 15 - 20 it §ideezvefuuuuaeuawauTasmsds

o Y
DINANINUHIY

ifiosnuuumeunulsznoudissinumaisdau Savenrwnzanliiufinsonaeunuanudnuesimld

& v o 2 o g o o Y a o3 = Y&
unnngea Iﬂﬂﬂ]ﬂymm:ﬁﬂ1ﬂﬂﬂ‘ﬂiﬁnﬂﬂ%gﬂﬂﬂﬂﬂLﬂuﬂTﬂJﬁ‘U uazi}zumﬂﬂumnmﬁwwamsﬁﬂmﬂiauiﬂﬂaanm

2

g ao = ["y A ' b A ' ° &y
Wunwswuean1sIvumniy m‘luuwani:wﬂﬂ ADRADVHIBDNUIYNIUYDIRADY Lummﬂ‘lummsnummnﬂu
¢

v Y1 aan £d ' o 9 y & ' ' A = = o Y oA '
lm:,’iN‘HWQGIfJ‘UUlﬂ Vnuu’m'lﬁmz"lnmummm@“lmlwm ‘14'lleWu"lllﬁ’lﬂﬂali]‘ﬁSﬂﬂﬂﬂﬂ‘ﬂ"ﬂ:ﬂﬂﬂﬂﬁnnuu Wii)llllﬁﬂ‘lj
¢

v &

2 o e ' a wa ' i oaa £ Yo aw gy Y '
mgevawnuaaei 18 Tavlifinanssnusomslfianula quesim vudidnsies likhimwnsidenldlasli

) Y
ADILVIUVANA

Qv a9y a 1

' o A o ao a { 4 o ¢
winid3nddeiidomduforsunisisenienuyae v musadndeasualdn aawndade as. Fuoen
v a o A N T v
snaansena lufuuaznmnyms vie Tnsdminanne 18 089-1763372

»
Tﬂiﬁﬂﬁ’)ﬁlﬂﬂhlﬁ’iu MINDITUITUIDIIN ﬂm%ﬂﬁi1Ifﬂii]iﬂﬁiiuﬂ'!i’(]ﬁ’ﬂaluﬂuﬂmﬂnﬂ1'31’181?1&11”’1@1?1 aninau

agf dninnuesmsvAuminnduuiiana auuynsuNMa @10 4 duamatel SuneyMsuama faniauasilgy 73170

£

oy InsTne 02-849-6224 6225 Tnsens 02-849-6224 winmulasumsd §iid hinsewiiszy 13 iuansodade

Uszsunssumsaniedunu Idmuanuiiuazmnomy Insdwidhadu

mamanwszﬂmﬁﬂ';mma:naﬂumsﬂammuﬁaumu

vauaaInNNLie

3. Fovad Snianyana

UMY 15330lunuganany

wwTingndbuling (MU-CIRB}

2021/b84. 1502

FHATATINTT MU-CIRB e st

w1148, 7564

Self-Administered Questionnaire Participant Information Sheet version 10/02/2021

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /99

APPENDIX B
ONLINE SURVEY

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 100

4/18/2021 wuusaUMNAzIRUZes TniduanNUanase 2aeaWinag (Security Vulnerability) finguan laus3209anafi 3 (Third-party library) W..

wuusauaNigInUzes nisuany
Uaanang ?lﬂﬂ?fﬂ‘l/\lml,’)‘i (Security
Vulnerab|l|ty) mﬂm?zlumﬂ vl,a‘]J’i’l’i?lﬂQ
ymanah 3 (Third-party library) LaLA5DY
finlun1snsasy

Survey about the software vulnerability from third-party library and Achilles tool for
detecting security vulnerabilities

* Required

1. NFUNEDNAENYBILUUFBUOIN *

Please choose the language of the survey

Mark only one oval.

A lng
Skip to section 2 (uyvaauaiuiAgInvgay lniduauasnss sadganuds (Security

Vulnerability) mAaduen Zausﬁ'ﬂawﬂﬂaﬁ‘ 3 (Third-party library) uaznsaeiio luns
A57991)

English

Skip to section 8 (Survey on security vulnerability from third-party library and detection
tool)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 124

Faculty of ICT, Mahidol Univ.

B.Sc. (ICT)/ 101

wuusaunNAgInLges wisuanulaands 2aegawiuas (Security Vulnerability) fifinguann lausi3zasyaaaii 3 (Third-party library) &...

LUUEDLNN
WannudasTng
AUAIN
Uannns 2894
NS
(Security
Vulnerability) i
Wingwann
laus3aaiyana
3 (Third-party
library) uwaz
wspedialuns
M99

Lmuaaumumﬂumuwuwmam ITCS492 Senior Project Il amuzine Tulad
ASAUNALAENNTHBANT AN INENdBNTaa ﬂmvmmm'l,mwmmmimuaslumi
Funmuazuannazas Iniguanuiaaadzaas npm dependency daiiuga
ﬂiumﬂﬂnmuuuaaumuumuL‘waaaumum’mmmunﬂuﬂmmwmmnﬂwumn
g0 Inisnuanlaandaans npm dependency sInAIANNAALAUADAIBE19AT
Fauasasiinfanand

iasnnuuuaauanlsznaudismaunaizsin Jezaadnungan Wiriufiarsan
aumuANd lavinu linniiga TmmlauaLLavmmaumﬁumwnnﬂnUﬂnJu
ANMHAU memmm'lﬂumsamswmmamsﬂnmﬂsquTmﬂaaﬂmmumwmwm
asiserinfu Selddnansznula 9 AnffapuniawiIBIIBIRBY isannla
aunsaiaduAuIzeaaula muuamsmﬂ,umaummwa'lmmwm ¥n
viwliaunelawsosadafissmauaaniy vialuneunuusauaiinaaasild
Taglaifinansznusanisufiaenla 9 2aeviu inudandnezlidnsanisise
flalaglidasudanaua
wingidrsniseidesdeiisadunisisendeusudauain snansafiasedauaw
6% as. Fo89d Snaanzana (a19715891U5n81) danufinace auzma Tulad
ATEUNALIZNNTADINS AN InaNdanfing 999 auUWNSNAUMATE 4 FIuaAAN
21 gnawnsnana , 3aniauaslsn 73170 Usznelng luiuuasziiaisianis vie

PP

Tnsdwrifiansiald (02) 441-0909 n3adwwa chaiyong.rag@mahidol.ac.th

T,ﬂ<Nmﬁs’i’ﬂﬁlﬁ%’unwsﬁawimﬂ%U$aqaﬂn ADIENTINNITITDETINANTIVE luauaag
arIngnasuiing taait MU-CIRB 2021/085.1103 duinauagi d1iineu
25NITUANWIINGIABNAND AUUNNSNUNA F18 4 GIUAAIAIT BUNDUNENUNA
Faniauasgn 73170 vangan Tnsdwy 02-849-6224, 6225 Tnsans 02-849-
6224 mnmulmumiﬂgum"lumqmwiwula HuaNIsafaanllses1unsIH
NTINTBEUNY I@mmaauiinaznanzas Insdwigredu

ppaUNIzAMTingINFazIan lunsnauuuLFaUaN
1419817 3011550 ghaRWan]

w9d1 AWsanal Tuilseiasy

uE ARUAY U)

as. Faasd Sndanana (8191587U5nmN)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 2/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 102

4/18/2021 wuudaUaMAEITLe Tniduanaanasds aswaniuag (Security Vulnerability) AiAnsuan lous132091AAaf 3 (Third-party library) ...

NENSTLANEIETINIIE TnansaauLuuEa NN

MU-CIRB ANENTIIMI0IossumM I sulunudIunma aminoduuiing ufluiui 10/07/2020

mnmsiuoaé’u’h:’mié’n Taumine 131 (Self-Admini Q i ire Participant Information Sheet) Wi 1 vea 1 wih

PNMIBIaEtnT IV TaemsneuuuDaR UM

(Self-Administered Questionnaire Participant Information Sheet)

— :
X] duniiu [mstsunlaounsai. . Fuin.. 11

Bou fnounuuaounamniu

a ¢

&1u nszHu As. Foed Sndanvana a1sdlsziinuzma TuTatms aumauazmsoms umanndouiiaa ii
7o aw & aa 4 a A a 70 57 o d ad a0 &
amszaaminnudie eq efde: mdesiloonsdnngivesInidniulasasvuouduiibnlans s
dsyTomffimanez185uio (1) wait Idnnmsisoezgnidiitearlszansamuoaniosilo Achilles inzanufiawalalu
Y & Y v o o o)
m3lFamuniosiiolumsdunmuazidhle software vulnerability uag (2) fuuzihiazdomuoiuzNNMABUILLADUY

- g 15 ; i
wgminninsuiolfulunieaiie Achilles 1At

¥
& o o

i e i 2% i S il s y
wuldsudg s wmsiseiimagiudmindannyerduniillidnyuzminzaudu Tnsinsideil Tumsi

Yo o ot o g Y g v Y A) 'y o
unumwmnﬂuwmmusmﬂuuagaTﬂuhuuuﬁaummsm “ll‘lJ'lJ?fi)'lJﬂ']lJlﬂU’Jﬂ'Ll”liaQTﬂ'lﬂ'luﬂ’J]lJllﬂ‘E]ﬂﬂU YDl

4 <

a & a ‘ o 5
ol (Security Vulnerability) finadiun lausiivosynnail 3 (Third-party library) uazin3eailolumsnsandu” aa

Jszneudauminiy 5 dau s1uau 15 T Mnalumsasuszinu 15 -20 Wil FAsvazveSunvuaouniuiulasmads

Bumndaiindive

iilesnnuuumeuaunlszaeudisiimunatodin Saweanunganliviuiinsaaeuamanudnvosin i
& v . 2 < o ° a ¢ 2 [t
niiga Tasfeyauazmnouimuazgnialadunimdy vazaziunlflumsiinneisamsinnaiiilaveonin
4 wg B v P v 4 . PR
Wlunwsamvesmsisominiu 39 hifinansznula qdedaouniomisvnuvesdaey tiosnn licunsniniudu
P Y aa £d i o 9 y & ' il 4 2 o d o 2 A .
wzaandaoy 18 iudianiier linoudawdeladenils mnvim liruiwlwviedasaiivzaoudonniu wiolisoy
2 - ’ . o e T %o .
uueuaimuaasi 14 Taohifinansenusemsfianula quosing indansies hidiwnsidei 18 Tao i
doaudumqna
Y Y au Y o & o au A a 21 da o <
mindidrsnitulideadunursunsisonieuuuaeuny aunsadadoasualdn aamidade a3, Fuued
$niansana Tufuuaznmsyms wie Tnsdminaade1d 089-1763372
Tnsemsiteitldsumsfinsaniusesnin augassumsisorssumsiseluauveannanndouiiaa dninau
agii dAninaueEmsuAumInodouiiaa auunnsuuma o 4 Muamaie Sunexnsuuma Jandauasigu 73170
Winuau TN 02-849-6224 6225 Tnsms 02-849-6224 vinvi Idsums Ui hinssamiiszy 13 iainsodade
Psgmwnssumsaniofum Idmuaauivazninoay Insiwithadu

ua‘uauws:ﬂmﬁn;mmaznaﬂumsﬂauu‘uﬂﬂaumu

vaumasnIniviie

3. Fooan $ndanana

Self-Administered Questionnaire Participant Information Sheet version 10/02/2021

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqlBU/edit 3/24

Faculty of ICT, Mahidol Univ.

B.Sc. (ICT)/ 103

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

2. aasznausndnle *

Mark only one oval.

IS/ Wndne

ey

€

@

nazanguIs (Software developer)

Innaaau Tusunsuaanfiaas (Software tester)

Houauazdnnisia3adnaaanfiaimes (System administrator)

n338 (Researcher)

3. aaddszaumsainsidsu Tusunsuawuinle *

Mark only one oval.

6Lhau-11
1-21
3-47
5-61

NN 61

4. qaldnwmlalunsiaunganduds *

Check all that apply.

PHP
Java
JavaScript
NET
Python
Ruby

Other:

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit

W@enmaauaNlanans (Security specialist)

niasnzvigas nd lugeanduas (Vulnerability analyst)

4124

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 104

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

5. amldnisdanisuining (Package manager ecosystem) la *

Check all that apply.

Composer

Maven

npm

NuGet

pip

RubyGems
Other:

nsPes Tnisuanndasade (Security vulnerability) snansaifinduldanwatsunas
Tidnasinanane luldazes Tuaians viaiannnaisen18lausizaiyaaaiiay
(Third-party dependency)

i‘]mm‘ﬁmTmmum'muaamzmmmmnnﬁ‘s‘liflamwsmmumaﬂmuuu 21ainauld
. mnlam“ﬁmawaﬂawawTﬂﬂmq (Direct vulnerability) wsamnmwlamwuaﬂaﬂ
Tusaau amfusen1Flavsisusni Tmilmmmimmnanum‘lmnmﬂumﬂiﬂwmlamﬁ
ﬁaut%luﬁ’] (Chain of library dependency) mm‘mnanamwunwmTmmumwﬂaamnﬂme
8aw (Indirect vulnerability)
wyydaauaN
LmuaaumuumLuumwau‘lw-ﬁmTmmumwﬂaamnﬂ (Securny vulnerability) 4
mﬂﬁnnmi‘lﬂam’ﬁmawﬂﬂawmu (Third-party dependency) #19n14¢59 (Direct
vulnerability) uazn1edan (Indirect vulnerability) tWadnudsanuaszning
(Awareness) aastinWauzaNdLIT

6. ldsamaudiaaissduiianiudes lnisuanudasnns (Security vulnerability) *

Mark only one oval per row.

Tai

anany

Aty dAilu @A a1
ipg nang NN fiqo
anldanudraniugas Tniau

anulanadszasrandLg

(Security vulnerability) AAnduan

lausdznsyaaaiianu (Third-party

dependency) luszaula

v o

anIfmnandiy Security

vulnerability MAnguanans loezes
aws15 (Chain of dependencies)
284 Third-party library luszaula

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 524

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /105

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

7. lunsdnsuauannadn n1sadiaa Third-party library Ao ldanudiagynuasle *

Mark only one oval per row.

lai e degide dey @
ddty ipg a9 N figa

uradayaras lniauay
Usaadafinuuazsng lugiudoya
Common Vulnerabilities and
Exposures (https://cve.mitre.org)
138 GitHub Security Advisory
(https://github.com/advisories)

FEAUANTUUTIDIZDS Trianu
ANNUFaAAY

AU a2z TniAuAINy
UaaadsnuNesdTunanzasranduls

AMUNTERINBS T AT TR T
(Vulnerable version) Wisufutiasau

#lesunsurla (First patch version)

Wuzae lndsmuanudaaadafiiie
Auny (au lusiasszas Tui=)

ANAZINLASLEAINANI N

Tusasuznda laansanislFiasasiia Achilles udmaudrnnduans (B laaunais
awsnglan https:/youtu.be/BRMhT vmu_0) aauannnsanaasd 14eu Achilles Tool lai
https://achilles-sp.azurewebsites.net/

_ http://youtube.com/watch?

v=BRMhT _vmu_0

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 6/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 106

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

MuAlpEeNsLERINatas Tninuaulasnis (Vulnerable dependency visualization)
(MwaunatBnaIN1Tag laf http://bit.ly/achilles-visualization)

<
—

L / A minimatch@22.0.1

\

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 724

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /107

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

MuAlpEeNsLERINatas Twinuaulasnis (Vulnerable dependency visualization)
WSaNADBUNE (NMWAUALRNEINISAG LAT http://bit.ly/achilles-tooltip)

minimatch
Version: #2.0.1

Serverity: HIGH |||

Version range: < 3.0.2
GHSA-hxm2-r34f-gme5
CVE-2016-10540

Learn more

8. aoudnlamsuaninazngas ImauaNulasadBaINNSLEAINEMBNTINALLIY
(Vulnerability dependency visualization) luszaula *

Mark only one oval.

laiizn1a 1 lanavum

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 8/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 108

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

9. dwlafinuAningidasnisAtadunativaLin

Check all that apply.

TaifasnsAasunstintis a4 Tninuanulanadan1enss
(Direct vulnerability)

s¢ Tninuanulasnsaniedan Fape nuauaniulaidaiau
(Indirect vulnerability)

Other:

extend

Version: *3.0.0

Serverity: MODERATE ||

Varsio »=300,<302 |
GHSA-qrme-fj45-qfc2
CVE-2018-16492

Leam more

Aasunefinigin (Tooltips)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 9/24

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 109

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

10. audAwusiANGNEUEaIMIUNISuEAINa Vulnerability dependency visualization
niald

LUUFEAUDNNAEIAUSIENUEDY IIsuANNUaannie

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 10/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Appendix B/ 110

4/18/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

Tdsa@nsnwmssiesganzes nisuanndasasizeae Achilles WdInaLAIDINAY
a9 (MwannaLinannsag laf http:/bit.ly/achilles-report)

< | Achilles example-user Logout

Summary

1immer@7.0.5

Vulnerabilities

Porentialy dnarsole
Sewiity

‘inerable Version:
Patch Version
‘irerablity Chainng:

Winecabiities s sdvisory I

CWEs
Dependency to be updated:

Updste dependercy to latest version:

Potentialy Winerable:
Severity:

Vunerable Version:
Patch Version:
Winarabiity Chainig

Wdnerablities 3nd advisary link:

Dependency to be updated.

Update depancency to latest versian:

Potentialy Yudnarsolke:
Severity:

Wunersble Version:
Patch Version:
Wdrerabiity Chainng:

Winacabiities sexd sdvisory link

CWEs
Dependency 1o be updated:

Updste dependency tolatest version:

1 minimatch®*20.1

AT

N .
()

ll\»»_/’

Total vuinerabiities: 3

1 extend@ 300

immerg TS
HGH
<n01

801

O—@

omct re—g0s

GHSA-Samh-28g-xtei
CVE-2020-28477
CWE-a71 ModAcation of Assumed-lmmutasie Dsta (WAID)

i IS

Bon

minmatc3*20.1

e apurche30 w500 g1

GHEA-ham2-r34t-qme
CVE-2016.40540

fincup-5ne@-0.30
400

alendH 200

>2300,<302

a0z

L0 @

GrA-qume-45-afe2
CVE-2018-16452

CAE-200; Uncoetrolied Rarouss Commumation
anurncig-132

152

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqlBU/edit

11724

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 111

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

1. szavzasanudn laliagugsieaudss Tniauanulasadaaiuuu *

Mark only one oval.
laivgn laras

1 lavianum

12, @R IANLANE RTS8

NMINLEUYaINI5 15A5a98a Achilles

13. nMsSuzaIf laanBauazmngnes189u2pA5dianTIdaLLATS 189 ULDe 11
fuaNUanasia Achilles auAnintasasiiaasnaidfivs: leaiaanuaaninias
Wieele *

Mark only one oval.
1 2 3 4 5
vinafige W nfige
14.

amazanau leagels vinlginsasfia Achilles wazwuin Tusiinzasnmiizes Twisnu
ANulaanie *

Mark only one oval.
Mnnudtinalausiafifizes Tnd

danfiezlislinnlausanidges Tns

Other:

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 12/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 112

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

15. Tseedunsiadnivinlugadudaniazlislnalaussiifizeslnd

Check all that apply.

P

mnstinalausianages Tnionai Wlaa lu TusiSaiaanudaudald (Conflict)
nsuilages Tnidwanudaaadela ldeuiidanuddysuduusn
linmuinesdaudlalausaiiges Iniasnals

Other:

This survey is part of the ITCS492 Senior Project Il in the Faculty of Information and
Communication Technology, Mahidol University. We developed an Achilles tool for
finding and visualizing security vulnerability for npm dependency. This survey aims
to perceive the awareness of npm dependencies security vulnerabilities issues and
ask for suggestions and feedback for the Achilles tool.

Since the survey consists of multiple parts, thus we ask you to consider answering
based on your utmost understanding. Your survey answers will be sent to a link at
Google Forms and Google Sheets where data will be stored in a password-
protected electronic format. Google Forms and Google Sheets do not collect
identifying information such as your name, email address, or IP address. Therefore,
your responses will remain anonymous. No one will be able to identify you or your
answers, and no one will know whether you participated in the survey. The survey
responses will be used to analyze the overview of this research project. It will not
have any effect on your career or your organization. Your participation in this survey
Survey on is voluntary. You may refuse to take part in the research or exit the survey at any
security time without penalty. You are free to decline to answer any particular question you

. do not wish to answer for any reason.
vulnerability

from third- If you have questions at any time about the study or the procedures, you may

contact my research supervisor, Dr. Chaiyong Ragkhitwetsagul, at the Faculty of
party Information and Communication Technology on official days and hours or via
library and phone at (02) 441-0909 or via email at chaiyong.rag@mahidol.ac.th.
detection

This research study has been approved by Mahidol University Center of Ethical
tool Reinforcement for Research No. MU-CIRB 2021/085.1103 at Office of the President
Mahidol University, 2nd floor, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom
73170, Thailand or via phone at (02) 849-6220, (02) 849-6223 If you feel you have
not been treated according to the descriptions in this form, or that your rights as a
participant in research have not been honored during the course of this project, or
you have any questions, concerns, or complaints that you wish to address to
someone other than the investigator, you may contact MUCERIf Administrative at
the address and phone mentioned above.

Thank you for dedicating your time to answering this survey.
Miss Vipawan Jarukitpipat

Miss Wachirayana Wanprasert

Mr. Klinton Chhun

Dr. Chaiyong Ragkhitwetsagul (Research advisors)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 13/24

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 113

4/18/2021 wuudaUaMAEITLe Tniduanaanasds aswaniuag (Security Vulnerability) AiAnsuan lous132091AAaf 3 (Third-party library) ...

Self-Administered Questionnaire Participant Information Sheet

MU-CIRB AENTIIMI0IossUM I dulunudIuna aminnduuiing ufluiuii 10/07/2020

mnmsiuoaé’u’h:’mié’n Taumine 131 (Self-Admini Q i ire Participant Information Sheet) Wi 1 vea 1 win

PNMIBIEItn TNV TaemsneuuLLaR YN

(Self-Administered Questionnaire Participant Information Sheet)

— :
X] duniiu [msdsunlaounsai. . Fuin.. 11

Bou dnounuuaounamnnim

a ¢

&u nszHu As. Soad Sndanvana a1sdlszinuzma TuTatms aumauazmsfoms umanndouiiaa ii
7o aw & aa 4 a A a) 57 o d ad)
amszaaminnudie Seq efde: ndesiloonsdnngiresIniduniulasasvuouduiibn lans s
dsyTomffimanez185uio (1) wait Idnnmsisoezgnidiitearlszansamuoaniosilo Achilles inzanufiawalalu
v & Y v o o o)
mslFamuniosiiolumsdunmuazidhle software vulnerability uag (2) fuuzihiazdouoiuznNMsABUILLADUY

- g 15 ; i
wgminninsuiolfulgunieaiie Achilles 1At

¥
& o o

i e S 2% i S il s y
wuldsudg s wmsisoiimagiudmindannyerduiilldnyuzminzaudy Tnsansidseil Tumsi

Yo o ot PR T T v Y A al s 'y o
anumwmnﬂuwmmusmﬂuuagaTﬂuhuuuﬁaummsm “llUU?fi)'lJﬂ']lJlﬂU’Jﬂ'Ll”liaQTﬂ'lﬂ'luﬂ’J]lJllﬂ‘E]ﬂﬂU YDl

H <

a & a ‘ o 5
ol (Security Vulnerability) finadiu1n lausiivosynnail 3 (Third-party library) nazin3eailelumsnsandu” aa

Jszneudauminiy 5 dau s1uau 15 T Mnalumsasuszinu 15 - 20 Wil FisvezveSunvuaounmiulasmads

Bumndafindive

iileannuumeuaunlszaeudioiimunatodiu Saweanunganliviuiinsaaeuamanu dnvosin i
&) o 2, < o o a ¢ 2 =t
niiga Tasfeyauazmnouimunzgnialadunimdy uazasiunlflumsiinneisamsinnaiiilaveonin
4 T e P v 4 ' P
Wlunwsamvesmsdsominiu 39 hifinansenula adedaouniomisvnuvesdaey tiosnn licunsniuniudu
P Y aa £d i o 9 y & ' il 4 2 o d o 2 A .
wzaandaoy 18 idianifier linoudawdeladenils mnvim lisuiwlwvdedasaiivzaoudonniu wioliaoy
2 - ’ . o e T %o .
uueuamuaasi 14 Taohifinansenusemsfianula quosing indansies hidiiwnsadei 18 Tao i
doaudumqna
Y Y au .y o & o au A a 21 da o <
mindidrsnitulideadunursunsisonieuuuaeuny aunsadadoasunldn aamidade a3, Fuued
$niansana Tufuuaznmsyms vie Tnsdminaade1d 089-1763372
Tnsemsiteitldsumsfinsaniusesnin augassumsisorssumsiseluauveannanndouiiaa dninau
agii dAninaueEmsuAnmInodouiina auunnsuuma mo 4 Muamaie Sunexnsuuma Jandauasigu 73170
Winuiau TN 02-849-6224 6225 Tnsms 02-849-6224 vini Idsums Ui hinssamiiszy 13 iainsodade
Psgmmnssumsaniofums Idmuaauinazninoay Insiwithadu

'ummuwnqmﬁnjmmaznaﬂumsﬂauu‘uﬂﬂaumu

vauaasnInivie

3. Fooan $ndanana

Self-Administered Questionnaire Participant Information Sheet version 10/02/2021

Basic Information

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqlBU/edit 14/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 114

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

16. What is your occupation? *

Mark only one oval.

Students

Security specialist
Software developer
Software tester
System administrator
Vulnerability analyst
Researcher

Other:

17. How long is your experience in programming? *

Mark only one oval.

6 months - 1 year
1-2years
3 -4 years
5-6 years

More than 6 years

18. What programming language do you use? *

Check all that apply.

PHP
Java
JavaScript
NET
Python
Ruby

Other:

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 1524

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 115

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

19. What package manager ecosystem do you use? *

Check all that apply.

Composer

Maven

npm

NuGet

pip

RubyGems
Other:

Security vulnerability can occur from several sources including vulnerability from
source code and from third-party dependency.

Please read Vulnerability from third-party dependency can be direct vulnerability and indirect
vulnerability which occur from the usage of other libraries causing a chain of

before dependency.

starting the

This survey focuses on security vulnerability from third-party dependency both
direct and indirect vulnerability. We would like to study the awareness of software
developers regarding this vulnerability.

survey

20. Please answer the following basic questions about software vulnerabilities. *

Mark only one oval per row.

Not Slightly Moderately Very Extremely
concerned concerned concerned concerned concerned

How much are you
concerned about
security
vulnerabilities from
third-party
dependencies in your
software project?

How much are you
concerned of security
vulnerabilities caused
by chain of
dependencies in your
software project
(indirect
vulnerabilities)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 16/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 116

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

21. How do you prioritize each factor when you decide to update the Third-party library? *

Mark only one oval per row.

Not Slightly Moderately Very Extremely
important important important Important important

The number of vulnerabilities
that found in CVE

(https://cve.mitre.org) or
GitHub Security Advisory

(https://github.com/advisories)
Severity of Vulnerability

Relevancy to the business
requirement

The gap between your
vulnerable library version and
first patch version to fix that
vulnerability is large

Recency of vulnerability

Questions for visualization

Please watch the Achilles tool demonstration and answer the following questions (Link
for the video: https://youtu.oe/BRMhT vmu_0) We would like to invite you to use
Achilles tool at https://achilles-sp.azurewebsites.net.

I 1-://outube.com/watch?

v=BRMhT _vmu_0

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 1724

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 117

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

Visualization of vulnerable dependencies (See full image: http:/bit.ly/achilles-
visualization)

A minimatch@22.0.1

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 18/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 118

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

Visualization of vulnerable dependencies with tooltips (See full image:
http://bit.ly/achilles-tooltip)

minimatch
Version: #2.0.1

Serverity: HIGH |||

Version range: < 3.0.2
GHSA-hxm2-r34f-gme5
CVE-2016-10540

Learn more

22. How much do you understand this visualization? *

Mark only one oval.

Do not understand Understand completely

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqlBU/edit 19/24

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 119

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

23. Are there any parts that you would like more explanation?

Check all that apply.

None Direct vulnerability

Color of the nodes in each level
Other:

extend

Version: *3.0.0

GHSA-qrme-fj45-qfc2

CVE-2018-16492

Leam more

Tooltips

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 20/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 120

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

24. Do you have any suggestion for improving the vulnerability dependency
visualization?

Questions for security vulnerability report

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 21/24

Faculty of ICT, Mahidol Univ.

4/18/2021

B.Sc. (ICT)/ 121

wuusaummfizAugas Tniduanuanasie aasaaniias (Security Vulnerability) fitinduan lausi3aasyanaad 3 (Third-party library) W...

Please see the security vulnerability report and answer the following questions (See

full picture: http:/bit.ly/achilles-report)

@ | Achilles

1immer&7.0.5

Vulnerabilities

Potentialy Yudnaradle
Sewiity:

Wunerable Version:
Patch Version:
Vurerabiity Chainng:

Winecabiities s schvisory I

CWEs
Dependency to be updated:

Updste dependercy to latest version:

Potentialy Wdnerable:
Severity:

Wdnerable Version:
Patch Version:
Wdnarabiity Chaining

Wnerablities 3nd advisary link:

Dependency to be updated.

Update depancency to latest versian:

Potentialy Ydnariok:
Severity:

Wdnerable Version:
Patch Version:
Wnerabiity Chainng:

Winarabiities sexd sdvisary link

CwEs
Dependency 1o be updated:

Updste dependency tolatest version:

|

1 minimatch®*2,01

e A
- NG

example-user Logout

Total vuinerabiities: 3

1 extend@ 300

Sart By
immerg 75

HGH

<n01

GrSA-Sqmh-2bg-xtei
CVE-2020-28477

CWE-a71 ModAcation of Assumed-lmmutasie Dsta (WAID)

i IS

Bon

minmatc3*20.1

e apurche20 mg-100 g1

GHEA-ham2-r34t-qme
CVE-2016.90540

fincup-5ne@-0.30
400

alendH 200

>2300,<302

0z

O—0O0——C0 @

) P

GHSA-gme-fjé5-afe?
CVE-201-16452

CWE-A00; Uncomtrolied Resourcs Commumgtion
Qrure-ciB-132
132

[Downkssd Report

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqlBU/edit

22/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix B/ 122

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

25. What is your level of understanding when reading the vulnerability report *

Mark only one oval.

Do not understand Understand completely

26. Suggestion for the security vulnerability report

Questions for the plan after using the Achilles tool

27. After watching the Achilles tool demonstration and vulnerability report, how do
you find this vulnerability visualization and report useful? *

Mark only one oval.

Least useful Most useful

28. What would be your decision if you use the Achilles tool and find that your
project has security vulnerabilities. *

Mark only one oval.

Update vulnerable dependencies
Do not update vulnerable dependencies

Other:

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 23/24

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /123

4/18/2021 wwnFauamAgduTeas Tniduanuaaass answawiig (Security Vulnerability) MiAnaua1n laus3aesyaAad 3 (Third-party library) ...

29. Please provide some reasons why you would not update vulnerable

dependencies

Check all that apply.

Conflict in the code might occur after updating the library
Updating vulnerable dependencies is not the first priority

Do not know how to update the vulnerable dependencies
Other:

This content is neither created nor endorsed by Google.

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/edit 24/24

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C/ 124

APPENDIX C
ONLINE SURVEY RESULT

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /125

4/16/2021 wuudaUaMAEITLe Tniduanaanasds aswaniuag (Security Vulnerability) AiAnsuan lous132091AAaf 3 (Third-party library) ...

wUUFBUANEIAUgee TuisuAINN
Uannns wawaﬂmns (Security
Vulnerab|l|ty) NAAAUIN 1&‘US’]S‘2|EN
yamahn 3 (Third-party library) LaLLA3DI
finlunsasiasy

19 responses

Publish analytics

N3N EANNEIYDIUUUFD LN

® nnlne
@ English

19 responses

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 1/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C/ 126

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

anisznauandnla

11 responses

@ inSaw/ Undnun

[) cjl*?j"m'n'lmuo']"mm'mﬂaaﬂﬁ'ﬂ
(Security specialist)

© inWanzandwas (Software
developer)

@ iinnaaau lusunsuaauRLARS. ..

@ jouanazinnisiAIadngnaNg. ..

@ indassides Tnd luzendwas. ..

@ 1in398 (Researcher)

@ Cloud Solution Architect / We...

P o = .
anftszaunmsainisidau Tusunsuaunuinla

11 responses

®65ou-11

®1-21

© 3-47
18.2% ®5-67

@ »nnin 6l

anldne la lumswaunzanduls

11 responses

PHP 2 (18.2%)

Java —3 (27.3%)
JavaScript —6 (54.5%)
.NET 2 (18.2%)
Python 8 (72.7%
Ruby

TypeScript, Dart 1(9.1%)

0 2 4 6 8

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 2/15

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /127

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

3 s <
Ao lansdamnsuWnuna (Package manager ecosystem) 1

11 responses

Composer 2 (18.2%)

Maven 1(9.1%)

npm 8 (72.7%

NuGet 2 (18.2%)

pip 7 (63.6%)

RubyGems 1(9.1%)
Yarn, Dart Pub 1(9.1%)

0 2 4 6 8

Tusanaudaadasduiginuges lnisuanudasans (Security
vulnerability)

Bl Lichdy W dades I ddgiunane Il degen Il daiige

anIanuddyiudes Inidwaulaeadisres aul¥annddydy Security vulnerability fitin2iu
ganewas (Security vulnerability) ffiagiuain 97nana Taepaslaus3 (Chain of dependencies)

lausi32aeymaadiana (Third-party dependency)... 284 Third-party library luszaula

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 3/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 128

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

TunsinsduauauaIfAn n1saUian Third-party library amldanudAniy

dala
Bl Lidheny M deanies I ddnhunans M dénann I 6 "muﬁ‘;gm
6
4
2
O
K\,\p«,\.@“' ﬁ&\\@@\\" ,{\\\\%\‘)ﬁ.‘ @\,{\N\"{V

anudn lan1suannazaezing TnaauANNLaAA BIINNSUEAINAAIENT N
auuu (Vulnerability dependency visualization) luszeula

11 responses

5 (45.5%)

3 (27.3%)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 4/15

Faculty of ICT, Mahidol Univ.

4/16/2021

dnlafinudningifaenisaasunsiuis

10 responses

Tagipennsanasunsiiadia 2 (20%)

das Inisuanulanads. .. 1(10%)
das Inieuanulanads. ..
Foae Tvuausniulddau
FaBunaLiady (Tooltips) 2 (20%)
asNANTIWLANLANTN Dire... 1(10%)

Faens liuansdiaans de... 1(10%)

B.Sc. (ICT)/ 129

wuusaunNAgInLges wisuanulaands 2aegawiuas (Security Vulnerability) fifinguann lausi3zasyaaaii 3 (Third-party library) &...

5 (50%)

5 (50%)

AMAALUzRNLANERdESUNsuanINE Vulnerability dependency visualization

niala
2 responses
ANunNggadiaalevel 289 indirect dependency salsigaiau

- node aasdaua lnaidu
- msU5udaes node laanadneny ui

- 9199:d option 1¥&an Tuns display 71@81n 1% vulnerability dependency show # node

wsa# path (14 user \@anléinex hilight #ilwu)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics

5/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C /130

4/16/2021 wuusaUMNAzIRUZes TniduanNUanase 2aeaWinag (Security Vulnerability) finguan lous132091AAaf 3 (Third-party library) ...

szaveInNNd lalaangseauges Inisuaulasansaiuuy

11 responses

7 (63.6%)

0(0%) 1(9.1%)

AUUZUNUNNLAN TR VI BN

3 responses

162U a199:fiaed lUf version filaifl vulnerability tiva Idewiaalalas anvvzazaIniu
dev

aan 19Ha A lumin NPM 289 dependency

aann T¥uen severity flu section unnninsawaulu section

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 6/15

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /131

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

PNNFFVENIA loaNSALAzAIDE19T1B9IUDILATDNTDATIVNDULALI BN
709 ndiguanulannsds Achilles gauAnintasasiinasnaniys: leminaau
anmnasiala

11 responses

5 (45.5%)

3 (27.3%)

anezanau langls vinldiasasiia Achilles uaznuin TusiSazasamdigas
Twiduanulananis

11 responses

@ ruunusiianlausiaidizesnd

@ Ganfieclistinnlausandiges
i

O swaailuunedd wszue s
nei 14 library igpza0n san
v laln ddulnulailgilymi
Angiululdnsn Aensazla
BULAR

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics /15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C /132

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

Tusmasunaiiainivinluguiadaniazlislnalausaisizes ni

7 responses

mnsihaalausiansigasTnd
v 1 Tda luTusidain
angaudale (Conflict)
naudlagas Ividmany
anadelldawidiana
dAnauaULIN

4(57.1%

3 (42.9%)

Tinsuinavdeudlalausis 0
Py . 1(14.3%)
fifleing Tniagnals

'w'mél'mé“m?m library @133z

vin Tszuuii ldvinauag e

manss ldamisavinel...

1 (14.3%)

Survey on security vulnerability from third-party library and detection tool

Basic Information

What is your occupation?

8 responses

@ Students

@ Security specialist
@ Software developer
@ Software tester

@ System administrator
@ Vulnerability analyst
@ Researcher

@ Students, and software
developer

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 8/15

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /133

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

How long is your experience in programming?

8 responses

@ 6 months - 1 year
® 1-2years
@ 3-4years
@® 5-6years
@ More than 6 years

What programming language do you use?

8 responses

PHP

Java
JavaScript 8 (100%)
.NET
Python

Ruby

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 9/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C/ 134

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

What package manager ecosystem do you use?

8 responses

Composer —3 (37.5%)

Maven |—3 (37.5%)
npm 7 (87.5%)
NuGet

pip
RubyGems
yarn 1(12.5%)
Gradle 1(12.5%)

0 2 4 6 8

Please read before starting the survey

Please answer the following basic questions about software vulnerabilities.

4
[Not concerned [l Slightly concerned [Moderately concerned 12 p

How much are you concerned about security How much are you concerned of security
vulnerabilities from third-party dependencies in vulnerabilities caused by chain of dependencies
your software project? in your software project (indirect vulnerabilities)

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 10/15

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /135

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

How do you prioritize each factor when you decide to update the Third-
party library?

I Not important [l Slightly important I Moderately important [l Very Important I

S a(\o‘!"‘

How much do you understand this visualization?

8 responses

6
5 (62.5%)
4
2
0 (0%) 0 (0%) 0 (0%)
0 | | |
1 2 3 4 5

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 11/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C/ 136

4/16/2021 wuudaUaMAEITLe Tniduanaanasds aswaniuag (Security Vulnerability) AiAnsuan lous132091AAaf 3 (Third-party library) ...

Are there any parts that you would like more explanation?

6 responses

None|—0 (0%)
Direct vulnerability 1(16.7%)

Indirect vulnerability —3 (50%)

Color of the nodes in each

4 (66.7%
level

Tooltips —2 (33.3%)

Do you have any suggestion for improving the vulnerability dependency
visualization?

3 responses

as the graph grew bigger, it got really slow. It was slow to the point that moving is hard.

May add label of each colour beside the visualization.

In the tool tips, it would be more insightful if there is a short description of what thype
the vulnerability is.

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 12/15

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /137

4/16/2021 wuusaUMNAzIRUZes TniduanNUanase 2aeaWinag (Security Vulnerability) finguan lous132091AAaf 3 (Third-party library) ...

What is your level of understanding when reading the vulnerability report

8 responses

5 (62.5%)

0 ((‘)%) 0 (0%) 1 (12.5%)

Suggestion for the security vulnerability report

2 responses

Improve the design like using more color visualization to show how important is. ex.
CRITICAL -> using dark purple bg color / bar over the section of that library.

In the summary section, | think that it would be easier for me to read if the data is
displayed in a table view containing columns such as the vulnerable packages,
dependency, the level of severity, etc.

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 13/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix C / 138

4/16/2021 wuusauanaAgiutas Twidhuarudasasis aaswenyinas (Security Vulnerability) fiAnguan laus3aasyaaaii 3 (Third-party library) W...

After watching the Achilles tool demonstration and vulnerability report,
how do you find this vulnerability visualization and report useful?

8 responses

4
3
2
2 (25%)
1
0 (0%) 0 (0%)
0 | |
1 2

What would be your decision if you use the Achilles tool and find that your
project has security vulnerabilities.

8 responses

@ Update vulnerable
dependencies

@ Do not update vulnerable
dependencies
@ update only matter ones
v @ Depends on the severity and

the level of vulnerability chain

@ Depends on the nature of
vulnerability/source of vulnera...

@ Depends on the severity, and...

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 14/15

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /139

4/16/2021 wuudaUaMAEITLe Tniduanaanasds aswaniuag (Security Vulnerability) AiAnsuan lous132091AAaf 3 (Third-party library) ...

Please provide some reasons why you would not update vulnerable
dependencies

6 responses

Conflict in the code might

occur after updating the

library

Updating vulnerable

dependencies is not the

first priority

Do not know how to update

the vulnerable —1 (16.7%)
dependencies

6 (100%)

2 (33.3%)

sometimes it's not

—1 (16.79
something | can control (16.7%)

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

https://docs.google.com/forms/d/1dRThodUig02e8Gf4zjCqqTgVAGoCZ4HwIwso0aKqIBU/viewanalytics 15/15

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D/ 140

APPENDIX D
USER STUDY MATERIALS

Next page

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 141

<&y consent form>
http://bit.ly/achilles-consent

Hello, my name is <your name>. I'm a researcher in the project “Achilles: Automated tool for
detecting and visualizing npm dependency vulnerabilities”

| would like to thank you for joining our user study today. This user study is a part of our senior
project which studies security vulnerabilities in npm projects. The project also involves the tools that
detect and report security vulnerabilities in such projects.

Now, we would like to ask you to read the participant information form and the consent forms that
we have sent to you in the chat. Once you have finished reading and agree to join the study, please
let us know by saying “l agree to join the study”.

Regarding the study, you will be asked to use a tool for security vulnerability check in npm projects
on the projects that we prepared for you. The tool that you'll use today is <achilles >

Before starting the study, we would like to ask you some questions.

<demographic questions>
1. How long have you been using npm?

What do you use npm for?

How often do you check security vulnerability in your project? And how?

Have you used this tool before? If yes - for how long?

Do you know Indirect Dependencies? How much you give importance to them? (e1 sl
laa'lasiafune indirect dependencies)

o kRN

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D/ 142

<& Document>
auata3angy verification code

May we ask you to share your screen please?

Next, we'll give you a mock task to try. You will use the two tools (dependabot report and achilles)
and answer the questions.

We have the guide videos on how to use dependabot and achilles and also the mock repository
here.

Video: https://youtu.be/4ppCoCDtFeo

[@a8una] Dependabot Report ag12i1fe Direct uat Indirect vulnerabilities fraennnsiufsaunsansia
sauv package.json file ‘leitas

For now, we have 2 questions, you can let us know when you have finished answering the
questions. If you have any inquiries while answering the questions, please feel free to let us know.

Next, we will move to the actual user study.

For this user study, we have 2 test cases for you.
<uanlu participants 1ila GitHub overview g repo>

There are 2 repositories for the 2 test cases, which are Test 1 and Test 2.

<uanlviifla Document Wi 5>

The task that you have to do is prioritizing the updates of the vulnerabilities. In each test, you will
see the vulnerability report of dependabot in GitHub. You can take notes while seeing the report.
After that, you'll use <npm audit> and prioritize the updates of the vulnerabilities again.

Before we proceed, do you allow us to record the video from further analysis?

Test1: index.js — test1 — code-server (cdr.co)

Test2: yarn.lock — test2 — code-server (cdr.co)

Test 1

Severity Complexity

1 three high no

2 type-graphq| low yes

Faculty of ICT, Mahidol Univ.

3 xmldom low no
4 Pug high yes
Test 2

Severity Types

1 Minimist low indirect
(karma-mocha)

2 netmask high direct
3 angular-expressions low direct
4 base64(uid-safe) high indirect

B.Sc. (ICT)/ 143

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D/ 144

Debrief [Ampere]

For this user study, we would like to evaluate if a security vulnerability tool affects understanding
and prioritization of vulnerabilities.
- Can you please explain what were the criteria that you used to prioritize the vulnerabilities to
fix for each tool?
- In the future, is there any chance that you would use these tools? Will they be used in the
same or different scenario?
- Is there other factors that you would update the vulnerability?
- Do you have any feedback or suggestions for achilles?

[Achilles]
We have another tool to analyze security vulnerabilities and we would like you to try using it.
Achilles (achilles-sp.azurewebsites.net

- Canyou please try it on the Test 1 and Test 2 projects again and let us know how you would
prioritize the packages for updates?

- This is the tool that we have developed. Do you have any suggestions for the Achilles tool?

That is the end of this study. We would like to thank you again for your participation in this user
study.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 145

<&y consent form>
http://bit.ly/achilles-consent

Hello, my name is <your name>. I'm a researcher in the project “Achilles: Automated tool for
detecting and visualizing npm dependency vulnerabilities”

| would like to thank you for joining our user study today. This user study is a part of our senior
project which studies security vulnerabilities in npm projects. The project also involves the tools that
detect and report security vulnerabilities in such projects.

Now, we would like to ask you to read the participant information form and the consent forms that
we have sent to you in the chat. Once you have finished reading and agree to join the study, please
let us know by saying “l agree to join the study”.

Regarding the study, you will be asked to use a tool for security vulnerability check in npm projects
on the projects that we prepared for you. The tool that you’ll use today is <npm audit >

Before starting the study, we would like to ask you some questions.

<demographic questions>
1. How long have you been using npm?

What do you use npm for?

How often do you check security vulnerability in your project? And how?

Have you used this tool before? If yes - for how long?

Do you know Indirect Dependencies? How much you give importance to them? (e1 sl
laa'lasiafune indirect dependencies)

o kRN

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix D/ 146

<& Document>
auata3angy verification code

May we ask you to share your screen please?

Next, we'll give you a mock task to try. You will use the two tools (dependabot report and npm audit)
and answer the questions.

We have the guide videos on how to use dependabot and npm audit and also the mock repository
here.

Video: https://youtu.be/4ppCoCDtFeo

[@a8una] Dependabot Report ag12i1fe Direct uat Indirect vulnerabilities fraennnsiufsaunsansia
sauv package.json file ‘leitas

For now, we have 2 questions, you can let us know when you have finished answering the
questions. If you have any inquiries while answering the questions, please feel free to let us know.

Next, we will move to the actual user study.

For this user study, we have 2 test cases for you.
<uanlu participants 1ila GitHub overview g repo>

There are 2 repositories for the 2 test cases, which are Test 1 and Test 2.

<uanlviifla Document Wi 5>

The task that you have to do is prioritizing the updates of the vulnerabilities. In each test, you will
see the vulnerability report of dependabot in GitHub. You can take notes while seeing the report.
After that, you'll use <npm audit> and prioritize the updates of the vulnerabilities again.

Before we proceed, do you allow us to record the video from further analysis?

Test1: index.js — test1 — code-server (cdr.co)

Test2: yarn.lock — test2 — code-server (cdr.co)

Test 1

Severity Complexity

1 three high no

2 type-graphq| low yes

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 147

3 xmldom low no
4 Pug high yes
(template
engine)

Test 2

Severity Types
1 Minimist@1.2.0 low indirect
(karma-mocha@2.0.1)
2 netmask High direct
3 angular-expressions low direct
4 base64(uid-safe@2.1.5) high indirect

Debrief [Ampere]

For this user study, we would like to evaluate if a security vulnerability tool affects understanding
and prioritization of vulnerabilities.
- Can you please explain what were the criteria that you used to prioritize the vulnerabilities to
fix for each tool?

[Achilles]

We have another tool to analyze security vulnerabilities and we would like you to try using it.

https://docs.google.com/document/d/1YNSWTWaWM7DO5zsTnb7EDcotUC2ELb2JPel 4SVdBPIg/
edit?usp=sharing
- Canyou please try it on the Test 1 and Test 2 projects again and let us know how you would
prioritize the packages for updates?

- This is the tool that we have developed. Do you have any suggestions for the Achilles tool?

That is the end of this study. We would like to thank you again for your participation in this user
study.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 148

APPENDIX E
PARTICIPANTS ANSWER SHEET

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 149

Participant A1 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 pug >= D2 three > D3 type-graphgl >= D4 xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer | checked these severity.

| think the most high priority dependency is pug and three because
this severity is high

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: pug
Level of severity: high
Other note: 9 days ago by GitHub

D2: Dependency 2 | Name of vulnerable package: three
Level of severity: high
Other note: 5 days ago by GitHub

D3: Dependency 3 | Name of vulnerable package: type-graphql
Level of severity: low
Other note: 5 days ago by GitHub

D4: Dependency 4 | Name of vulnerable package: xmldom
Level of severity: low
Other note: 9 days ago by Github

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 pug > D2 three > D3 type-graphgl > D4 xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 150

Participant A1 Date: 09 April 2021

Answer I checked these serverity and the number of indirect dependencies.

I think the highest priority is pug because this serverity is high and it
has many indirect dependencies.

Next one is three because it is high serverity.

Type-graphgl has many dependencies but that serverity is low.

So | think serverity is an important factor than the number of indirect
dependencies.

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 netmask >= D2 base64-url > D3 minimist >= D4 angular-expressions
Questions What criteria do you use to prioritize these vulnerability updates?
Answer I checked their serverity.

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: high
Other note: 5 days ago

D2: Dependency 2 | Name of vulnerable package: base64-url
Level of severity: high
Other note: 9 days ago

D3: Dependency 3 | Name of vulnerable package: minimist
Level of severity: low
Other note: 4 days ago

D4: Dependency 4 | Name of vulnerable package: angular-expressions
Level of severity: low
Other note: 9 days ago

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /151

Participant A1 Date: 09 April 2021

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 netmask > D2 base64-url > D3 angular-expressions > D4 minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer | checked their serverity and the dependency whether direct or not.

D1 and D2 are high serverity but D1 is direct dependency.
I think direct dependency is easier to fix than indirect dependency,
then | think it is the highest priority than others.

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 152

Participant A2 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1>=D4>D2>D3
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Work on high level dependencies first and low afterwards

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: high
Other note:

D2: Dependency 2 | Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D3: Dependency 3 | Name of vulnerable package: xmldom
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: pug
Level of severity: high
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D4>D2>D1>D3

Questions What criteria do you use to prioritize these vulnerability updates?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /153

Participant A2 Date: 09 April 2021

Answer Fixing those dependencies with a larger number of interdependencies and
higher level of severity first and moving to fewer number of
interdependencies

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D2>=D4>D1>=D3
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Same as before giving more priority to higher risk vulnerabilities first

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: minimst
Level of severity: low
Other note:

D2: Dependency 2 | Name of vulnerable package: netmask
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: base64-url
Level of severity: high
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 154

Participant A2 Date: 09 April 2021
Answer D2>D3>D1>=D4
Questions What criteria do you use to prioritize these vulnerability updates?
Answer I’'m prioritazing D2 and D3 since they are direct vulnerabilities and from

level of severity, for D1 and D4 thanks to Achilles | can see that those
libraries are indirect dependencies so | wouldn’t be able to actually update
those directly and will have to update the direct dependencies insrtead

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 155

Participant A3 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > type-graphgl >= xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Vulnerability level

[Optional] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: high
Other note: Upgrade three to version 0.125.0 or later

D2: Dependency 2 | Name of vulnerable package: pug
Level of severity: high
Other note: Upgrade pug to version 3.0.1 or later

D3: Dependency 3 | Name of vulnerable package: type-graphq|
Level of severity: low
Other note: Upgrade type-graphgl to version 0.17.6 or later

D4: Dependency 4 | Name of vulnerable package: xmidom
Level of severity: low
Other note: Upgrade xmldom to version 0.5.0 or later

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > xmldom >= type-graphq|

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Vulnerability level

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 156

Participant A3 Date: 08 April 2021

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 [Netmask] > angular-expressions > base-64url >= minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Type of dependency, vulnerability level

[Optional] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: high
Other note: Upgrade netmask to version 2.0.1 or later

D2: Dependency 2 | Name of vulnerable package: angular-expressions
Level of severity: low
Other note: Upgrade angular-expressions to version 1.1.2 or later

D3: Dependency 3 | Name of vulnerable package: base-64url
Level of severity: high
Other note: Upgrade base64-url to version 2.0.0 or later

D4: Dependency 4 | Name of vulnerable package: minimist
Level of severity: low
Other note: Upgrade minimist to version 1.2.3 or later

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base-64url >= minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Type of dependency, vulnerability level

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 157

Participant A4 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > type-graphgl >= xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

[Optional] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: high
Other note:

D2: Dependency 2 | Name of vulnerable package: pug
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: type-graphq|
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: xmidom
Level of severity: low
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > type-graphgl > xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and level of indirect dependency complexity?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 158

Participant A4 Date: 08 April 2021

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > minimist >= angular-expressions
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

[Optional] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: high
Other note:

D2: Dependency 2 | Name of vulnerable package: base64-url
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: minimist
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base64-url > minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Direct first > severity

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /159

Participant A5 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > Three.js > xmldom > typegraphq|
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity and complexity of package & direct and indirect dependency

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: pug
Level of severity: hight
Other note:

D2: Dependency 2 | Name of vulnerable package: three.js
Level of severity:high
Other note:

D3: Dependency 3 | Name of vulnerable package: xmldom
Level of severity:low
Other note:

D4: Dependency 4 | Name of vulnerable package:typegraphql
Level of severity:low
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three.js > pug > xmldom > typegraphq|

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Severity and complexity of package & direct and indirect dependency

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Participant A5

Date: 08 April 2021

Test 2 Part 1 - Dependabot Report

Question

If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

Netmask > base64-url > angular-expressions > minimist

Questions

What criteria do you use to prioritize these vulnerability updates?

Answer

Severity and complexity of package & direct and indirect dependency

[Option] Test 2 Note Section

D1: Dependency 1

Name of vulnerable package: Netmask
Level of severity: high
Other note:

D2: Dependency 2

Name of vulnerable package: base64-url
Level of severity: high
Other note:

D3: Dependency 3

Name of vulnerable package: angular-expressions
Level of severity:low
Other note:

D4: Dependency 4

Name of vulnerable package: minimist
Level of severity:low
Other note:

Test 2 Part 2 - Achilles

Question

If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

Netmask > base64-url > angular-expressions > minimist

Questions

What criteria do you use to prioritize these vulnerability updates?

Answer

Severity and complexity of package & direct and indirect dependency

Appendix E / 160

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 161

Participant A5 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug >= three > type-graphgl >= xmidom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer severity

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: pug
Level of severity: high severity
Other note: -

D2: Dependency 2 | Name of vulnerable package: three
Level of severity: high severity
Other note: -

D3: Dependency 3 | Name of vulnerable package: type-graphq|
Level of severity: low severity
Other note: -

D4: Dependency 4 | Name of vulnerable package: xmidom
Level of severity: low severity
Other note: -

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug >= three > type-graphgl >= xmidom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 162

Participant A5 Date: 08 April 2021

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask >= base64-url > angular-expressions > minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity and issue type

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: high severity
Other note: -

D2: Dependency 2 | Name of vulnerable package: base64-url
Level of severity: high severity
Other note: -

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity: low severity
Other note: -

D4: Dependency 4 | Name of vulnerable package: minimist
Level of severity: low severity
Other note: -

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask > base64-url > angular-expressions > minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity and direct/indirect graph

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 163

Participant A7 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D4 [xmldom] > D3 [type-graphql] > D2 [three.js] > D1 [pug]
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Number of indirect dependencies

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: pug
Level of severity: high
Other note:

D2: Dependency 2 | Name of vulnerable package: three.js
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: xmldom
Level of severity:low
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 [three.js] >= D2 [xmldom] > D3 > [pug] > D4 [type-graphq]l]

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 164

Participant A7 Date: 08 April 2021

Answer Number of indirect dependencies in each library. If the number is
high, it may interrupt other libraries once updated.

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 [node-netmask] > D2 [uid-safe] > D3 [angular-expressions] > D4
[karma-mocha]

Questions What criteria do you use to prioritize these vulnerability updates?

Answer The number of indirect dependencies

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /165

Participant A7 Date: 08 April 2021
Answer D1 [netmask] > D2 [angular-expressions] > D3 [minimist] > D4
[base64-url]
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Number of indirects dependencies and severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 166

Participant A8 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three>pug>type-graphqgl>xmidom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer severity (high first) then time (recent use first)

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: direct
Other note:

D2: Dependency 2 | Name of vulnerable package: pug
Level of severity: direct
Other note:

D3: Dependency 3 | Name of vulnerable package: type-graphql
Level of severity: direct
Other note:

D4: Dependency 4 | Name of vulnerable package: xmldom
Level of severity: direct
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three>xmldom>type-graphql>pug

Questions What criteria do you use to prioritize these vulnerability updates?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 167

Participant A8 Date: 09 April 2021

Answer How big of the dependency graph (small first because it might take
shorter time for fixing)

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask>base64-url>minimist>=angular-expressions
Questions What criteria do you use to prioritize these vulnerability updates?
Answer High severity first then more recent time

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask>=base64-url>minimist>=angular-expressions

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 168

Participant A8 Date: 09 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Aaugan severity uagIiuaavdadcisataarualuu adiitidaea

vaunau

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 169

Participant A9 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer mrdoob / three.js >= Michall ytek / type-graphql >= xmldom / xmldom >=
pugis / pug

Questions What criteria do you use to prioritize these vulnerability updates?

Answer The number of versions.

If the package has many, it should be less vulnerable.
So, it should be the last priority.

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 170

Participant A9 Date: 09 April 2021

dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= Pug >= Michallytek / type-graphgl >= xmldom / xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Use the severity and version.

High severity and Less version

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer karma-runner / karma-mocha >= peerigon / angular-expressions

>= crypto-utils / uid-safe >= rs / node-netmask

Questions What criteria do you use to prioritize these vulnerability updates?
Answer The number of indirect dependencies.
High > Low

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 171

Participant A9 Date: 09 April 2021

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer crypto-utils / uid-safe >= rs / node-netmask >= karma-runner / karma-mocha
>= peerigon / angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Use the severity and version.
High severity and Less version

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 172

Participant A10 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Al
e pug>= three >
type-graphqgl >=
xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level of severity

[Option] Test 1 Note Section

D1: Dependency 1
Name of vulnerable package: pug

Level of severity: high
Other note: Vulnerable versions: < 3.0.1

D2: Dependency 2
Name of vulnerable package: th Free

Level of severity: high
Other note: Vulnerable versions: < 0.125.0

D3: Dependency 3

Name of vulnerable package: type'g ra p h q |

Level of severity: low
Other note: Vulnerable versions: < 0.17.6

D4: Dependency 4

Name of vulnerable package: xXm |d0m

Level of severity: low
Other note: Vulnerable versions: < 0.5.0

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 173

Participant A10 Date: 09 April 2021

Test 1 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

three>=pug>xmidom>=type-graphq

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

netmask>=base64-url>
minimist>=angular-exp
ressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Level of Serverity

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 174

Participant A10 Date: 09 April 2021

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - Achilles

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer
netmask>angular-expressions>base64-url>
minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Direct before indirect and Level of Serverity

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 175

Participant N1 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three > pug > xmldom > type-graphql
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity and alerted time

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity:high
Other note:

D2: Dependency 2 | Name of vulnerable package: type-graphql
Level of severity:low
Other note:

D3: Dependency 3 | Name of vulnerable package: xmldom
Level of severity:low
Other note:

D4: Dependency 4 | Name of vulnerable package: pug
Level of severity:high
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three > pug > xmldom > type-graphql

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 176

Participant N1 Date: 09 April 2021

Answer Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask > angular-expressions > Base64-url > minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Existing solving pull request and severity

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: minimist
Level of severity:low
Other note:

D2: Dependency 2 | Name of vulnerable package: netmask
Level of severity:high
Other note:

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity:low
Other note:

D4: Dependency 4 | Name of vulnerable package: base64-url
Level of severity:high
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask > angular-expressions > base64-url > minimist

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /177

Participant N1 Date: 09 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Direct dependency and severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 178

Participant N2 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > type-graphQl > xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Answer | see the impact on the server first and then use level of severity as
criteria

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > grahpgl >= xml

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 179

Participant N2 Date: 09 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level of severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer netmask> base64-url > minimist > = angular-expression
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level of severity and how it can impact the project

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 180

Participant N2 Date: 09 April 2021
Answer netmask> base64-url > minimist > = angular-expression
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level of severity

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /181

Participant N3 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug > three.js > type-graphgl >= xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level of severity, impact with the project, ease of modification

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: pug
Level of severity: High
Other note: Main renderer library

D2: Dependency 2 | Name of vulnerable package: three.js
Level of severity: High
Other note: Consist with rendering part

D3: Dependency 3 | Name of vulnerable package: type-graphql
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: xmldom
Level of severity: Low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer pug > three.js > type-graphgl >= xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 182

Participant N3 Date: 08 April 2021

Answer Level of severity, impact with the project

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer base64-url >= node-netmark > angular-expressions >= minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level of severity

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: base64-url
Level of severity: High
Other note:

D2: Dependency 2 | Name of vulnerable package: node-netmark
Level of severity: High
Other note:

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: minimist
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer node-netmark > angular-expressions > base64-url > minimist

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /183

Participant N3 Date: 08 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Type of dependency, Level of severity, Vulnerability effect (type of

vulnerability)

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 184

Participant N4 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer three > pug > type-graphqgl >= xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity and CVE

[Optional] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: high
Other note: CVE-2020-28496

D2: Dependency 2 | Name of vulnerable package: type-graphql
Level of severity: low
Other note:

D3: Dependency 3 | Name of vulnerable package: xmldom
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: pug
Level of severity: high
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three >xmldom > type-graphq|l

Questions What criteria do you use to prioritize these vulnerability updates?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /185

Participant N4 Date: 08 April 2021

Answer Vulnerability Types

Test 1 Part 3 - achilles
(Achilles (achilles-sp.azurewebsites.net))

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

Questions What criteria do you use to prioritize these vulnerability updates?

Answer

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.
For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > base64-url > minimist > angular-expressions

Questions What criteria do you use to prioritize these vulnerability updates?

Answer Impact, Severity, and CVE (newest)

[Optional] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: minimist
Level of severity: low
Other note: CVE-2020-7598

D2: Dependency 2 | Name of vulnerable package: netmask
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 186

Participant N4 Date: 08 April 2021

D4: Dependency 4 | Name of vulnerable package: base64-url
Level of severity: high
Other note: CVE-2021-29418

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base64-url > minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Vulnerability Type, Severity, and Impact

Test 2 Part 3 - achilles
Achilles (achilles-sp.azurewebsites.net

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

Questions What criteria do you use to prioritize these vulnerability updates?

Answer

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /187

Participant N5 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= Pug > type-graphql > xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: High
Other note:

D2: Dependency 2 | Name of vulnerable package: Pug
Level of severity: High
Other note:

D3: Dependency 3 | Name of vulnerable package: type-graphql
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: xmldom
Level of severity: low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > type-graphgl > xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 188

Participant N5 Date: 08 April 2021

Answer Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > angular-expressions >= minimist
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: High
Other note:

D2: Dependency 2 | Name of vulnerable package: base64-url
Level of severity: High
Other note:

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: minimist
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > angular-expressions >= minimist

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /189

Participant N5 Date: 08 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 190

Participant N6 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > xml-dom >= type-graphq|
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: High
Other note:

D2: Dependency 2 | Name of vulnerable package: pug
Level of severity: High
Other note:

D3: Dependency 3 | Name of vulnerable package: xml-dom
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: type-graphql
Level of severity: Low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three >= pug > xml-dom >= type-graphq|

Questions What criteria do you use to prioritize these vulnerability updates?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 191

Participant N6 Date: 08 April 2021

Answer Severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask >= base64-url > minimist >= angular-expressions
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: High
Other note:

D2: Dependency 2 | Name of vulnerable package: base64-url
Level of severity: High
Other note:

D3: Dependency 3 | Name of vulnerable package: minimist
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: angular-expression
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > base64-url > minimist

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 192

Participant N6 Date: 08 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity, Dependency

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /193

Participant N7 Date: 08 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Type-graphql > three.js > xmldom > pug
Questions What criteria do you use to prioritize these vulnerability updates?
Answer The ease of patching the packages.

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Type-graphql > three.js > xmldom > pug

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 194

Participant N7 Date: 08 April 2021

Answer Ease of patching. Update packages with no breaking changes first.

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expression >= minimist > base64-url
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Ease of fixing and level of vulnerability (Order by ease of fixing, then

the level of vulnerability)

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /195

Participant N7 Date: 08 April 2021
Answer Netmask > angular-expressions > karma-mocha > uid-safe
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Patch the packages with no breaking changes first (order by level of
severity).

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 196

Participant N8 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug > three > xmldom > type-graphql
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Severity level + details of vulnerability risk

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: Pug
Level of severity: high
Other note:

D2: Dependency 2 | Name of vulnerable package: three
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: xmldom
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: type-graphql
Level of severity: low
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Three > pug > type-graphgl >= xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /197

Participant N8 Date: 09 April 2021

Answer Level of vulnerability + expected error

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1> D4 >=D3 > D2
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Details of vulnerability

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package: netmask
Level of severity: high severity
Other note: bypass access ctrl

D2: Dependency 2 | Name of vulnerable package: base64-url
Level of severity: high
Other note: allocate uninit buffer

D3: Dependency 3 | Name of vulnerable package: angular - expression
Level of severity: low
Other note: bypass but using complex payload

D4: Dependency 4 | Name of vulnerable package: minimist
Level of severity: low
Other note: atker modify prototype

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > Base64-url > minimist >= angular expression

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 198

Participant N8 Date: 09 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer Level and vulnerability that can cause.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT)/ 199

Participant N9 Date: 09 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D1 three >= D4 pug > D2 type_graphqgl >= D3 xmldom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer By the level of risk of severity

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package: three
Level of severity: High
Other note:

D2: Dependency 2 | Name of vulnerable package: type_graphql
Level of severity: Low
Other note:

D3: Dependency 3 | Name of vulnerable package: xmldom
Level of severity: Low
Other note:

D4: Dependency 4 | Name of vulnerable package: pug
Level of severity: High
Other note:

Test 1 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer D2 three >= D3 pug > D1 type-graphgl >= D4 xmldom

Questions What criteria do you use to prioritize these vulnerability updates?

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Participant N9

Date: 09 April 2021

Answer By the level of risk of severity
Test 2 Part 1 - Dependabot Report
Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.
For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]
would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign
Answer D2 netmask >= D4 base64-url > D1 minimist >= D3 angular-expressions
Questions What criteria do you use to prioritize these vulnerability updates?
Answer By the risk level of severity

[Option] Test 2 Note Section

D1: Dependency 1

Name of vulnerable package: minimist
Level of severity: Low
Other note:

D2: Dependency 2

Name of vulnerable package: netmask
Level of severity: High
Other note:

D3: Dependency 3

Name of vulnerable package: angular-expressions
Level of severity: High
Other note:

D4: Dependency 4

Name of vulnerable package: base64-url
Level of severity: Low
Other note:

Test 2 Part 2 - npm audit

(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question

If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer

D1 base64-url >= D4 netmask > D2 minimist >= D3 angular-expressions

Appendix E / 200

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /201

Participant N9 Date: 09 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer By the risk level of severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E /202

Participant N10 Date: 19 April 2021

Test 1 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug >= three > type-graphqgl => xImdom
Questions What criteria do you use to prioritize these vulnerability updates?
Answer From severity level

[Option] Test 1 Note Section

D1: Dependency 1 | Name of vulnerable package:
Level of severity:
Other note:

D2: Dependency 2 | Name of vulnerable package:
Level of severity:
Other note:

D3: Dependency 3 | Name of vulnerable package:
Level of severity:
Other note:

D4: Dependency 4 | Name of vulnerable package:
Level of severity:
Other note:

Test 1 Part 2 - npm audit
(https://Inpm_audit achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test1)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Pug >= three > type-graphqgl >= xImdom

Questions What criteria do you use to prioritize these vulnerability updates?

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /203

Participant N10 Date: 19 April 2021

Answer From level of severity

Test 2 Part 1 - Dependabot Report

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask > angular-expressions > minimist > base64-url
Questions What criteria do you use to prioritize these vulnerability updates?
Answer From chance of attacker

[Option] Test 2 Note Section

D1: Dependency 1 | Name of vulnerable package:minimist
Level of severity: low
Other note:

D2: Dependency 2 | Name of vulnerable package:netmask
Level of severity: high
Other note:

D3: Dependency 3 | Name of vulnerable package: angular-expressions
Level of severity: low
Other note:

D4: Dependency 4 | Name of vulnerable package: base64-url
Level of severity: high
Other note:

Test 2 Part 2 - npm audit
(https://npm_audit_achilles-achilles-baak.cdr.co/?folder=/home/baak-npm-audit/test2)

Question If you need to update the vulnerable dependencies to fix the security
issues, please order which vulnerabilities you will update first.

For example, D1 [Name] > D2 [Name] > D3 [Name] > D4 [Name]

would mean you will fix the dependency 1 first, then fix dependency 2, and
dependency 3, and dependency 4 respectively. In case the order is
interchangeable, please use >= sign

Answer Netmask>= base64-url > angular-expressions >= minimist

V. Jarukitpipat, W. Wanprasert, and K.Chhun Appendix E / 204

Participant N10 Date: 19 April 2021
Questions What criteria do you use to prioritize these vulnerability updates?
Answer From severity

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /205

APPENDIX F
ACHILLES SECURITY VULNERABILITY REPORT FROM
GITHUB PROJECTS

V. Jarukitpipat, W. Wanprasert, and K.Chhun

D
10

(
Achilles: Vulnerability Report

April 18th 2021, 10:13 pm

KlintonICT
baak-packagejson-test
From:cpnmjs/package.json

Summary

Dependency Type
sequelize Direct
sequelize Direct
sequelize Direct
treekill Direct
debug Indirect
debug Indirect
debug Indirect
debug Indirect
ejs Indirect
ejs Indirect
ejs Indirect

Total of vulnerable direct dependency: 4

Total of vulnerable indirect dependency: 7

Vulnerabilities

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:
Patch Version:

Vulnerability Chaining:

sequelize

73.23.4
<4.44.4

4.44.4

Appendix F /206

Total vulnerabilities: 11

Updating Severity

3 = 3
Q
= ST |=

Faculty of ICT, Mahidol Univ.

PROJECT

sequelize

£3.23.4 = 6.6.2

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update sequelize to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:
Dependency to be updated:

Update sequelize to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update sequelize to latest version:

sequelize
high
13.23.4

<4.443

4.443

B.Sc. (ICT) /207

O—@

PROJECT

CVE-2019-10752
sequelize

£3.23.4 = 6.6.2

sequelize
high
£3.23.4

<4.12.0

4.12.0

sequelize@"3.23.4

O—@

PROJECT

sequelize

£3.23.4 = 6.6.2

treekill
high
£.0.0

>=0.0.0

Currently, no patch version

sequelize@"3.23.4

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Vulnerability Chaining:

Vulnerabilities and Advisory link:
Dependency to be updated:

Update treekill to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

CWEs:
Dependency to be updated:

Update koa-mock to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

CWEs:

Dependency to be updated:

Update changes-stream to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:

O—@

PROJECT treekill@"1.0.0

treekill
7.0.0>1.0.0
debug
low
~2.2.0
<269
2.6.9
PROJECT koa-mock@"1.6.2 debug@~2.2.0
CVE-2017-16137

koa-mock

7M.6.2->2.0.0

debug
low
~0.8.0

<26.9

2.6.9

O—0O @

PROJECT changes-stream@*1.1.0 debug@~0.8.0

changes-stream

M.A1.0>2.20

debug

low

Appendix F /208

Faculty of ICT, Mahidol Univ.

0.7.4
<26.9
2.6.9
PROJECT koa-limit@*1.0.2 debug@0.7.4
CVE-2017-16137
koa-limit
7M.0.2->1.0.2

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

CWEs:
Dependency to be updated:

Update koa-middlewares to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

B.Sc. (ICT) /209

Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

CWEs:

Dependency to be updated:

Update koa-limit to latest version:

debug
low
£0.7.4

<26.9

2.6.9

debug@"0.7.4 k ~0.3.3 1.0

koa-middlewares

72.1.0 > 6.0.0
ejs

high

£.0.0

<253

255

O

PROJECT

® O—O0

eis@"1.0.0 koa-ejs@~1.1.3 koa-middlewares@*2.1.0

koa-middlewares

O

PROJECT

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Update koa-middlewares to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update koa-middlewares to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update koa-middlewares to latest version:

Appendix F /210

£2.1.0 2 6.0.0
ejs

high

7.0.0

<255

255

® O—O0C—0

eis@"1.0.0 koa-ejs@~1.1.3 koa-middlewares@*2.1.0 PROJECT

CVE-2017-1000189

koa-middlewares

72.1.0 > 6.0.0
ejs
£.0.0

<255

255

O O O O

koa-ejs@~1.1.3 koa-middlewares@*2.1.0 PROJECT

CVE-2017-1000188
koa-middlewares

42.1.0 2 6.0.0

Faculty of ICT, Mahidol Univ.

D
10

(
Achilles: Vulnerability Report

April 18th 2021, 10:19 pm

KlintonICT
baak-packagejson-test
From:npx/package.json

Summary
Dependency Type
yargs-parser Indirect

Total of vulnerable direct dependency: 0

Total of vulnerable indirect dependency: 1

Vulnerability

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:
CWEs:
Dependency to be updated:

Update yargs to latest version:

B.Sc. (ICT) /211

Total vulnerabilities: 1

Updating

Feeoa <12 > [a13

yargs-parser
low
£9.0.2

>=6.0.0,<13.1.2

13.1.2

O O @
N
PROJECT yargs@*11.1.0

yargs-parser@*9.0.2

yargs

M1.1.0- 16.2.0

Severity

V. Jarukitpipat, W. Wanprasert, and K.Chhun

D
10

Achilles: Vulnerability Report

April 18th 2021, 10:08 pm

KlintonICT
baak-packagejson-test
From:sinopia/package.json

Summary

Dependency
minimatch
handlebars
handlebars
handlebars
handlebars
handlebars
handlebars
handlebars
highlight.js
uglify-js
uglify-js

uglify-js

Total of vulnerable direct dependency: 9

Total of vulnerable indirect dependency: 3

Vulnerabilities

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:
Patch Version:

Vulnerability Chaining:

Type

Direct

Direct

Direct

Direct

Direct

Direct

Direct

Direct

Direct

Indirect

Indirect

Indirect

Updating

24

250) > 59

minimatch
high
>=0.2.14 <2.0.0-0

<3.0.2

3.0.2

Appendix F /212

Total vulnerabilities: 12

Severity

=
Q|||
=

>

=
Q Q
= =

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /213

Vulnerabilities and Advisory link:

O @

PROJECT =0.2.14 <2.0.0-0

- -r34f- Dependency to be updated:
CVE-2016-10540

minimatch Update minimatch to latest version:

>=0.2.14 <2.0.0-0 = 3.0.4

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: ox

Vulnerable Version: <3.08

Patch Version: 3.0.8

Vulnerability Chaining: : : .
PROJECT handlebars@2.x

Vulnerabilities and Advisory link: - - -

Dependency to be updated: handlebars

Update handlebars to latest version: 2Xx>4.7.7

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: ox

Vulnerable Version: <308

Patch Version: 3.0.8

Vulnerability Chaining: :: .
PROJECT handleb:

Vulnerabilities and Advisory link: - - j-mj

Dependency to be updated: handlebars

Update handlebars to latest version: 2x>4.7.7

Potentially Vulnerable: handlebars

Severity: high

Current Usage Version: ox

Vulnerable Version: <3.08

Patch Version: 3.0.8

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

O—@

PROJECT handlebars@2.x

handlebars

2x>4.7.7

handlebars
high
2.X

<430

4.3.0

O—@

PROJECT handlebars@2.x

CVE-2019-19919

handlebars

2x>4.7.7

handlebars
critical
2.

<3.0.7

3.0.7

O—@

PROJECT handlebars@2.x

handlebars

2x>4.7.7

handlebars
high
2.X

<4.0.0

4.0.0

Appendix F /214

Faculty of ICT, Mahidol Univ.

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

CWEs:
Dependency to be updated:

Update highlight.js to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:

B.Sc. (ICT) /215

O—@

PROJECT handlebars@2.x

CVE-2015-8861

handlebars

2xD4.7.7

handlebars

2.x

<4.00

PROJECT

CVE-2015-8861

handlebars

2x>4.7.7
highlight.js
low

8.x
<9.18.2

9.18.2

O @

PROJECT

highlight.js
8x>10.7.2

uglify-js
high

~2.3

V. Jarukitpipat, W. Wanprasert, and K.Chhun

Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:

Dependency to be updated:

Update handlebars to latest version:

<24.24

2.4.24

Appendix F /216

O——0O

PROJECT handlebars@2.x

CVE-2015-8857

handlebars

2xD4.7.7

uglify-js
low
~2.3

<2424

2.4.24

O——0

PROJECT handlebars@2.x

CVE-2015-8857

handlebars

2x>4.7.7

uglify-js
low
~2.3

<26.0

2.6.0

uglify-js@~2.3

O——0O

PROJECT handlebars@2.x

CVE-2015-8858
handlebars

2x>4.7.7

uglify-js@-2.3

Faculty of ICT, Mahidol Univ.

D
10

(
Achilles: Vulnerability Report

April 18th 2021, 10:18 pm

KlintonICT
baak-packagejson-test
From:window-build-tools/package.json

Summary
Dependency Type
mem Indirect

Total of vulnerable direct dependency: 0

Total of vulnerable indirect dependency: 1

Vulnerability

Potentially Vulnerable:
Severity:

Current Usage Version:
Vulnerable Version:

Patch Version:

Vulnerability Chaining:

Vulnerabilities and Advisory link:
Dependency to be updated:

Update in-gfw to latest version:

B.Sc. (ICT) /217

Total vulnerabilities: 1

Updating Severity
>

mem
low
43.0.1
<4.0.0
4.0.0
PROJECT in-gfw@"1.2.0 mem@*3.0.1
GHSA-4xcy-9ijx-gii
in-gfw
M.2.0-21.20

V. Jarukitpipat, W. Wanprasert, and K.Chhun References / 218

[1]

2]

[7]

[9]

REFERENCES

Alyssa Miller SZ., “The State of Open Source Security 2020k”; June 2020 [cited
9 November 2020], [Online]. Available: https://snyk.io/open-source-security/.

Todorov B., Kula R., Ishio T., Inoue K., “SoL Mantra: Visualizing Update Oppor-
tunities Based on Library Coexistence”; 09 2017. p. 129—-133.

Liran Tal SM., “npm passes the 1 millionth package milestone! What can we
learn?”’; June 2019 [cited 1 November 2020], [Online]. Available: https://snyk.io/

blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/.

Kula RG., German DM., Ouni A., Ishio T., Inoue K., “Do Developers Update
Their Library Dependencies?”, Empirical Software Engineering. Feb. 2018;23(1):
384-417, [Online]. Available: https://doi.org/10.1007/s10664-017-9521-5.

East T., “2020 GitHub Universe Micro-Mentoring Application”; October 2020
[cited 1 November 2020], [Online]. Available: https://github.blog/2020-10-27-

2020-github-universe-micro-mentoring-application/.

Synopsys, “Heartbleed Bug”; June 2020 [cited 1 November 2020], [Online]. Avail-
able: http://heartbleed.com/.

Bennett JT., “Shellshock in the Wild”; September 2014 [cited 1 Novem-
ber 2020], [Online]. Available: https://www.fireeye.com/blog/threat-research/
2014/09/shellshock-in-the-wild.html.

Chinthanet B., Kula RG., Mclntosh S., Ishio T., Ihara A., Matsumoto K.. “Lags in
the Release, Adoption, and Propagation of npm Vulnerability Fixes”; 2020.

Yano Y., Kula R., Kula T., Ishio K., Inoue K., “VerXCombo: An Interactive Data

Visualization of Popular Library Version Combinations™; 05 2015. .

https://snyk.io/open-source-security/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://doi.org/10.1007/s10664-017-9521-5
https://github.blog/2020-10-27-2020-github-universe-micro-mentoring-application/
https://github.blog/2020-10-27-2020-github-universe-micro-mentoring-application/
http://heartbleed.com/
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html
https://www.fireeye.com/blog/threat-research/2014/09/shellshock-in-the-wild.html

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) /219

[10] Fatih Erikli AK. Burak Arikan, “NPM Dependency Network™; [cited 9 November
2020], [Online]. Available: https://graphcommons.com/graphs/a7ec343d-2a0c-
47bb-9658-bb8315e8a096?auto=trueshow=analysis-cluster.

[11] Security R., “Vulnerable Dependencies”; [cited 1 November 2020], [Online].

Available: https://ropesec.com/articles/vulnerable-dependencies/.

[12] W3School, “JSON - Introduction”; [cited 1 November 2020], [Online]. Available:

https://www.w3schools.com/js/js;son;ntro.asp.

[13] MongoDB, “What Is MongoDB?”’; [cited 1 November 2020], [Online]. Available:

https://www.mongodb.com/what-is-mongodb.

[14] Bostock M., “D3 Data-Driven Documents”; [cited 1 November 2020], [Online].
Available: https://d3js.org/.

[15] Bostock M., “Directional Force Layout Diagram”; [cited 9 November 2020], [On-
line]. Available: https://gist.github.com/d3noob/5141278.

[16] Docs G., “About GitHub Security Advisories”; [cited 14 May 2021], [Online].
Available: https:// docs.github.com/ en/ code-security/ security-advisories/ about-

github-security-advisories.

[17] Thompson B., “Applying machine intelligence to GitHub security alerts”; [cited
24 May 2021], [Online]. Available: https://github.blog/2018-10-09-applying-

machine-intelligence-to-security-alerts/leveraging-the-community.

[18] Ko A., LaToza T., Burnett M., “A practical guide to controlled experiments of soft-
ware engineering tools with human participants”, Empirical Software Engineering.

02 2013;20.

[19] Gopstein YDZY. Iannacone, Cappos, “Understanding Misunderstandings in
Source Code”, European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. 09 2017;.

https://graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?auto=true&show=analysis-cluster
https://graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?auto=true&show=analysis-cluster
https://ropesec.com/articles/vulnerable-dependencies/
https://www.w3schools.com/js/js_json_intro.asp
https://www.mongodb.com/what-is-mongodb
https://d3js.org/
https://gist.github.com/d3noob/5141278
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories
https://docs.github.com/en/code-security/security-advisories/about-github-security-advisories
https://github.blog/2018-10-09-applying-machine-intelligence-to-security-alerts/##leveraging-the-community
https://github.blog/2018-10-09-applying-machine-intelligence-to-security-alerts/##leveraging-the-community

V. Jarukitpipat, W. Wanprasert, and K.Chhun References / 220

[20] Zeke Sikelianos FA. Ionica Bizau, “nice-registry/all-the-package-names”; [cited 19
April 2021], [Online]. Available: https://github.com/nice-registry/all-the-package-

names.

[21] Docs G., “Searching code”; [cited 19 April 2021], [Online]. Available: https://

docs.github.com/en/github/searching-for-information-on-github/searching-code.

https://github.com/nice-registry/all-the-package-names
https://github.com/nice-registry/all-the-package-names
https://docs.github.com/en/github/searching-for-information-on-github/searching-code
https://docs.github.com/en/github/searching-for-information-on-github/searching-code

Faculty of ICT, Mahidol Univ.

NAME

DATE OF BIRTH

PLACE OF BIRTH
INSTITUTIONS ATTENDED

NAME

DATE OF BIRTH

PLACE OF BIRTH
INSTITUTIONS ATTENDED

NAME

DATE OF BIRTH

PLACE OF BIRTH
INSTITUTIONS ATTENDED

B.Sc. (ICT) /221

BIOGRAPHIES

Miss. Vipawan Jarukitpipat
11 January 1999
Bangkok, Thailand
Mahidol University International Demonstra-
tion School, 2016:
High School Diploma
Mahidol University, 2021:
Bachelor of Science (ICT)

Miss. Wachirayana Wanprasert

12 November 1998

Loei, Thailand

Loeipittayakom School, 2016:
High School Diploma

Mahidol University, 2021:
Bachelor of Science (ICT)

Mr. Klinton Chhun

28 February 1999

Phnom Penh, Cambodia

Bak Touk High School, 2016:
High School Diploma

Mahidol University, 2021:
Bachelor of Science (ICT)

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	 1
	 2
	 3
	 4
	 5
	 6
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	REFERENCES
	BIOGRAPHIES

