
MICROUSITY : SECURITY TESTING TOOL FOR BACKEND

FOR FRONTEND (BFF) MICROSERVICES

ไมโครยซิูตีÊ เครืÉองมือทดสอบความปลอดภยัสาํหรับไมโครเซอร์วสิ
แบบแบคเอน็ดฟ์อร์ฟร้อนตเ์อนด์ (บีเอฟเอฟ)

BY
MISS. CHANSIDA MAKARANOND 6188010
MR. PATTARAKRIT RATTANUKUL 6188018
MR. PUMIPAT WATANAKULCHARUS 6188026

ADVISOR
DR. CHAIYONG RAGKHITWETSAGUL

CO­ADVISOR
DR. VASAKA VISOOTTIVISETH

A Senior Project Submitted in Partial Fullfillment of
the Requirement for

THE DEGREE OF BACHELOR OF SCIENCE
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Faculty of Information and Communication Technology
Mahidol University

2021

ACKNOWLEDGEMENTS

This endeavor would not have been possible without the assistance of several

individuals. Dr. Chaiyong Ragkhitwetsagul has been an amazing instructor, mentor, and

thesis supervisor, providing sound guidance and support with just the right amount of

insight and levity. We are proud of and appreciative of the time I spent working with him.

We are incredibly appreciative that you accepted us as supervisees and maintained trust

in us throughout the years. Additionally, Assoc. Professor Dr. Vasaka Visoottiviseth,

who serves as our co­advisor and provides direction and assistance to our team. We

have profited tremendously from your depth of expertise and painstaking editing.

Additionally, thanks toMr. Tanapol Nearunchorn andMr. ChanonKhamronyutha

from Lineman Wongnai (LMWN) compnay for your extraordinary generosity and for

accepting us as part of your LMWN intern team. Additionally, for assisting us along the

process, offering advice and direction, and providing us with access to LMWN resources

for testing and study.

Finally, we would like to express our gratitude to the countless people that sup­

ported and loved us during this lengthy journey. Thank you to our loved ones for con­

stantly listening to our complaints and talking things out, for proofreading repeatedly

even after long days at work, from different time zones. Also, thank you for believing in

me, supporting me and for making sacrifices to help me complete this project. We will

be eternally grateful for the unwavering love and support we received during the thesis

process and on a daily basis.

Miss. Chansida Makaranond

Mr. Pattarakrit Rattanukul

Mr. Pumipat Watanakulcharus

Faculty of ICT, Mahidol Univ. Senior Project / iii

MICROUSITY : SECURITY TESTING TOOL FOR BACKEND FOR FRONTEND

(BFF) MICROSERVICES

MISS. CHANSIDA MAKARANOND 6188010 ITCS/B
MR. PATTARAKRIT RATTANUKUL 6188018 ITCS/B
MR. PUMIPAT WATANAKULCHARUS 6188026 ITCS/B

B.Sc.(INFORMATION AND COMMUNICATION TECHNOLOGY)

PROJECT ADVISOR: DR. CHAIYONG RAGKHITWETSAGUL

ABSTRACT

Today, microservice architecture is widely used in corporate software develop­

ment. This is because microservices­based software development enables software de­

velopment to bemore scalable andmore efficient than traditional processes. The creation

of microservices software requires the extensive usage of Application Programming In­

terfaces (APIs). However, vulnerability scanning and API functional testing are not

catching up. Thus, vulnerabilities such as data disclosure or excessive data exposure

might arise. Also, some of the currently API security testing tools do not provide report

visualization, which makes it extremely difficult for the developers to comprehend the

information and fix the issues. Finally, it is important to provide self­assisted learning

platform for interested persons about understanding and avoiding API attacks.

We aim to solve the aforementioned problems. Microusity is an application that

performs API security testing on a popular type of microservice called Backend for Fron­

tend (BFF) systems. With the adoption of state­of­the­art fuzzing technique and network

monitoring plus the ability to create visualizations, Microusity will help security testers

to detect API security issues and comprehend the detected issues via the tool’s graph

visualization report and education content related to the detected issues. The program

also has a sandbox simulation system that allows learners to learn and encourages API

security learners to test and practice on their own.

KEYWORDS: API SECURITY, MICROSERVICES, FUZZING 88 P.

Faculty of ICT, Mahidol Univ. Senior Project / iv

ไมโครยซิูตีÊ เครืÉองมือทดสอบความปลอดภยัสาํหรับไมโครเซอร์วสิ
แบบแบคเอน็ดฟ์อร์ฟร้อนตเ์อนด์ (บีเอฟเอฟ)

นางสาว จนัสิดา มกรานนท์ 6188010 ITCS/B

นาย ภทัรกฤต รัตตานุกลู 6188018 ITCS/B

นาย ภูมิภทัร วฒันกลุจรัส 6188026 ITCS/B

วท.บ. (เทคโนโลยสีารสนเทศและการสืÉอสาร)

อาจารยที์Éปรึกษาโครงการ: ดร. ชยัยงค์ รักขิตเวชสกลุ

บทคดัยอ่

ปัจจุบนั สถาปัตยกรรมแบบไมโครเซอร์วสิมีการใชก้นัอยา่งแพร่หลายในการพฒันาซอฟตแ์วร์
ขององคก์ร เนืÉองจากการพฒันาซอฟตแ์วร์บนไมโครเซอร์วสิมีศกัยภาพทีÉจะทาํใหก้ารพฒันาซอฟตแ์วร์
ตรงไปตรงมาและมีประสิทธิภาพมากกวา่กระบวนการแบบเดิม การสร้างซอฟตแ์วร์ไมโครเซอร์วสิ
ตอ้งใช้ Application Programming Interface (API) อยา่งไรกต็าม การคน้หาช่องโหว่และการ
ทดสอบการทาํงานของ API ไม่ไดถู้กใชอ้ยา่งกวา้งขวาง ซึÉงหมายความวา่อาจเกิดช่องโหว่ เช่น การ
เปิดเผยขอ้มูลหรือการเปิดเผยขอ้มูลมากเกินไป นอกจากนีÊ ยงัไม่มีการทดสอบการทาํงานของ API
อยา่งกวา้งขวาง ดงันัÊนอาจเกิดช่องโหวเ่ช่นการเปิดเผยขอ้มูลทีÉมากเกินไป นอกจากนีÊ เครืÉองมือทีÉมีอยู่
ในปัจจุบนัยงัมีขอ้จาํกดัและไม่ไดใ้หก้ารแสดงภาพรายงานแบบกราฟ ทาํให้นกัพฒันาสามารถเขา้ใจ
ขอ้มูลเกีÉยวกบัช่องโหว่ภายในซอฟตแ์วร์ไดย้ากมาก นอกจากนีÊ ความรู้และความตระหนกัดา้นความ
ปลอดภยัของ API ยงัไม่มีแหล่งรวบรวมทีÉสามารถเขา้ถึงไดง่้าย ดว้ยเหตุนีÊ จึงมีความเหมาะสมทีÉจะ
มีคาํแนะนาํดา้นการศึกษาและความรู้ซึÉงเป็นส่วนหนึÉงของการใหค้วามรู้แก่นกัศึกษา คณาจารย์ และผู ้
สนใจเกีÉยวกบัการป้องกนัการโจมตีและการรักษาความปลอดภยัสาํหรับ API ในส่วนเกีÉยวกบัไมโคร
เซอร์วสิ ดงันัÊนทีมวจิยัจึงคาดคะเนปัญหาและเลง็เห็นปัญหาและมุ่งแกปั้ญหาเหล่านัÊน

ระบบ Microusity เป็นเวป็แอพพลิเคชัÉนทีÉเสนอเพืÉอแก้ปัญหา API 3:2019: Excessive
Data Exposure ภายในรูปแบบสถาปัตยกรรมแบบไมโครเซอร์วสิดงันัÊนMicrousity เป็นเวป็แอปพลิเคชนั
ทีÉทาํการทดสอบความปลอดภยั API บนระบบ BFF ดว้ยความสามารถในการสร้างภาพขอ้มูลเพืÉอ
ช่วยให้ผู ้ทดสอบความปลอดภยัเขา้ใจปัญหาดา้นความปลอดภยัได้อยา่งง่ายดายผา่นการใช้รายงาน
การสร้างภาพกราฟ Microusity โปรแกรมยงัมีระบบจาํลองแซนดบ์็อกซ์เพืÉอส่งเสริมให้นกัเรียนได้
ลองทดสอบและฝึกฝนดว้ยตนเอง
88 หนา้

v

CONTENTS

Page

ACKNOWLEDGMENTS ii

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES ix

1 INTRODUCTION ... 1

1.1 MOTIVATION... 1

1.1.1 THE RISE OF MICROSERVICES................................... 2

1.1.2 THE RISE OF APIS SECURITY..................................... 2

1.1.3 VISUALIZATION FOR SYSTEM SECURITY 3

1.2 PROBLEM STATEMENTS .. 4

1.3 OBJECTIVES OF THE PROJECT... 4

1.4 SCOPE OF THE PROJECT .. 4

1.5 EXPECTED BENEFITS .. 5

1.6 ORGANIZATION OF THE DOCUMENT................................... 5

2 BACKGROUND ... 6

2.1 FUNDAMENTALS .. 6

2.1.1 WEB API OR WEB SERVICE.. 6

2.1.2 MODERN API­BASED SERVICE DEVELOPMENT 8

2.1.3 MONOLITHIC SOFTWARE ARCHITECTURE 8

2.1.4 MICROSERVICE SOFTWARE ARCHITECTURE............. 11

2.1.5 MICROSERVICE IMPLEMENTATION 14

2.1.6 REAL­WORLD CASE STUDY OFMICROSERVICE AR­

CHITECTURE .. 17

2.1.7 BFF (BACKEND FOR FRONTEND) 22

2.1.8 API SECURITY... 27

2.1.9 API TESTING ... 31

2.1.10 API FUZZING... 32

vi

2.1.11 THE SIGNIFICANCE OF HTTP ERROR CODE 500 34

2.2 TOOLS AND TECHNIQUES ... 36

2.2.1 NODE.JS.. 36

2.2.2 CYTOSCAPE JS .. 38

2.2.3 DOCKER .. 41

2.2.4 ZEEK–NETWORK MONITORING TOOL 43

2.2.5 RESTLER–API FUZZING TOOLS.................................. 44

2.3 LITERATURE REVIEW.. 47

2.3.1 FUZZING TOOLS AND TECHNIQUES 47

2.3.2 FEEDBACK­DIRECTED TEST GENERATION 49

2.3.3 GENERAL­PURPOSE GRAMMAR­BASED FUZZERS 50

2.3.4 WHITEBOX FUZZING .. 51

2.3.5 WEBGOAT... 51

2.3.6 DAMN VULNERABLE WEB APPLICATION (DVWA) 52

2.4 CHAPTER SUMMARY .. 52

3 ANALYSIS AND DESIGN ... 53

3.1 MICROUSITY: SECURITYTESTINGTOOLFORBACKENDFOR

FRONTEND (BFF) MICROSERVICES 53

3.2 SYSTEM ARCHITECTURE OVERVIEW 56

3.2.1 WORKFLOW OF MICROUSITY 58

3.2.2 SECURITY REPORT.. 58

3.3 USE CASE ANALYSIS ... 61

3.4 SYSTEM STRUCTURE .. 62

3.5 SYSTEM ANALYSIS ... 64

3.5.1 DATAFLOWDIAGRAMLEVEL0 (CONTEXTDIAGRAM) 64

3.5.2 DATA FLOW DIAGRAM LEVEL 1 64

3.6 INTERFACE DESIGN .. 66

3.7 COMPARISON TO RELATED WORK 74

3.8 PROJECT TIMELINE, CURRENT PROGRESS, AND FUTURE

WORK ... 77

3.8.1 PROJECT TIMELINE... 77

vii

3.9 CHAPTER SUMMARY .. 77

REFERENCES 78

BIOGRAPHIES 88

viii

LIST OF TABLES

Page

Table 3.1: Comparison of Microusity to Similar Tools.................................... 75

ix

LIST OF FIGURES

Page

Figure 2.1: Monolithic Web Application [1] ... 9

Figure 2.2: Large Monolithic Web Application [1] .. 10

Figure 2.3: John Kemeny (left) and Thomas Kurtz (center) discuss a program with

a Dartmouth student early in BASIC’s existence [2] 12

Figure 2.4: Microservices architecture diagram [3] .. 13

Figure 2.5: Microservices architecture structure split according to functionality do­

main [1].. 14

Figure 2.6: Core component of microservices [4] ... 14

Figure 2.7: Asynchronous message between party A and party B [5] 16

Figure 2.8: Synchronous message between party A and party B [5] 17

Figure 2.9: Amazon microservices case study [6] .. 18

Figure 2.10: Netflix microservices comparison to the simple architect case study [7]

... 19

Figure 2.11: Monolithic Architecture of Uber [8].. 20

Figure 2.12: Microservices Architecture of Uber [8] 21

Figure 2.13: Backend for frontend design pattern [9] 22

Figure 2.14: A general purpose API backend [10] .. 23

Figure 2.15: BFFs at SoundCloud in 2021 [11] .. 25

Figure 2.16: BFF per user interface [10] ... 26

Figure 2.17: API 3:2019 Excessive Data Exposure case study [12] 28

Figure 2.18: SQL Injection example case [13] ... 30

Figure 2.19: SQL joke [13] ... 31

Figure 2.20: Information leak fuzzer case : uninitialized memory [14] 34

Figure 2.21: Information leak fuzzer case : uninitialized memory [14] 34

Figure 2.22: Information leak fuzzer case : length specified [14] 35

Figure 2.23: Information leak fuzzer case : normal case [14] 35

Figure 2.24: Information leak fuzzer case : invalid case [14] 35

x

Figure 2.25: Information leak fuzzer case : status error code 500 case [14] 36

Figure 2.26: The DREAM complex represses growth in response to DNA damage

in Arabidopsis, constructed by Cytoscape 39

Figure 2.27: Docker and VM comparison [15] ... 42

Figure 2.28: Zeek process [16] ... 43

Figure 2.29: RESTler process [13] .. 46

Figure 3.1: Good BFF and Good Core API ... 54

Figure 3.2: Good BFF and Bad Core API ... 54

Figure 3.3: Bad BFF and Bad Core API ... 54

Figure 3.4: Microusity System Architecture ... 55

Figure 3.5: Microusity workflow ... 57

Figure 3.6: Test report: ­ Overall coverage, Response code and problem detected. 59

Figure 3.7: Visualization Graph... 60

Figure 3.8: Use cases of Microusity ... 62

Figure 3.9: Microusity Structure Chart.. 64

Figure 3.10: Data Flow Diagram Level 0 ... 65

Figure 3.11: Data Flow Diagram Level 1 ... 66

Figure 3.12: Overview of the interface design of Microusity 67

Figure 3.13: Overview the detection tool and education aspects 68

Figure 3.14: Microusity detection tool for Backend for Frontend (BFF) Microser­

vices ... 69

Figure 3.15: Microusity educational part for learner 70

Figure 3.16: Microusity home page ... 71

Figure 3.17: Microusity course page ... 72

Figure 3.18: Microusity team members page ... 73

Figure 3.19: Project timeline ... 76

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 1

CHAPTER 1
INTRODUCTION

1.1 Motivation

When the software architecture is being released into production, it is built with

flexibility in mind. Hence, the work of system architecture has no lifespan, and it will

continue to be used until there is a better implementation. Throughout time, the evolution

of software architecture has played an essential role in our software development and im­

plementation process. In the past, monolithic software architecture was considered one

of the commonly used software architectures. A monolithic software architecture is built

as a single logical executable. Scaling monolithic programs usually provides a challeng­

ing task for the developer because every modification impacts the entire system since

monolithic works as a single unit [17]. Also, [18] if one service fails, everything stops

operating in a monolithic service. In order to overcome the restrictions of monolithic

architecture, microservices were created to address these problems.

Microservices are small autonomous services that function with lightweight cod­

ing mechanisms. The microservices architecture enhances the traditional monolithic ar­

chitecture by utilizing technologies to separate the application processes to establish an

autonomous small service group operating in its own processes. Many enterprises have

found that by employing sophisticated microservices architectures, they can build soft­

ware more quickly and leverage new technologies. Compared to the traditional mono­

lithic services [17], microservices architecture provides many benefits. For instance, mi­

croservices enable technology heterogeneity, resilience, scalability, ease of deployment,

organizational alignment, composability, and more [17]. Furthermore, microservices

also give the advantages of making decisions. Therefore, more alternatives and more

selections will be available from the use of microservices architectures. Because deci­

sions are considerably more prominent in this microservices framework than in simpler,

monolithic systems [17]. One of the most prominent characteristics of a microservice

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Introduction / 2

is its autonomous functionality. Their deployment independence best characterizes mi­

croservices. As a result, a system must not be affected if any service is interrupted, shut

down, or changed [19]. In addition, each microservice has its own database to store

information. With this, the developer may easily regulate the database’s performance

and scalability. Besides, if the developer wishes to access a microservice’s database, the

change must be called only through that service’s API [18].

1.1.1 The Rise of Microservices

Microservices are one of the most popular terms today [17] and the use of mi­

croservices has been prominently increasing nowadays. Online services are increasingly

moving toward a microservice architecture. For instance, the world’s leading company,

Netflix, has shifted from a traditional architecture to a microservice architecture, using

the Backend For Frontend (BFF) design pattern to solve the complex system manage­

ment problems it encounters. From the traditional architecture system, microservices

architecture makes it easier for Netflix companies to plan for managing systems and

huge amounts of data [20]. As a result, strategic planning and implementation efforts at

numerous prominent organizations have given microservices close attention and impor­

tance. According to research firm Research and Markets, microservices market growth

will be driven by the benefits of microservices architecture and hybrid clouds across

various end­user sectors [21]. Furthermore, according to firm researchers and market

experts, the microservices industry will grow at 22.5 percent annual rate over the next

five years [21].

1.1.2 The Rise of APIs Security

Every day, we all utilize hundreds of APIs in today’s data­driven economy to

access and exchange data. Most sensitive data is kept in databases, such as financial,

healthcare, and personally identifiable information (PII), which may possibly be rou­

tinely stored in an unsecured and inaccurate manner. As a result, theft or manipulation

of such data is possible. In particular, API security concerns can occur in microservices

systems that lack appropriate security mechanisms. In accordance with this, SALT Se­

curity company’s investigation report on the current state of API security highlights that

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 3

API traffic accounts for more than 80 percent of total Internet traffic [22]. Moreover,

according to a recent assessment of the literature in this field, the usage of APIs and

the value of data transmitted over them has proliferated. Thus, the statistics reveal that

from 195 million API calls in December 2020, the number of API calls increased to 470

million API calls in June 2021 [23].

As reported in a recent literature review on this subject, attackers’ interest has

risen as API usage and the value of data transferred has expanded [22]. Also, several

studies, for example [22], [23], and [24] have revealed that APIs are often the weakest

link in a company’s application security chain, and attackers are aware of this. Despite

that, many companies still fail to maintain the security of their API for many reasons,

such as lack of awareness, overconfidence in traditional security tools, and more [25].

Remarkably, the primary cause of API security difficulties originates from too

much reliance on developers to handle API security issues. Based on the study of the

current state of API 2021, 36 percent of respondents feel that developers or DevOps

teams are primarily responsible for safeguarding APIs, according to the study’s results.

It is not only impractical, but it puts a company at risk [23].

1.1.3 Visualization for System Security

Furthermore, without a proper visualization tool to display the monitoring data,

the data from the security detection tool can become burdensome for the user. As stated

by Yang Cai, Director of the CyLab Visual Intelligence Studio at Carnegie Mellon Uni­

versity, “It’s quite difficult for analysts to look through 80 columns in a table” [25].

Moreover, Cai believes that with the benefit of gathering thousands of network data and

representing them in an easy pattern using the visualization tools, this can help a detector

of anomalies attack much faster than the traditional process [25]. Thus, it is beneficial

to implement sufficient visualization tools to display the overall result of the security

detection tools. With the visualization tool, it can significantly reduce the complexity

of multiple data sets. Therefore, complex data can be identified and graphically visu­

alized using a visualization tool such as the data dashboard. As a result, the developer

can discover the risk, analyze risks, observe the vulnerable spots, and respond faster to

identifying the breach points in the system.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Introduction / 4

From the literature, when dealing with sensitive data, the software must take ad­

ditional precautions. API security should be a key priority, especially for companies that

rely on application development to promote their business innovation. Consequently, de­

tecting problems before a security breach occurs can be very beneficial to the system’s

productivity and performance.

1.2 Problem Statements

This project tackles the following problems as follow:

1. The existing tools for evaluating BFF systems for sensitive data exposure identify

just the errors, but cannot precisely identify the source of the errors when one­to­

many requests are created by BFF.

2. The results from API security testing tools can be difficult to comprehend without

a proper visualization display.

3. Lack of relevant training and education resources in Thailand’s computer courses

on API security problems are also few and fall behind the expanding trend of

harmful user software assaults.

1.3 Objectives of the Project

The objectives of the project are as follows:

1. To create an automated API security testing tool for BFF systems.

2. To implement a visualization that easily displays and views the results of API

security testings.

3. To integrate the result of API security testing into continuous integration as part

of the software development pipeline.

4. To educate and raise the learner’s awareness about attack avoidance and microser­

vices API security.

1.4 Scope of the Project

The project falls under the following scope:

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 5

1. The proposed automated API security testing tool is available as a web application.

2. The proposed automated API security testing tool only supports BFF design pat­

tern for microservices architecture style.

1.5 Expected Benefits

This project provides the following expected benefits:

1. The proposed automated API security testing tool for checking the API security

of microservices systems can be used by software companies to improve their

systems’ API security.

2. The software companies are more aware of potential vulnerable API security risks

in their microservices system.

3. The software development is strengthened and more guarded from API security

risks during development time.

4. The need of attack prevention and API security is now being recognized. As a

result, the software’s security is effectively safeguarded.

1.6 Organization of the document

The document consists of 6 parts including Introduction (Chapter 1), Background

(Chapter 2), Analysis and Design (Chapter 3), Implementation (Chapter 4), Evaluation

Results (Chapter 5), and Conclusion (Chapter 6). Firstly, The Introduction chapter in­

cludes motivation, problem statements, objectives, scope, expected benefits, and orga­

nization of the document. Secondly, the Background chapter describes the overview of

the project, which has fundamentals and related work. Thirdly, the Analysis and design

chapter contains work procedures: methodology, system architecture, structure chart,

and system analysis.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 6

CHAPTER 2

BACKGROUND

The background and information necessary for completing this project is pre­

sented in this chapter. The first component is the section Fundamentals, which contains

fundamental project information. The second part is Tools and Technologies, which cov­

ers the tools and techniques used for the project. The third component is a section on a

literature review which provides an overview of project­related research papers.

2.1 Fundamentals

This section is to provide the basic knowledge of the project fundamental terms

that necessary for understanding this project.

2.1.1 Web API or Web Service

In our modern technology­driven era, web API and web service are the two most

common terms. Despite their ability to operate together, web APIs and web services are

not the same things. The differences can be explained as follows. First, web APIs are

based on the concept of API. An API is a programming interface that enables commu­

nication between different applications [26]. The Web API can be implemented on a

web server or in a web browser. When client devices such as smartphones, laptops, and

desktops make queries to the web API, the web API will forward those requests to the

webserver for processing and then deliver the processed result to the client. Web services

are used to connect with the cloud and exchange data. Nowadays, it is essential to be

able to share data across various devices and apps instead of being kept on the device it­

self. A web service is a general word that refers to an interoperable machine­to­machine

software function hosted on a network­accessible server [27]. Nowadays, having a web

service is critical in today’s tech­driven society since web services facilitate the devel­

opment of software architectures. In general, there are several types of web service pro­

tocols or standards, such as XML­RPC, UDDI, SOAP, REST, and JSON. According to

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 7

IBM CICS®, web service protocols like SOAP and JavaScript Object Notation (JSON)

are two of the most distinguishable types of web service [27]. It is important to note that

each of these methods has its advantages and disadvantages. Also, there is a primary

distinction between web service and web API.

On the one hand, SOAP is a standardized protocol that facilitates the transmis­

sion of messages across other protocols such as HTTP and SMTP. The World Wide Web

Consortium maintains and develops the SOAP specifications as official web standards

(W3C) [28]. SOAP is an XML­based communications system for sending and receiv­

ing data over the internet between two computers and web services. SOAP works by

allowing the client to encapsulate a method call in SOAP/XML, subsequently sent to

the server over HTTP. The XML request is processed to determine the method name

and arguments provided, and processing is delegated. As a result, a SOAP message’s

envelope specifies the message’s start and endpoints. In addition, since SOAP messages

are entirely composed of XML, they may be used on any platform and in any language.

On the other hand, most programming languages allow the developer utilizes

JavaScript Object Notation (JSON). JSON data format because JSONdata is composed

of collections of name/value pairs and ordered lists of values. Both of these are com­

mon data structures utilized by the majority of computer languages. It is based on the

Javascript/ECMAScript scripting language. JSON is now the de facto industry standard

for data exchange between web services, web applications, browsers, and mobile apps

[29]. JSON can offer many benefits, such as its straightforward form, modifying flexi­

bility and adaptability, making it simple to read and comprehend. Contrary to common

perception, JSON does not need only the JavaScript programming language, but it can

be adapted to many programming languages.

With the proliferation of AJAX­powered websites, it is becoming more essential

for websites to load data fast, asynchronously, or in the backgroundwithout slowing page

display. A large number of existing studies in the literature [30], [31], [32] had exam­

ined the usages of different web service data formats that may affect the performance of

an application. The literature review from the Department of Computer Science and the

Information Technology, University of Oradea, Romania, suggested that JSON is more

proficient compared to SOAP. Due to the fact that JSON facilitates the transmission of

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 8

data across various devices and applications to a greater extent [33]. Moreover, based on

the in­depth analysis of SOAP and JSON performance with web API in the PHP frame­

work, study [30] reveals that both in terms of data size and response time for web APIs,

JSON format offers 30­40 percents quicker transmission than SOAP XML format. For

XML Web Application Programming Interface, the JSON data format outperforms the

others in terms of response speed and data volume (API). However, SOAP still provides

superior support for specific applications that need the transmission of several hetero­

geneous XML formats [31]. Also, the JSON data format uses less memory on average

than the XML data format [32].

In order to interact with hardware components, such as media components, files,

or objects, the RESTFUL library was developed for this purpose. When it comes to web

services, those that conform to the REST model are referred to as RESTful. Standard

HTTP verbs like GET, POST, PUT, and DELETE is used to interact with the required

components through REST.

Therefore, based on the data gathered from the literature review, our project has

chosen the JSON framework as the main data exchange format. Because of its benefits,

SOAP is governed by rigorous standards and has sophisticated security measures since

it is an established protocol. Therefore, it makes SOAP require more complexity and

necessitates additional bandwidth and resources, resulting in slower page load times.

Thus, JSON data is more suitable and may be completed through web APIs in a timely

manner, with fewer delays to the end­users.

2.1.2 Modern API­based Service Development

Although web APIs have existed for over two decades, it is only in the last few

years that the term “web API.” has received considerable attention. As the number of

developers adopting an API­centric approach to developing software and online applica­

tions continues to grow rapidly, Remarkably, API development philosophy has changed

over time to meet the contemporary requirements of business architecture, and develop­

ers must understand how to adapt to these current API design concepts.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 9

2.1.3 Monolithic Software Architecture

Monolithic applications dominated the industry for decades. Monolithic software

architecture refers to a structure that is entirely made of one component. Thus, a mono­

lithic application is a single­tiered software application in which several components are

integrated into a single program running on a single platform [34]. Many monolithic

web apps make use of JSON through REST APIs. When deploying a program, it may

be a single file (like Java) or a group of files residing in the same directory.

Figure 2.1: Monolithic Web Application [1]

According to the diagram in Figure 2.1, the whole application is hosted on a web

server and application server. The application is split into several levels yet remains in­

tact as a whole (Presentation, Business, and Persistence). Undoubtedly, the most distinct

characteristic of monolithic architecture is its deployment as a whole.The application is

executed in a single process. Also, based on the illustration, there is just one online

transaction processing database in a monolithic application. As a consequence, manag­

ing transactions and exchanging data is simple.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 10

Figure 2.2: Large Monolithic Web Application [1]

While monolithic systems are initially simple to operate, their size and complex­

ity grow with time. The drawbacks of monolithic applications become considerably

more important as the application grows in size and user base as in Figure 2.2. There are

several disadvantages to monolithic applications, such as scalability problems. Firstly,

monolithic apps were inefficient at scaling, especially because of the shared code­base,

when different components had different resource requirements. Due to that fact, it can

only be scaled on a one­dimensional scale. Thus, scaling a large monolithic applica­

tion has become a time­consuming task for developers. Because a developer needs to

completely reinstall the software in order to modify a single component [35]. As a re­

sult, parallelizing tasks across different teams is challenging. Secondly, with such a big

and sophisticated application, making changes is more difficult due to the tight coupling.

Anymodification to the source code has ramifications across the whole system, therefore

planning is essential. Hence, the entire development process would be prolonged as a

result of this issue. Additionally, monolithic structures impose obstacles to the adoption

of new technologies. The implementation of a new technology in a monolithic program

is very difficult since the whole application must be rebuilt[36].

The Figure 2.2 represents a large monolithic web application system structure.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 11

Based on the case, there is an obvious problem with the system when the business wants

to scale up its components within the layers.

To sum up, monolithic software architecture evolved together with the develop­

ment of software systems, as new methods were created to meet the specific challenges

of each era. In today’s world, architecture has become an ingrained element of contem­

porary activity. As a result, the software architectural style seems to be a main force

that drives our business and our world, therefore, software architecture should be em­

phasized.

2.1.4 Microservice Software Architecture

DevOps (A compound of development (Dev) and operations (Ops)), cloud com­

puting infrastructure, mobile computing, and elastic computing have all contributed to

the rise of the microservice software architectural, which now competes with the mono­

lithic approach to building extensive software systems. In order to tackle this problem,

the microservices software architecture has been developed.

In the past, only individuals with PhDs in science and mathematics could uti­

lize the first programming languages because of the high entry barriers that existed. As

mentioned by Rockmore about the ability to access the computer machine in the 1960s ,

Rockmore quoted that “Behind locked doors, only guys–and, once in a while, a woman–

in white coats were able to access the computer machine.” As time passed by, non­PhD

students from various fields may have participated in the development of software, caus­

ing computer applications to expand rapidly in the 1960s [2]. The BASIC programming

language was created in 1964 as a general­purpose programming language [2]. There­

fore, the 1960s marked a revolutionary change for software development. The software

has grown in size and complexity. The old traditional principle of monolithic architecture

design was removed, and the new strategy of “Divide and Conquer” was established and

used by computer scientists in an attempt to conquer the complexity of software systems.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 12

Figure 2.3: John Kemeny (left) and Thomas Kurtz (center) discuss a program with a
Dartmouth student early in BASIC's existence [2]

DevOps (A compound of development (Dev) and operations (Ops)), cloud com­

puting infrastructure, mobile computing, and elastic computing have all contributed to

the rise of the microservices architecture style, which now competes with the monolithic

approach to building extensive software systems. In order to tackle this problem, the

microservices software architecture has been developed.

Microservices is amethodology for building a single application as a collection of

smaller services, each of which runs in its own process and communicates via lightweight

methods, most often an HTTP resource API. With microservices, big software projects

may be divided into smaller ones with loosely connected modules that interact with one

another through simple APIs. Microservices have lots of advantages over traditional

monolithic software architectures.

Firstly, one of the main benefits of microservices is their application scalabil­

ity features. Because each microservices may operate independently, adding, removing,

updating, and scaling individual microservices is very simple. Therefore, rather than ex­

panding a whole application, developers may provide more resources to the most critical

microservices. This also implies that scaling is more rapid and often more cost­effective

with a microservices architecture as in Figure 2.4 and Figure 2.5.

Secondly, microservices enhance quick development. With microservices, new

products and features can be created and released more quickly because each unique

feature may be produced as a standalone microservices that can be tested and deployed

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 13

separately and quickly. Additionally, microservices aid the DevOps mentality. Due to

companies’ fast development and deployment of new products, customers see the results

of their input in weeks, not months or years. This fosters cooperation between users,

developers, and engineers, thus improving user retention and happiness.

Thirdly, fault isolation in Microservices reduces downtime. Microservices en­

able developers to isolate errors to a single service, avoiding cascading failures that

would otherwise cause the program to crash. It is possible to avoid cascading failures

by using features like “Circuit breakers” in microservices design, which prevent server

resource depletion when a calling service is forced to wait on hold for a non­responding

service that has failed [37]. Because of this fault isolation, even if one of the application’s

modules fails, it will continue to function normally.

Fourthly, the security aspect is one of the key benefits of microservices. With

microservices, the security of data becomes the main priority and is taken into consider­

ation when developers create connections across microservices. Therefore, a secure API

guarantees that the data in the microservices processes is accessible only to approved

apps, users, and servers. Accordingly, when it comes to sensitive health, financial, or

other kinds of private data, microservices enhance a secure API, which allows devel­

opers to maintain complete control over which data is accessible to the more extensive

application and its users. Making it possible to comply with HIPAA [38], GDPR [39],

and other data security laws.

Figure 2.4: Microservices architecture diagram [3]

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 14

Figure 2.5: Microservices architecture structure split according to functionality domain
[1]

2.1.5 Microservice Implementation

When implementing the microservice architecture design pattern, a typical mi­

croservices architecture (MSA) should have the following components as in Figure 2.6

[4]. Each of the components can be explained as follows.

Figure 2.6: Core component of microservices [4]

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 15

Client

One of the earliest components of microservices is clients. The architecture starts

with clients from various devices attempting to execute administration functions. For

instance, searching, building, configuring, etc. Furthermore, if consumption is carried

out directly, the client must deal with many requests to microservice endpoints.

Identity Providers

When a customer transmits a request, client queries are routed to identity providers,

who authenticate the customers’ demands and transmit them to API Gateway. The re­

quests are then routed via a well­defined API Gateway to the internal services. Signifi­

cantly, user­driven and server­to­server access to identity data must be supported by the

Identity Microservices.

API Gateway

Amicroservices architecture must also have an API gateway. Because they func­

tion as the primary abstraction layer between microservices and external clients, API

gateways are essential for communication in a distributed architecture.

In order to make requests to the appropriate microservices, clients must go via

API Gateway, which acts as a point of entry for them. Thus, a microservices­to­client

API gateway standardizes the translation of messaging protocols, which frees both the

service provider and client from having to translate requests in unknown forms. Addi­

tionally, most API gateways provide security capabilities such as permission and authen­

tication management for microservices, along with the ability to monitor incoming and

outgoing requests in order to detect any unauthorized access.

Messaging Formats

Messages of the Synchronized and Asynchronized classes are used to communi­

cate between them [40].

Asynchronous message: According to the Figure 2.7, communication between

microservices must be supported by every microservice. The usage of AMQP, STOMP,

and MQTT protocols is common in situations where customers don’t have to wait for

service replies. Due to the nature ofmessages being specified, these protocols are utilized

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 16

Figure 2.7: Asynchronous message between party A and party B [5]

in this kind of communication since the messages themselves must be compatible across

implementations.

Synchronousmessage: According to the Figure 2.8, when customers arewaiting

for a service to respond. The HTTP protocol and a stateless client­server architecture are

used in REST (Representational State Transfer). It is necessary to utilize this protocol

because in a distributed environment, every function is represented by a resource that

may be used to carry out activities

Service Discovery

The list of operating service instances in a microservices application evolves dy­

namically. Service discovery acts as a guide for microservices by maintaining a list of

services on which nodes are situated. As a result, in order for a client to issue a ser­

vice request, the client must utilize a service discovery method. The service registry is a

critical component of service discovery.

Management

Due to the complexity of microservices architecture, it may be challenging to

maintain load balancing appliances current with feature flags. As a result, a real­time

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 17

Figure 2.8: Synchronous message between party A and party B [5]

service configuration is provided via a management capability, which is accessible to

operations and business users.

Static content

Static material is deployed to a cloud­based storage service once microservices

have communicated between themselves and may be sent directly to clients through

CDNs (Content Delivery Network).

Database

In order to store their data and execute their business functions, microservices

have their own private database. Microservices’ databases can only be changed by

using the service API. The services provided by microservices are carried forward to

any remote service which supports inter­process communication for different technol­

ogy stacks.

2.1.6 Real­world Case Study of Microservice Architecture

To deal with complicated systemmanagement issues, today’s world’s top compa­

nies havemoved from conventional architecture to one built onmicroservices. Microser­

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 18

vice architecture is becoming more popular and reinforced for its benefits, as world­

leading companies like Netflix, Amazon, Coca­Cola, Spotify, and Uber have made a

move from monolith to microservices, paving the way for other companies to follow in

their footsteps [41].

Case study of Amazon Microservices

Figure 2.9: Amazon microservices case study [6]

One of the most significant examples of this is the adoption of microservices by

Amazon as in Figure 2.9. Amazon is one of the earliest examples of how microservices

played an essential part in changing the company. Before Amazon, microservices were

not used. Due to the monolithic nature of the old design, all of its functions and compo­

nents are tightly coupled with one another. Consequently, as the Amazon business be­

came more prominent and included hundreds of engineers, Amazon was no longer able

to deliver updates quickly. This claim was supported by Brigham [42], who noted a vital

fact at Amazon’s re:Invent 2015 conference about what led Amazon to its microservices

architecture development. He stated that working with a monolithic application isolates

team members and distances the group from its end objective. Therefore, it is neces­

sary for the company to switch from monolithic to microservices. The process began

with Amazon using the Elastic Container Service, and Docker, Bridestory’s Chief Tech­

nology Officer Doni Hanafi, worked with his team to divide the application into more

minor services [43]. Currently, the operations of the software development life cycle

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 19

Figure 2.10: Netflix microservices comparison to the simple architect case study [7]

(SDLC) have changed significantly due to the new microservices architecture. Accord­

ing to Hanafi, in the past, deploying a significant feature took the Amazon developer

team around three weeks. Now it just takes us a few hours, with the failure rate being

less than one percent.

Case Study of Netflix Microservices

Furthermore, to illustrate howmicroservices may be used to deal with scale prob­

lems, consider Netflix as one of the most obvious case study examples as in the Figure

2.10 [44]. Towards the end of 2008, a three­day outage was caused by increased demand

on Netflix’s infrastructure. Thus, Netflix refactored its monolithic software for these

purposes. According to the case study [44], to begin migrating from monolithic to mi­

croservices. Netflix started by denormalizing their data model using NoSQL databases

and went from a single monolithic app to several microservices. Then Netflix’s devel­

oper team moved all applications that didn’t directly serve customers, including video

encoding and other back­end functions. This was followed by a division of customer­

facing elements such as account creation, movie choice, device choice, and configura­

tion. Netflix divided its monolith into microservices over two years, and in 2011, Netflix

announced the completion of its reorganization and the use of microservice architecture

across the company. Remarkably, nowadays, Netflix’s application now utilizes over 500

microservices and API Gateways to handle over 2 billion API edge queries per day.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 20

Figure 2.11: Monolithic Architecture of Uber [8]

Case Study of Uber Microservices

In the case study of Uber, the application and microservices architecture are no­

tably intriguing as well [45]. When Uber initially arrived on the market, they only in­

tended to serve one city with their service. With time and increased revenue, the mono­

lithic system started to create problems with scalability and integration. Uber subse­

quently decided to shift their whole global IT infrastructure over to microservices as a

consequence of this occurrence.

According to the Figure 2.11, a single framework was utilized to integrate all of

Uber’s trip management and driver administration services, including passenger invoic­

ing, notification features, and payments. Thus, the whole system is based on a MySQL

database for data storage, and three different adapters with APIs are utilized to do in­

voicing, payment, and email/message sending.

According to Figure 2.12, Uber’s new design includes an API Gateway and sepa­

rate services, each with a specific function. These services may be created and developed

on their own. Now, these modules each have their own unique set of capabilities and

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 21

Figure 2.12: Microservices Architecture of Uber [8]

may be used independently. Since each feature could now be scaled separately, the inter­

dependency between them was also removed. Furthermore, the new design of Uber al­

lows the re­implementation of API connection, known as the API Gateway, which links

all the cars and passengers is also made possible by microservices.

Therefore, when comparing two architectural software approaches, several stud­

ies, for instance [46], [47], and [36], have been carried out to investigate the performance

of monolithic software architecture. It has now been suggested that use microservices.

Businesses can manage big codebase applications in a more practical manner, with small

teams making incremental changes to their own codebase and deploying them to other

locations [46], in accordance with the statement from Francesco and his colleagues in

the research paper about architecting microservices, which highlights the importance of

microservices. Francesco [36] demonstrates that microservices concepts are applicable

to a wide variety of businesses. Moreover, the recent article by Md Kamaruzzaman

[47], lead software architect, about the overview of microservices also analyzed that, al­

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 22

Figure 2.13: Backend for frontend design pattern [9]

though the implementation of microservices may be complex, the concept itself remains

the same. Nevertheless, sustainable software development should make the advantages

of microservices architecture worthwhile for long­term benefits.

In conclusion, based on the literature review, microservices architectures would

see upward trends and widespread adoption in the industrial sector in the not­too­distant

future. Moreover, with thorough research through data gathering and literature review,

our team has found the advantages of microservices software architecture implementa­

tion.

2.1.7 BFF (Backend For Frontend)

A microservices design enables teams to rapidly iterate and create scalable tech­

nologies. Figure 2.13 show theBackend for Frontend (BFF) architecture is amicroservices­

based design. One of the most important parts of this design pattern is an application that

links the application’s frontend and backend [48]. Using the BFF pattern, data is fetched

more efficiently between clients (browsers, apps, and other Internet­connected devices)

and services hosted on the servers.

Currently, a tendency toward web­delivered interfaces, rather than thick­client

applications, has emerged with the rise of Software as Service Solutions (SASS) due to

the popularity of the web and its subsequent success [17]. However, now a challenge and

problem have emerged. Since most of the functionality to expose was on the server­side,

it must be available through a desktop web UI and one or more mobile UIs. Therefore,

most systems, which were built with desktop­web UI in mind, often had issues adapting

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 23

Figure 2.14: A general purpose API backend [10]

to new kinds of user interfaces due to the fact that desktop­web UI and the supported

services were already tightly coupled. One of the most prevalent issues is that different

teams work on their various frontend application interfaces; all it takes is a single bottle­

neck on the backend to derail development if it cannot meet the application’s demand.

And, as every developer is well aware, this complexity, this potential for mistakes and

misalignment, will always result in a degraded user experience.

Normally, a traditional way to solve this problem is to use “The general­purpose

API backend.” Starting by implementing the general­purpose API backend, a single

server­side API is often provided, with more functionality added over time to enable

new mobile interaction patterns [10].

According to the Figure 2.14, there is a need for a system interface design for

the mobile client and desktop client. Since every program needs a fundamental build­

ing block, the general­purpose API backend provides such blocks because the general­

purpose API backend offers pre­built functionality so that developers can concentrate

on creating high­level, high­value business functions instead of implementing the same

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 24

basic features over and over again for each new application.

However, there is a problem with the traditional approach of a general­purpose

API backend. In an ideal way, if the various user interfaces can implement the same

or very similar kinds of calls, then this kind of general­purpose API can be successful.

Despite that, in the real­world scenario, there are several significant differences between

using the internet on the phone and using it on a computer. For instance, the capabilities

of a mobile device vary significantly from those of a desktop computer. On the mobile

application, the amount of data can only be displayed in a smaller amount. Since mobile

screens are typically smaller in size compared to desktop screens, Thus, mobile devices

will want to make different calls, make fewer calls, and show additional (and likely less)

data than their desktop equivalents. This requires us to extend the functionality of the

API backend to serve the mobile interfaces, which is where the conventional approach

of a general­purpose API backend falls short.

To address these problems, a SoundCloud engineer named Phil Calçado devel­

oped the Backends for Frontends (BFF) architectural pattern in 2015 [49] as in Figure

2.15. At the time, SoundCloud consisted of a single API that supported both official

applications and third­party integrations (the Public API). As a result, a transition from

a monolithic design to a microservices architecture was required [50]. Additionally, the

development of a monolithic private/internal API and the proliferation of additional mi­

croservices has provided new possibilities for the construction of new frontend APIs on

top of the monolith. Consequently, authentication, rate restriction, header sanitization,

and cache management were all handled by BFF services at SoundCloud. BFFs take all

of the external traffic that comes into the data centers, and the BFFs can process hundreds

of millions of requests each hour.

Because the BFF is tightly coupled to a specific user experience, it is typically

maintained by the same team as the user interface, which simplifies the process of defin­

ing and adapting the API as the UI is requires, while also simplifying the process of

aligning both the client and server components’ releases.

According to the 2.16, in order to take advantage of BFFs implementation and

tackle the issues, this can be done by providing each user interface with a separate back­

end server. Now, with the implementation of BFF, the developer can focus on improving

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 25

Figure 2.15: BFFs at SoundCloud in 2021 [11]

the frontend experience without impacting other frontends by fine­tuning the behavior

and performance of every backend.

Additionally, since each backend is devoted to a particular interface, optimization

for that interface is feasible. As a result, it will bemore compact, simpler, and likely faster

than a generic backend that tries to satisfy all interface requirements. For BFF designing

patterns, it is suitable to use this design pattern when the backend needs to be improved

to meet the needs of specific client interfaces. Also, BFF design patterns should be used

when it is preferable to utilize a separate programming language on the backend of a

different user interface or when backend services, whether shared or general­purpose,

must be kept current with a considerable amount of development effort [51].

There are many advantages of utilizing BFF design patterns. One of the most

notable advantages of the BFF design pattern in this instance is its autonomy. The BFF

architecture reduces the time required to make modifications and enhancements to back­

end systems by using specialized teams. For example, one group is often responsible

for the front end. At the same time, another is responsible for the back end, and even

when microservices are introduced, the bigger work is broken down into smaller jobs.

However, if a business sector reaches a specific size or complexity, it may face chal­

lenges that need the cooperation of several teams. As a result, groups responsible for

developing user interfaces sometimes struggle to communicate with an API managed

by a different team. This is where the BFF can help; although the BFF must continue

to share with other downstream services, this may be accomplished without interfering

with UI development. BFF enables parallel development of the BFF’s API and the front

end, allowing for fast iteration. As a result, developers may optimize the APIs for the

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 26

Figure 2.16: BFF per user interface [10]

convenience of each client type without the need for synchronization points or difficulty.

Apart from those mentioned above, BFF enhances the high pace of development.

Rapid development is facilitated by great autonomy and minimal risk. Another signifi­

cant benefit of BFF designing patterns is that BFF controls who may use or modify the

API calls. Hence, it makes BFF able to solve the issue of maintaining previous ver­

sions of the API on hand for a limited fraction of your external partners who can’t make

changes using a general­purpose API backend. Also, BFFs also have the advantage of

being resilient. Some failed deployments may bring down a real BFF in an availability

zone, but this will not affect or bring down the entire platform.

Finally, Backend For Frontend is a design pattern built with the user and their

experience in mind, not only the developers. In order to meet, engage, and service con­

sumers, it is the solution to the ever­growing adoption of apps that provide consistency

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 27

while fulfilling their varied and changing requirements. As a result, it separates the

backend from the frontend. This is a huge step forward for the microservices software

designing pattern of the future.

2.1.8 API Security

OWASP Top 10 API Security

The OWASP Top 10 is a security awareness guide for web developers. The

OWASPTop 10was developed by theOpenWebApplication Security Project (OWASP®

Foundation), a non­profit online community. The OWASP Foundation publishes a va­

riety of material, including research papers, methodologies, tools, and technologies. To

improve application security and to offer developers’ tools and resources [52].

As of 2003, the OWASP Top 10 project has successfully served as the definitive

resource for learning about common online application security vulnerabilities, as well

as mitigation strategies. However, now there is a greater threat, which is the API security

problems. APIs are critical in today’s app­centric environment for driving innovation.

Customers, partners and internal applications all use APIs. APIs may be found in a

wide range of mobile, SaaS and online apps from banking to retail to transportation,

to the Internet of Things (IoT), autonomous vehicles (AVs), and smart cities (Sc) [53].

As a consequence, OWASP began work in 2019 on an API security­specific version of

their Top 10. As of December 31, 2019, the OWASP API Security Top 10 list has been

published.

Our project will emphasize two aspects in this project’s investigation including

API 3:2019 — Excessive data exposure and API 8:2019 — Injection

API3:2019 — Excessive data exposure

Generally, when it comes to APIs, it’s possible that they disclose a lot more data

than the client really needs. As a consequence, in order to take advantage of Excessive

Data Exposure, a hacker simply sniffs the traffic and analyzes the API replies, searching

for sensitive data that should not be returned to the user [12] . Account numbers, email

addresses, phone numbers, and access tokens are all examples of information that may

be included.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 28

Figure 2.17: API 3:2019 Excessive Data Exposure case study [12]

Developers often attempt to build APIs in a general manner without considering

how sensitive the data they expose could be. As a result, this kind of vulnerability may be

detected by traditional security scanning and runtime detection technologies from time to

time. Furthermore, with a lack of API security implementation, sometimes the developer

cannot tell the difference between legal API data and sensitive data that should not be

provided. Undoubtedly, in­depth knowledge of the application’s design and API context

is needed for this.

According to the Figure 2.17, API 3:2019 Excessive Data Exposure case study, a

POST request is sent from the user’s web browser to a backend API in order to retrieve

previously saved payment information. Specifically, the API is obtaining the primary

account numbers (PAN) and CVV code from a previously saved credit card transaction.

In the example above, x­frame­options are used to defend against cross­frame scripting

attacks, while the x­xss­protection header is used to prevent cross­site scripting assaults.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 29

However, relying only on client­side programming to filter or conceal such sensitive data

isn’t enough. Nowadays, attackers frequently circumvent client­sideweb application and

mobile application code, making API calls directly and exposing sensitive data.

This failure is likely to happen because the Web application firewall (WAF) and

API gateways are examples of traditional security measures that do not comprehend the

exposure risk of the information they are sending. While these kinds of filters may cap­

ture well­defined sensitive data types such as PANs or social security numbers (SSNs),

they do not comprehend the API context and business logic flow.

Case Study on Excessive Data Exposure

According to a real­world case study of the Flaw business [54], which exposed

the personal data of 2 million Bounceshare users to hackers. Consequently caused by ex­

cessive data exposure. In 2019, the Bounce Share app posed a security concern to users.

However, when a phone number is provided in an API request, a security researcher dis­

covered that the Bounceshare app returns an access token and RiderId linked with the

account for that particular phone number.

As a result, an attacker might combine a phone number dump and a script to get

unauthorized access to many user accounts. A hacker who has obtained access to a target

user’s Bounceshare account will have complete access to the victim’s personal informa­

tion, such as their driver’s license, email address, and even photos. Also, attackers can

even access user payment account balance and achieve the capability to book a ride by

using this excessive data leakage.

In conclusion, the API security solution should be able to detect and report on

the wide range of sensitive data types that may be provided in API requests and replies

to be effective. Additionally, these systems must monitor API access by endpoint and

individual users to detect the misuse of personal data. To avoid false positives or denied

requests, these solutions must also offer API context and a wide variety of response

behaviors.

SQL Injection

SQL Injection is a type of SQL attack that tries to find, insert, change or delete

unauthorized data by utilizing special characters in SQL syntax to cancel the original

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 30

Figure 2.18: SQL Injection example case [13]

query and replace it with the attackers. The SQL injection example is shown in Figure

2.18

The notable exploitation that used SQL injection occurred in March 2021, where

Gab was breached by SQL injection, and 70 gigabytes of data were downloaded. This

fault was introduced by the CTO of Gab, Fosco Marotto, who made a git commit that

replaced parameterized query with raw SQL statement shown in Figure 2.19.

To explain, The school may have this statement to insert children’s names into

their database. INSERT INTO Students (firstname) VALUES (‘Pumipat’); But

as the mom named her son Robert’); DROP TABLE Students;-- the statement has

become INSERT INTO Students (firstname) VALUES (‘Robert’); DROP TABLE

Students;--’); the statement is now turn into three statements as follows;

INSERT INTO Students (firstname) VALUES (‘Robert’);

DROP TABLE Students;

-- ‘);

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 31

Figure 2.19: SQL joke [13]

When the first one inserts the student’s name as usual, but the second statement

removes the student’s table from the system, and the original closing quotation mark is

now negated by being marked as a comment. After the statements were executed, the

school’s database lost the student record.

2.1.9 API Testing

API testing is a technique for validating the API’s operation. The purpose of

testing is to establish whether the functionality, security, reliability, and performance

of an API adhere to given requirements [55]. The most often used way of testing is to

request the API and verify that it works appropriately according to the logic. This may be

accomplished manually or automatically. However, manual testing is not advised since

it requires the tester to enter each API and record the result manually. If the inputs are

laborious and the APIs vary, the tester’s job becomes a burden. Despite that, the methods

of automated testing, on the other hand, are increasingly suggested. Nowmore than ever,

API automation testing needs software capable of making and receiving requests, which

the tester may either use a testing tool or develop their automation code to their software.

There are many advantages to API testing. Firstly, after the logic has been de­

veloped, API testing is used to verify the accuracy of replies and data. Thus, developers

do not need to wait for different teams to complete their work or for whole apps to be

developed anymore since test cases are isolated and available to be built immediately.

Secondly, the API enables more straightforward test maintenance. For instance, user

interfaces are continuously evolving and shifting in response to how users view items.

Therefore, this results in a nightmarish situation in which tests are constantly rewritten

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 32

to keep up with the production code. Now, API testing may assist in automating the

process of refactoring tests within seconds. Thirdly, APIs provide a more rapid time to

resolution. Because when API tests fail, developers will be able to know precisely where

the system went wrong and where to look for the problem. This helps to minimize time

spent triaging issues across many builds, integrations, and even team members. In ad­

dition to this, the tiny, isolated footprint of an API test is ideal for calculating quicker

mean time to repair (MTTR), a critical KPI for DevOps teams. Fourthly, API testing is

very efficient in terms of speed and coverage. Three hundred user interface tests may

take up to 30 hours to perform. Three minutes may be used to perform 300 API tests.

This means more problems are discovered in less time.

2.1.10 API Fuzzing

Nowadays, Some of the world’s largest and most reputable companies, such as

Google, Microsoft, and the US Department of Defense (DoD), are using fuzzing in their

quality control and cybersecurity operations [56]. OWASP describes ’Fuzzing’ or ’Fuzz

testing’ as a method for doing black box software testing [57]. Fuzzer will inject random

input into the target program automatically and will identify the problem. The name

’The Fuzzer’ has come to refer to a fuzzing testing instrument equipped with a generator

capable of generating combinations of input types such as integer, string, char, and so

on.

Using fuzzing to discover security flaws and vulnerabilities in software is an

effective and common practice. A target program is fed with erroneous test data to see

whether there’s any vulnerability in the execution. The original random fuzzing system

has been enhanced by combining several useful techniques, including dynamic symbolic

execution, coverage advice, grammar representation, scheduling algorithms, dynamic

taint analysis, and machine learning [58].

To begin, the Fuzzing methodology needed a predetermined list of inputs that

might result in invulnerability, as is customary for this method. Following the method

definition, the Fuzzer will create the request using the specified input and submit it to

the APIs. The Fuzzer will then wait for a response to each request and verify the answer

against a supported rule to determine whether the request and response violated any rules.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 33

After the test is complete, the tester will review the results and forward the problem for

further investigation.

There are many types of Fuzzer, such as Mutation­Based Fuzzers, Generation­

Based Fuzzers, and Protocol­Based Fuzzer. One of the most well­known Fuzzers that

has a comprehensive knowledge of the protocol format being tested is known as Model­

based test development, which involves loading a specification array into the tool and

then parsing the specification for abnormalities in the data contents sequence, and so

on. Structural testing is also known as language testing, robustness testing, and similar

names. Fuzzer may use valid or invalid inputs, or they may construct test cases entirely

from scratch.

Fuzzing techniques can be used to detect three types of bugs[59]. Firstly, a fuzzer

can detect Assertion failures and memory leaks, which happens when a computer appli­

cation fails to release unused memory because the allocations are handled improperly.

This technique of detecting this type of bug is frequently employed in large systems

where memory safety issues exist, making them a serious vulnerability. Secondly, it can

detect an invalid input, which is done by using the technique to generate invalid input

to test error­handling methods. Thus, negative testing may be done automatically using

a fuzzing approach. Thirdly, fuzzing techniques can be used to detect correctness bugs.

In the fuzzing technique, it’s possible that fuzzing may uncover “correctness” issues in

certain situations. An example of this would be a corrupt database or poor search results.

There are many advantages and disadvantages of Fuzzing techniques. On the one

hand, the fuzzing techniques can provide some benefits, such as it can enhance software

security testing. Also, if the testers overlook any issues because of a lack of time or

resources, such problems will be discovered during fuzz testing.

On the other hand, fuzz testing on its own cannot provide an incomplete view

of an entire security threat or issue. Additionally, only minor flaws or risks may be

detected with fuzz testing. When cybercriminals want to do the greatest harm in the

quickest time possible, often use the strategies like Buffer overflow, DOS, cross­site

scripting, and SQL injection, vulnerabilities may all be found with fuzzers. However,

there is a limitation with fuzzing tools since they cannot detect the vulnerabilities that

caused a program crash. For instance, when spyware, viruses, worms, Trojan horses,

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 34

and keyloggers are tested using fuzzing, the fuzzer cannot detect them [60]. Apart from

that, fuzzer requires the random input to make a boundary value condition, which this

process could be complicated.

In conclusion, fuzz testing is used in software engineering to determine the exis­

tence of flaws in an application. Fuzzing cannot ensure that all deficiencies in a program

are detected fully. However, by using the fuzzing method, the application is made more

resilient and secure since this technique exposes the majority of frequent flaws.

2.1.11 The Significance of HTTP Error Code 500

Numerous 500 Internal Server Errors are just the result of an implementation’s

lack of error handling. Some resource requests may be lacking validation. Certain types

of input may fail to deserialize appropriately, for example, when the path or query param­

eter does not match the intended variable type, uncontrollable by the developer factors

like failed infrastructure.

There are many ways for sensitive data to be leaked. These include both unlawful

memory accesses and legitimate memory that includes information that should not be

accessible to the public. In this example. To begin, a small amount of program memory

that contains both real data and random data was being implemented.

Figure 2.20: Information leak fuzzer case : uninitialized memory [14]

In this case Figure 2.21, “deadbeef” is an identifier for uninitialized memory by

adding extra “memory” characters to secrets.

Figure 2.21: Information leak fuzzer case : uninitialized memory [14]

Then, it is necessary to establish a service that requires a response to be given

back, as well as a time limit. When the reply is to be sent, it would keep it in memory

and then send it back with the length that was specified as Figure 2.22.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 35

Figure 2.22: Information leak fuzzer case : length specified [14]

With the regular strings, this application will run flawlessly as in Figure 2.23.

Figure 2.23: Information leak fuzzer case : normal case [14]

There will be an extra memory leak if the request is longer than the reply string

can handle. It’s important to note that all of this takes place inside a standard array and

hence does not result in an address cleaner being called as in Figure 2.24.

Figure 2.24: Information leak fuzzer case : invalid case [14]

Because of this, it is feasible to discover information leakage issues. Because

identifying information that should not be released, such as the given secrets and unini­

tialized memory, is essential. By using a simple example, it is shown that the developer

is capable of doing a check of this kind. Fuzzing, as previously mentioned, may be used

to stop API data from leaking. Because it might alert the developer to data leaking inside

the system, status error code 500 is critical as in Figure 2.25.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 36

Figure 2.25: Information leak fuzzer case : status error code 500 case [14]

In conclusion, error code 500 is used in the negative testing, which is often over­

looked by the developer and quality assurance tester. Since the majority of testing at­

tention is concentrated on positive testing, and only ensuring an API behaves correctly

on the positive route. This is often where difficulties develop, since there are no pro­

cedures in place to deal with unfavorable events. Fuzzing checks use a variety of ways

for determining whether a defect vulnerability has been found. Additionally, assertions

may be disabled and customized. For instance, the API fuzzer by default makes use of

HTTP status codes to determine whether there is a genuine problem. A fault is created

when an API returns a 500 error during testing. This is not always desirable, since some

frameworks often return 500 errors. As a result, it is critical to understand the error 500

status code. API Fuzzing comes to the rescue in this situation. Through negative testing,

API developers may attempt to identify these vulnerabilities early.

2.2 Tools and Techniques

This section explains several tools and techniques which are applied and used in

this project.

2.2.1 Node.js

Node.js is a platform built on top of Chrome’s JavaScript engine that enables

the rapid development of high­performance, scalable network applications. Node is the

JavaScript language’s server environment. Moreover, Node runs JavaScript on Google’s

V8 engine and makes system calls using the self­developed libuv library. Addition­

ally, Node. Js is lightweight and efficient because of its event­driven, non­blocking I/

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 37

O style, ideal for data­intensive real­time applications that operate across dispersed de­

vices. Time was a significant factor in Node.js’s progress. Only a few years before,

JavaScript gained recognition as a more severe language as a result of “Online 2.0” ap­

plications such as Flickr, Gmail, etc. Previously, Netscape created JavaScript as a pro­

gramming language for Netscape Navigator, the company’s Web browser. Netscape’s

business model was based on selling Web servers equipped with a server­side JavaScript

environment called Netscape LiveWire. Although Netscape LiveWire had some early

success, server­side JavaScript did not gain widespread use until the mid­nineties with

the debut of Node.js [61].

Node.js founder Ryan Dahl intended to build real­time websites with push func­

tionality, “inspired by services like Gmail.” He provided developers with a tool for

working in the non­blocking, event­driven I/O paradigm with Node.js [62]. Based on

the article from Procoder [63], frequently, a Node is built as a “microservice” architec­

ture, with each Node offering a self­contained route to execute a particular service. It’s

a novel way to break down an application into its basic components. However, it is a

very successful approach to administering mobile applications, which need the highest

levels of speed, accessibility, and accuracy.

There are several benefits of Node.js. Firstly, one of the most important key ad­

vantages of Node.js is that it supports asynchronous operations [64]. Node processes

JavaScript scripts using the V8 engine, and its most important characteristic is a sin­

gle thread running, which can only do one operation at a time, which means that tasks

aren’t instantly completed but are instead added to a task queue and executed when the

one before it is complete. As a result of this feature, tasks are often specified as callback

functions. As a result, Nodes.js makes this ecosystem valuable for programmers, regard­

less of whether the developer is creating applications for the iPad, iPhone, or Android.

Tasks may execute concurrently and smoothly without slowing down the server or taking

up too much capacity since they are divided into distinct, separate node pathways.

Secondly, the capacity to rapidly expand is another advantage of Node.js [63]. he

reason for this is because Node.js nodes are built around “events.” This implies develop­

ers may add new resources to their current programming while also scaling it vertically

and horizontally. There are no practical limits to how many components a computer

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 38

program may include, and scalability, in any case, allows a program to expand.

Thirdly, high speed and performance are other advantages of Node.js [63]. Be­

cause of the non­blocking input­output procedures provided by Node.js, it is one of the

fastest alternatives. Runtime performance is improved because code is executed more

rapidly, and this is primarily because of the system’s partitions. Fourth, efficient caching,

Node.js is capable of storing a large quantity of data in a small amount of memory [63].

In­app memory is used to cache requests made to the app. As a consequence, when­

ever requests are completed and re­executed. Fifth, the ability of Node.js to utilize a

single programming language simplifies things. Because JavaScript powers nodes, pro­

grammers can easily incorporate them into the rest of the full­stack development pro­

cess. This allows front­end developers to concentrate on more straightforward back­end

coding tasks, and additional server­side languages are unnecessary. While node JS is

excellent for most applications, there are a few exceptions, such as those requiring a lot

of computational CPU power. However, not every corporate application will benefit

from using the flexible runtime environment provided by the environment. The agile,

modular architecture, on the other hand, is ideal for startups that need to be flexible

throughout the development process. In terms of implementation, Node.js has several

benefits for new businesses getting off the ground. Its inherent advantages work nicely

with startups’ need for flexibility and scalability. Startups will benefit from lower de­

velopment expenses because of the open­source ecosystem accessible to programmers.

However, more than a thousand businesses have placed their faith in Node.js, including

some of the most well­known and well­respected names globally, such as Netflix, Pay­

pal, NASA, Uber, and Linked In [65]. In conclusion, while Node.js was fortunate to be

constructed in the right location and at the right moment, this is not the sole reason for

its current popularity. It presents a slew of novel ideas and methodologies for JavaScript

server­side programming that have already proven beneficial to many developers. Since

developers may use non­blocking I/O requests and execute on a single thread, which

helps the developer to manage tens of thousands of threads within their microservices

software in an event loop with Node js.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 39

Figure 2.26: The DREAM complex represses growth in response to DNA damage in
Arabidopsis, constructed by Cytoscape

2.2.2 Cytoscape Js

Cytoscape is a free and open­source software application. Initially developed

for biological research, Cytoscape has evolved into a robust network visualization and

analysis tool [66]. Cytoscape visualizes molecular interaction networks and biologi­

cal pathways via the use of open­source software. As a result, it enables a wide range

of applications in molecular and systems biology, genomics, and proteomics. Pathway

databases maintained by humans such as WikiPathways[67], Reactome [68], and KEGG

[69] may be seen and analyzed in this manner. Cytoscape has also been used success­

fully in a large number of publications [70]. Lang et al. found that the DREAM complex

represses growth in Arabidopsis in response to DNA damage as in Figure 2.26.

However, nowadays, when it comes to visualizing and analyzing substantial so­

cial networks of interpersonal interactions, sociologists often utilize Cytoscape [71]. Ad­

ditionally, several web service APIs and scripting languages collect social media inter­

actions and store them in standard data file formats. Because Cytoscape is compatible

with a wide range of file types, because it’s domain­independent, Cytoscape is a fantastic

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 40

tool for delving deep into complex networks. It’s also possible to improve and expand

Cytoscape’s capabilities. Cytoscape has a robust app development ecosystem, as seen by

the more than one hundred third­party apps produced for the platform [72]. According

to his introduction to Franz and his team [73], his work is about “Cytoscape.js: a graph

theory library for visualization and analysis,” highlighted the fact that Cytoscape.js may

now be used on both the client and the server since more and more JS code is shared

across clients and servers. Owing to Cytoscape.js characteristics, which allow them to

be utilized without a graphical user interface when used as a visualization component

by employing the HTML5 canvas as its basic implementation. One of the main fea­

tures of Cytoscape.JS, which makes it become one of the most successful open­source

JavaScript­based graph libraries, is due to the simplicity of the library and its function­

ality. For ease of use, the library adheres to various concepts of the HTML, CSS, JS

web paradigm [73]. Cytoscape.js uses stylesheets that resemble CSS and the markup

language syntax. Therefore, graph elements can be customized easily using stylesheets

and accessible programmatically through the JS core API. The Cytoscape.js architecture

consists of two parts: a core and a collection. On the one hand, the core is where a pro­

grammer enters a library for the first time. With this object, layouts may be executed,

displays can be changed, and many other things can be done. With the help of funda­

mental functions, you can get at graph components, and these functions return a set of

items. On the other hand, a collection is equipped with its API for filtering, navigating,

executing actions, and retrieving data. To see a graph, three essential operations must

be performed. Consisting of Data is loaded, a style is applied, and the page is rendered

using a rendering algorithm [74]. To begin, the developer must populate the system with

data. Then, the style dictates the appearance of the graph’s components, which is often

stored in a JSON file that follows the same principles as the CSS standard. Finally, after

the graph has been entirely shown, it may be subjected to various search and analysis

tools. For instance, developers may use Cytoscape.JS to produce a graph and then apply

Breadth­First Search (BFS) or Depth­First Search (DFS) algorithms to the Cytoscape JS­

generated graph. In terms of performance analysis of Cytoscape, Franz [73] mentioned

in his study that the visual styles used, the graph size, and the web browser client all

affect the efficiency of the rendering process. Allowing developers to display thousands

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 41

of graph components on even the simplest processors. However, Franz [73] suggested

in his study that utilizing simpler styles, especially for edges, might improve rendering

performance. In conclusion, based on the literature review, the Cytoscape.JS library is

a powerful tool with numerous possibilities. Creating visualizations, data analysis, and

network analysis.

2.2.3 Docker

Cloud­native development and hybrid multi­cloud systems, both of which rely

on containers, are gaining popularity among enterprises. According to IBM [18], Docker

is a free open source containerization platform that executes code in any environment.

Docker programs may be packaged with OS libraries and other required components and

delivered as containers. Additionally, Docker is a collection of tools that enables pro­

grammers to quickly create, deploy, operate, update, and stop containers using a single

API and a few simple instructions. Assisting developers in rapidly deploying production­

ready apps by allowing developers to adjust their code for usage in any environment.

Compared to Virtual machines as in Figure 2.27, Docker is a container operating

system that provides a standard way to run Docker programming. Therefore, the con­

tainer acts as a stand­in for the server’s operating system. Similar to Virtual Machine

Emulation, but more powerful.

One of the most remarkable features of Docker is that it helps make the process

of implementing containers become much simpler tasks for developers. There are sev­

eral advantages to using container technology [18], such as application isolation, cost­

effectiveness, and disposability. Apart from this, according to the AWS article [75],

another principal advantage of Docker is that Docker containers can create and scale

distributed application architectures like microservices. This claim was also supported

by Abraar Syed & Karthic Raois [76]. They mentioned a well­known open­source pro­

gram that constantly improves and has good community support, making it the perfect

tool for microservices software developers.

Another advantage is the continuous integration and delivery of Docker. Estab­

lishing a consistent environment makes it possible to deploy applications faster since

there are no longer any conflicts across language versions or layering systems. Also,

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 42

Figure 2.27: Docker and VM comparison [15]

Docker can manage big data processing effectively. With Docker, extensive data pro­

cessing services and data and analytics are packaged into transportable containers for

non­technical individuals to use. Also, Docker has a distinct edge over virtual machines

like Hadoop clusters. Since Docker containers are significantly lighter and need less

time and effort to set up [77].

From a business perspective, there are several advantages to usingDocker. Docker,

on average, speeds up software deployment seven times. This means that the product de­

velopment phase can be significantly reduced, thereby accelerating return on investments

and improving long­term profitability as the team can move from project to project more

quickly as a result of the increase in productivity. Docker also saves costs in the long

run by simplifying the software updates procedures, which also improves profitability.

The previously mentioned benefits are predicted to result in widespread adoption

of Docker, which can be seen in the statistical analysis of 415 research firms [77] which

anticipates that the container market revenue will expand at a compound annual rate of

35 percents through 2021. Remarkably, Many notable companies are already integrating

Docker into their systems, including AWS, Microsoft Azure, Ansible, Kubernetes, and

Istio.

In conclusion, containerization of software has never been simpler due to Docker,

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 43

Figure 2.28: Zeek process [16]

the world’s leading containerization solution. A Docker container encapsulates compli­

cated microservices, allowing them to be controlled and deployed independently. Be­

cause each of these containers will be responsible for a particular aspect of the business’s

operations, Docker is well suited to the rise of microservices.

2.2.4 Zeek–Network Monitoring Tool

Zeek is the network monitoring tool that can log network activities in a compact

and customizable file format. It supports varieties of protocol out­of­the­box and can be

added by its programming language. Unlike most network monitoring tools, Zeek uses

Turing­complete scripting language targeted for network protocol analysis over signature

detection or byte matching. Zeek also runs as free and open­source software which can

be an alternative for expensive Intrusion Detection Systems (IDS).

Zeek was initially developed at Lawrence Berkeley National Laboratory by Vern

Paxon under the name “Bro” as referencing George Orwell’s 1984 novel as the reminder

that monitoring can be a privacy violation tool. It was changed in 2019 to Zeek as Bro

bears the negative connotation of “bro culture” of the computing world.

Figure 2.28 shows how Zeek works with two components, the Event engine, and

Policy Script Interpreter, as the network packet comes in. The analyzer inside the event

engine detects the protocol and its activities, and then the policy script decides what to

do with each event.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 44

Based on our team’s research, our group chose Zeek for its cost and ability to

customize and integrate other systems as needed.

2.2.5 RESTler–API Fuzzing tools

RESTler is the RESTAPI Fuzzing tool that was created byMicrosoft [13]. RESTler

can automatically test APIs for finding bugs such as security and reliability issues. Fur­

thermore, RESTler can automatically generate the test requests from Swagger specifi­

cation and identify the producer­consumer dependencies, allowing the user to configure

these dependencies manually.

Rest APIs are the most popular method of accessing cloud and internet services

programmatically nowadays. Web service developers, however, continue to employ

static analysis and fuzz testing despite the fact that they are ineffective in protecting

the software from an attack. As a consequence, these engineers need automated meth­

ods now more than ever to identify problems that may compromise API services, either

deliberately by attackers or unintentionally through atypical use patterns. Because of

these issues, there have been many recent papers [78],[79], and [80] released by the Mi­

crosoft Research team looking at innovative ways to automate the detection of security

and reliability issues in cloud/web services using their REST APIs. Subsequently, Mi­

crosoft has developed and published new open­source tools to help them regularly test

their REST APIs for security and reliability issues.

RESTler is a web­based application that automates the process of testing and de­

tecting security and reliability issues in cloud/web services exposed through their REST

APIs. It can operate on 64­bit Windows or Linux computers, and there is also macOS

experimental support available. RESTler develops and executes tests that exercise the

REST API of a cloud/web service using the OpenAPI/Swagger standard. RESTler uses

the API definition to make intelligent inferences about the relationships between request

types and then tests for various problems. In addition, developers may incorporate con­

tinuous testing into their builds using Microsoft Research’s RESTler and a self­hosted

REST API fuzzing service. A collection of REST API fuzzing tools can be defined by

the developer and hosted.

One of the key features of RESTler is that it is Stateful REST API Fuzzer, which

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 45

means that the test case will be executed in the order in which the requests are received.

As a consequence of the fuzzing being performed while the request routes are still valid,

the service’s code coverage is increased, increasing the chance that the unique service

code responsible for processing the fuzzed request will be reached. It saves time by

avoiding verifying invalid inputs that the service has previously appropriately processed.

Another key feature of RESTler is its ability to be extensible, RESTler has numerous

built­in security checks that may be activated or disabled during fuzzing, as well as the

ability to build customized security checkers and plug them into the fuzzing loop. The

last key feature is that RESTler is fully automated, as it generates the fuzzing language

from the Swagger/OpenAPI specification. It is pre­configured with enough coverage for

basic, well­documented APIs.

RESTler runs in 4 modes, including Compile, Test, Fuzz­learn, and Fuzz [13].

1. Compile: Create a RESTler syntax from a Swagger JSON or YAML specification

(and optionally samples). As a result of analyzing the Swagger/OpenAPI standard,

RESTler generates a fuzzing syntax that includes details about each request’s ar­

guments, replies, and interdependencies [81].

2. Test: Run a collection of RESTler grammar endpoints and methods fast to see

whether they work as expected. This mode is also referred to as a smoke test.

3. Fuzz­lean: Rapidly checks potential flaws by running a default set of checkers on

every endpoint and method in a built RESTler language.

4. Fuzz: Detect vulnerabilities by using the intelligent breadth­first­search mode on

a RESTler fuzzing language.

Figure 2.29 shows detail of RESTler process. RESTler begins its process by

analyzing the Open API Specification, or Swagger, by creating a pattern for the input as

the first step. Then, the second step will pass that input to the API and learn from the

responses derived from the previous information. Then Restler will turn it into a tool

called “Stateful,” as shown in the Figure 2.29.

RESTler has two types of bugs that it can detect. Firstly, RESTler can detect

“Error code,” a numeric value that tells the system what went wrong. It may also as­

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 46

Figure 2.29: RESTler process [13]

sist in the search for a solution to the issue. For example, if a status code 500 (“Internal

Server Error”) is obtained, this means that there is suspicious input within the system that

the API didn’t implement to handle. Secondly, “Checker” is utilized for bug finding that

can’t be done with standard fuzzing. The checker is executed automatically when partic­

ular request sequences have been triggered during fuzzing runs. Hence, when RESTler

can detect either type of bug or both simultaneously, the Restler will replay the log for

triaged issues and use it to recreate the bug.

According to Microsoft and Columbia University’s “RESTler: Stateful REST

API Fuzzing” publication [79], the limitation of RESTler was discovered during their

research. The paper reported that there were several limitations to RESTler. For instance,

the requests to API endpoints that contain server­side redirection are not yet handled by

RESTler. In addition, procedures involving web­UI interactions aren’t supported by

RESTler as well. Also, it is reported in the paper [79] that RESTler still can’t cover all

the vulnerabilities. The vulnerabilities that are not apparent via HTTP status codes (e.g.,

“Information Exposure”) still cannot be detected by such a fundamental test oracle.

Additionally, the team discovered that RESTler still has restrictions on the soft­

ware’s backend. RESTler does not investigate the region of vulnerability in the system’s

backend. To demonstrate, in certain instances, RESTler can report that the error code:

500 response was discovered but has no idea how it affects the software’s backend sys­

tem. The developer will still need additional network monitoring tools to cover all possi­

ble scenarios. As a result, the device is insufficiently efficient to cover all vulnerabilities

on both the front and back ends.

In conclusion, RESTler is a Stateful REST API Fuzzer, which implies that it

executes request sequences. RESTler can create requests by reading API­specific files

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 47

(API Specification). As a result, the tool will know the sequence in which requests are

delivered when using RESTler’s API Request generation. Consequently, customers may

specify criteria for RESTler to enable greater flexibility, such as adding test conditions

or an input data collection or writing a new test rule on their software. Thus, there are

no limitations on the kind of technology developers may employ to test their services.

2.3 Literature Review

The literature review section provides an overview of project­related research

papers and state­of­the­art tools.

2.3.1 Fuzzing Tools and Techniques

Burp suite

Burp Suite [82] a tool used for finding the web application’s security vulnera­

bility. Burp can automatically navigate the vulnerability by crawling through the web

application. Burp scanners support many of the vulnerabilities caused by the CSRF,

stateful functionality, etc. For the API security, Burp can automatically parse the Ope­

nAPI v3 specification written in JSON format to help Burp to identify the API endpoints

for testing [83].

When Burp knows the endpoint, it will automatically build the API request and

start testing. Burp can find many vulnerabilities related to the APIs, such as SQL in­

jection, XXE attacks. Users are also allowed to test the injection by manually sending

injection API requests through Burp, and it will automatically identify if that API is vul­

nerable to the injection or not. Users can also customize Burp to intercept only for the

specific vulnerability type, which will help users categorize for only the vulnerability

they are interested in.

Sulley

Sully [84] a fuzzing framework for generating the data input by adopting the

fuzzing technique. Sulley contains five major components. The first component is Data

Generation. Data Generation will build requests from the primitive and other extended

frameworks. The second component is Session Management. After Sully builds the re­

quests, the Session Management will group requests and chain them together in a graph

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 48

to form a session. The third component is Agents, which are the interface used for log­

ging and instrumentation such as VMControl, Netmon, Procmon. Then the driver, which

is the fourth component, will link testing targets, agents, and requests together. Then the

driver will start fuzzing. The last component is Utilities which is a command­line for per­

forming tasks. Sully is the automation testing framework and supports parallel fuzzing,

which will help to increase the testing speed and reduce the tedious testing task. To con­

clude, Sully is an automated fuzzing framework generally used for data generation and

monitoring of the test result [85]

BooFuzz

BooFuzz [86] is the improved version of the Sully fuzzing framework that we

discussed above. The operational flow of BooFuzz is the same as Sully in that it is

still able to generate the data for fuzzing and record the result, but BooFuzz aims to

improve network protocol fuzzing. BooFuzz supports serial fuzzing, ethernet and IP

layer, and UDP broadcast fuzzing. BooFuzz can also provide better test results with

more consistency with CSV export, while Sully can not.

AppSpider

AppSpider [87] the web application security testing tool that can apply to work

with SDLC. AppSpider can integrate with CI tools such as Jenkin to help find the security

issue at the beginning of the software development phase. Appspider supports up to 95

attack types that cover OWASP’s top ten security issues, such as Anonymous Access and

Cross­site scripting [88].

AppSpider has one main component called Universal translator. The universal

translator will be the one who bridges various testing methods for identifying attacks.

The first method that Universal translator uses is web crawling. AppSpider can crawl

the running web application to test security issues and does not require source code.

This method is perfect for web technology such as HTML and JavaScript, but their APIs

are not covered. AppSpider solves the coverage for APIs testing by using the second

method to parse Swagger API definition. The third method is recording. AppSpider sup­

ports traffic recording passing such as proxy server logs to identify the possible attacking

method. The last method is macros; AppSpider will read the interaction behavior of an

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 49

application from the recorded interaction to identify that might be possible for testing.

The Universal translator will consume information from these sources and then generate

the security testing with all these four methods. After the testing finish, App spider will

cause the test result that can display to CI/CD tools if integrated

Qualys WAS

Qualys WAS [89] is a cloud­based integration of web application scanning tools

and web application firewall. WAS is a cloud­based service, so it is easy to deploy,

manage and scale the service. WAS web application scanning tool is built for finding

security vulnerabilities for web applications and APIs. WAS use crawling method to

scan for vulnerabilities of web application and use Swagger specification phasing for

scanning APIs. In comparison, the firewall is used for finding, blocking, and catego­

rizing approved or unapproved web applications in the user network according to the

rules that can be customizable. For the result, WAS will visualize the scanning summary

in the form of an interactive report for more understanding. WAS also supports CI/CD

integration by providing a Jenkins plugin for Jenkins integration [90]

Specification­Based Fuzzing Tools

Other tools that read Swagger specifications in order to parse HTTP requests and

guide their fuzzing include the following.

TnT­Fuzzer [91] is an API fuzzing tool that reads swagger specifications (only

JSON format) for REST API testing. TnT­Fuzzer will fuzz requests to target API ac­

cording to the API spec, and it will log the request and response from API. Users can see

the crash from this log to identify the API error. Users can use this tool for fuzz custom

input requests for testing, such as penetration testing.

APIFuzzer [92] is another API fuzzing tool that can parse API definitions for

building API requests. APIFuzzer supports both Swagger specification and OpenAPI

specification in JSON and YAML format. Users can fuzz the request body, query string,

parameter, and request header through APIFuzzer. HTTP Basic auth is also supported

for configuration. Users can inspect the fuzzed result from a test report that APIFuzzer

generated. This test report can be generated into JUnit XML format for further CI inte­

gration.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 50

2.3.2 Feedback­Directed Test Generation

Random creation of object­oriented software unit tests is the focus of our re­

search. An approach to testing includes feedback from inputs as they are executed, in­

creasing randomness by selecting amethod call at random, and placing arguments among

the previously constructed inputs. In this technique, inputs are built gradually by choos­

ing a method call and locating arguments from previously generated inputs at random. A

collection of contracts and filters is tested against the set of contracts and filters as soon

as they are created. Hence, the test’s outcome will indicate whether it was a success or

a failure. Passing tests is an excellent way to verify that code contracts are maintained

while a program develops, while failed checks indicate possible mistakes that need to be

rectified (by contravening at least one contract). The experiment highlights the point that

many previously undiscovered problems are discovered when feedback­directed random

test generation is applied to 14 commonly used libraries totaling 780 KLOC. Addition­

ally, there are less duplicated tests in feedback­directed random test creation as compared

to both systematic and undirected random test generation.

2.3.3 General­Purpose Grammar­based Fuzzers

Peach

In 2020, DevOps platform GitLab acquired Peach Tech [93], a security software

company specialized in protocol fuzz testing. Peace fuzzing is a cross­platform fuzzer.

With Peace, fault detection, data gathering, and automation of the fuzzing environment

are all possible using Peach’s monitoring system. The customization and expansion of

Peach’s features are both straightforward. The Peach Fuzzer supports three operating

systems, including Windows, MacOS, and Linux. Peach Fuzzer features also cover a

wide range of topics, such as mutation algorithms, data types, I/O adapters, monitoring

modules, etc. Peace fuzzer can cover lots of features such as Smart & Dumb fuzzing,

debuggers, network capture, VM control, GUI Validation Tool, and more. One of the

things that made Peace very well­known enough to be purchased by Gitlab is that Peace

fuzzer tools can focus on many different customer aspects. By focusing on many types

of customers, Peach is able to serve its current and future customers better. This in­

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 51

cludes internet browsers and network services, mobile devices, industrial control systems

(SCADA), and more.

Additionally, Peach is often considered the finest tool for API and file format

testing. Now, with the integration of Peach Tech technologies into GitLab’s roadmap

for application security testing. Developers will have a simpler time discovering, repair­

ing, and resolving security problems. Additionally, these additional choices are made

available inside the GitLab CI/CD environment, making the GitLab DevSecOps offer

the first security solution to support both coverage­guided and behavioral fuzz testing

and the first true DevSecOps platform to shift fuzz test left.

SPIKE

SPIKE [94] is an open­source set of collections of C API to create fuzzer strings

that target network­based protocol. Developers can write scripts in a .spk file and use a

scripting language to automate fuzzing tests. SPIKE also comes with a network utility

function that can be connected to test more efficiently.

Autodafé

Autodafé [95] fuzzer with block­based grammar to create fuzzing strings like

SPIKE but paired with a UNIX debugger to weight in input that uses unsafe functions to

be fuzz first.

2.3.4 Whitebox Fuzzing

In the study by Godefroid et al. [96], The authors used compiled x86 code as

“whitebox” and fuzzing the program using a combination of symbolic execution, which

is trying to find the input of the program by following the performance and reversing

operation done to the input variable, and generation search which searching by giving

information that leads to new path a priority. Additionally, it was suggested that the

multitude of programming languages and even platform architecture make this technique

hard to follow.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Background / 52

2.3.5 WebGoat

WebGoat [97] is an open­source software that was designed with the goal of

discovering vulnerabilities in Java­based applications that depend on publicly available

open­source components. WebGoat enables interested developers to analyze Java­based

applications for common security flaws. Web goat enables developers to acquire knowl­

edge via explanation, practice, and mitigation. To demonstrate their understanding of

a security issue, students must exploit a real­world vulnerability in the WebGoat appli­

cation. To steal bogus credit card numbers, for instance, the user needs to utilize SQL

injection. There are ideas and code to assist users in a more realistic educational envi­

ronment provided by the program

2.3.6 Damn Vulnerable Web Application (DVWA)

DVWA [98] is an abbreviation for Damn Vulnerable Web App and is a PHP/

MySQL web application. Its primary goal is to allow security professionals to assess

their skills and tools in a legal context, to assist web developers in better understanding

web application security processes, and to assist teachers/students in teaching/learning

web application security in a classroom environment.

2.4 Chapter Summary

This chapter discusses the project’s fundamental concepts, such as web APIs,

monolithic applications, microservices applications, BFF (Backend­to­Frontend) com­

munication, OWASP Top 10 API Security (API 3:2019 — Excessive data exposure),

API testing, and API fuzzing. Additionally, this chapter explored tools and technolo­

gies such as Zeek for network monitoring, RESTler for fuzzing tool development, and

penetration test tool development. Finally, this chapter conducts a literature assessment

of currently available fuzzing tools and technologies, concluding that there are no cur­

rently available tools capable of effectively covering and detecting vulnerabilities and

excessive data exposure concerns. As a result, it was determined that the most effective

process for mitigating all vulnerabilities is to build an effective API security strategy for

the BFF design pattern for microservices. Thus,“Microusity” is constructed with this

objective in mind.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 53

CHAPTER 3

ANALYSIS AND DESIGN

The Analysis and Design chapter discusses the key concepts used in the project,

and illustrates the system design of the project from the overview to the detailed steps in

each process.

3.1 Microusity: Security Testing Tool for Backend for Frontend (BFF) Microser­
vices

To address the defined problem statements and to accomplish the project’s goals.

We propose an automated tool called “Microusity” (Mi­cro­u­si­ty) to tackle the prob­

lems. “Microusity” is an API security testing framework specifically developed for the

Backend­to­Frontend (BFF) architectural pattern. The framework is implemented as a

web application. Microusity enables the companies, developers, and interested individu­

als to inspect their microservice systems for potential API vulnerabilities that may result

in catastrophic issues such as leaking of sensitive customer data. The service of Mi­

crousity includes API fuzzing to locate the API’s security vulnerabilities. This is done by

automatically analyzing the API specifications and generating the unique fuzzing strings

as API test values. Moreover, Microusity includes a network monitor behind the BFF

to trace the requests that are further propagated into the back­end systems. This allows

Microusity to identify exactly the path of an API security issue from the beginning to the

end. This include the original request from client to BFF, the sub­requests BFF creates

to the back­end system, and the response from BFF back to client. With Microusity, the

developers can find the system’s potential security breaches test results can be seen in

the tool’s test report. Additionally, Microusity’s data visualization component enables

the understanding of test results and findings. By giving a graphical data visualization

to represent the system’s API security overview, Microusity helps the developers to be

able to comprehend the detected security issues easily. Furthermore, The Microusity

system is designed to educate and raise awareness to the developers about the detected

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 54

vulnerabilities such as excessive data exposure (i.e., OWASP top 10 API security ­ API

3:2019 Excessive Data Exposure [12]).

Microusity detection tools can cover three scenarios. In the first scenario (Figure

3.1), the BFF and the core API both perform well. Meaning that our devices will be

about to report that The core API responds with no indication of any leaking problems,

and the BFF may remove the details of leakage errors from the Core API. On the other

hand, the BFF can cover the second scenario (Figure 3.2) when the BFF is good. Still, the

core API is terrible, and therefore in this situation, the Microusity system will determine

that the Core API responded with details about the leaking fault. Lastly, the Microusity

detection tool can detect the third scenario (Figure 3.3), which is when both BFF and

core API are bad, which. For this case, Microusity tool will report that the BFF provides

comprehensive information about leakage errors from the core API, and the Core API

returns extensive information about leakage errors.

Figure 3.1: Good BFF and Good Core API

Figure 3.2: Good BFF and Bad Core API

Figure 3.3: Bad BFF and Bad Core API

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/55Figure 3.4: Microusity System Architecture

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 56

3.2 System Architecture Overview

The system architecture is depicted in Figure 3.4. For the frontend, The users

(i.e., developers) give the Fuzzer configuration, fuzz API commands, and filters to the

Microusity tool via its frontend. The test report and graph from the testing will be visu­

alized by Cytoscape.js, which is a framework that can create the graph for visualization

of the API request and response sequences by giving the JSON file format to make it

generate a graph. Cytoscape.js can visualize node and edge graphs that represent the

structure of request flow from the test, and it suits best for the visualizations we need in

our tool.

The backend is composed of four parts.

1. The first is the interface, which handles the data between the frontend and back­

end. It also queries test results and current test status.

2. The second is the container manager, which starts the reproducible test environ­

ment, isolates the testing session, and collects the artifact results from the test. It

also informs the user if any error occurred between creating instances.

3. The third is the fuzzer configurator. It incorporates the custom settings from

the interface that users may create to improve the test coverage and test input for

finding more bugs.

4. Lastly, the data aggregator consumes the data collected from test results and gen­

erates the graph between the results of RESTler and Zeek. Then it stores the result

in the data storage.

Faculty
ofIC

T,M
ahidolU

niv.
B
.Sc.(IC

T)/57

Figure 3.5: Microusity workflow

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 58

3.2.1 Workflow of Microusity

The Figure 3.5 shows the workflow of Microusity that consists of:

1. The fuzzer configuration is supplied by the user through the interface and passed

to the fuzzer configurator.

2. The container manager initializes the instance group of the container with the sup­

plied fuzzer configuration from the fuzzer configurator.

3. After all containers are initialized, the fuzzer will be started to fuzz APIs.

4. After the fuzzing is completed, the data aggregator will collect the artifact from

the test and generate a test report and graph report.

5. The instance will be shut down and torn down.

6. The test report is displayed to the user.

3.2.2 Security Report

The test report (Figure 3.6) details the coverage of the API route that RESTler

can successfully access against the Swagger specification’s pathways. Additionally, the

report highlights HTTP response faults and contains the issue discovered by Microusity.

Each error includes the request from BFF, including the request to microservices, which

is the source of the issue.

The visualization graph (Figure 3.7) represents the connection that Microusity

found during the APIs fuzzing. The left is the connection summary, while the right is

what request BFF made after receiving the request from RESTler.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 59

Figure 3.6: Test report: ­ Overall coverage, Response code and problem detected.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 60

Figure 3.7: Visualization Graph

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 61

3.3 Use Case Analysis

In the use case diagram (Figure 3.8), Microusity interacts with one external actor,

which is the user (microservice developers). The user interacts with the system that con­

tains several use cases. First, the user can fuzz the API to test the security vulnerability

of the APIs. The user can customize custom configuration in order to add their desired

test input in addition from using the default fuzzing input. Then the Microusity system

will generate the API fuzzing request for testing. When the API fuzzing is finished, the

user can see the test report, which contains the details of vulnerabilities that the Mi­

crousity system found. For this case, the user can search for the API request to see

only the sequence of requests that match the search query. Moreover, the user can apply

a response status code filter to filter out the unwanted sequences that do not match the

filter value. The user can also see the graph report in order to see more detail on which

API request and response paths caused the error. In addition, the user can apply a vul­

nerability filter to see only the graph path that contains the specific vulnerability. For

the education functionality, the user can watch the video lesson and read API security

content that will enrich knowledge about the API security vulnerability.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 62

Figure 3.8: Use cases of Microusity

3.4 System Structure

The Microusity system is divided into six modules which are presented in the

structure chart as Figure 3.9. These sixmodules contain FuzzAPI, Create custom fuzzing

string, See test report, See graph report, Watch the video, Read API security content..

1. The first module is Fuzz API. This module is built for the user to generate the API

fuzzing request for API security testing. This module contains two submodules:

(a) Fuzz lean method: This is a submodule for generating API fuzz testing,

which aims to execute quickly.

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 63

(b) Full fuzzing method: This is a submodule for generating API fuzz testing,

aiming to find more bugs with a longer execution time.

2. The second module is Create custom configuration.

(a) Create custom fuzz input: This submodule is for the user to put the custom

input to make the system generate the fuzzing request according to the cus­

tom input.

(b) Create custom invalid object input: The user can check more vulnerabilities

by adding more invalid object input through this submodule.

3. The third module is See test report. This module will generate the test report

according to the test result. The user can see details of test results with the testing

summary. This module contains two submodules.

(a) Apply response status code filter: This submodule is built for filtering to

show the report only the selected response status code.

(b) Search for the API request: The user can see only desired API requests by

searching the API request through this submodule.

4. The fourth module is See graph report. The user can see test results with more

detail in the form of a graph. With this module, users can see a clearer picture of

which API request sequence leads to security vulnerability.

5. The fifth module is Watch the video. This module is created for the user to watch

the video about API security vulnerability and API security testing.

6. The last module is Read API security content. This module is for the user to read

the static article and content about API security vulnerability and API security

testing.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 64

Figure 3.9: Microusity Structure Chart

3.5 System Analysis

3.5.1 Data Flow Diagram Level 0 (Context Diagram)

Figure 3.10 shows the data flow between the user and theMicrousity System. The

user provides the fuzzer configuration input and the Fuzz API command to the system,

and the system will use these inputs to fuzz APIs and pass the test report back to the user.

The user can input the search query and apply the report filter to the Microusity system.

Then the system will use this query to display the test result that matches the query and

generate a graph report for the user to see the test result in graph format. The test result’s

history will be kept in the system for the user to see the previous reports. The user can

select the video to watch API security contents or select the API security contents from

the system.

3.5.2 Data Flow Diagram Level 1

Figure 3.11 shows the Data flow in the Microusity system and the user. The Mi­

crousity system is divided into six subprocesses. Those are Fuzz API, Create custom

fuzz string, See test report, See graph report, Watch the video, and lastly, Read API se­

curity content. Subprocess 3 is the one who interacts with the Test Result data storage

to keep the test history for the user to retrieve later on. Subprocess 4 will use the ma­

nipulated test result that was filtered and queried for only the wanted APIs sequence by

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 65

Figure 3.10: Data Flow Diagram Level 0

subprocess 3 to display the graph report for the user. This manipulated test result will

not keep in the Test Result storage.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 66

Figure 3.11: Data Flow Diagram Level 1

3.6 Interface design

As the primary component of Microusity is the tool for Backend for Frontend

(BFF) Microservices and educational modules, users will be able to test and learn by

using the Microusity sandbox system. The Figure 3.12 shows the overall interface of

Microusity and Figure 3.13 shows overview of the detection tool and education aspects.

The user may Fuzz the API on this page (Figure 3.14) and then generate a custom

fuzzing string to test for issues of excessive data exposure. Following that, this module

will create a test report based on the test outcome. With the testing summary, the user

may see detailed information about the test outcomes easily through our visualizer.

As for the educational part (Figure 3.15), students will be able to learn by doing

and learning from the sandbox system that simulates various problems (OWASP Top

Ten Security) so that students can learn about system monitoring and system protection.

In the first part, when students enter the Sandbox Simulator page, they will learn about

different types of problems. How to check various problems and detailed information

about them When the lesson is complete, there will be a quiz during the class to do.

The homepage of Microusity (Figure 3.16) includes an introduction to the Mi­

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 67

Figure 3.12: Overview of the interface design of Microusity

crousity web application. By introducing Microusity the detection tool, an introduction

to the educational part, the advantages of studying with Microusity Sandbox, and more

On the course page (Figure 3.17), there are several elements. For instance, a

course review section from real students so that interested parties can read the reviews

and other opinions of other students before choosing to study, or a short video introduc­

tion. There is also an FAQ section to provide information to students and those interested

in learning about the Sandbox course.

Lastly, the team page (Figure 3.18) presents the team members who contributed

to making this project come true, as well as the professor who help guidance us through

the entire process.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 68

Figure 3.13: Overview the detection tool and education aspects

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 69

Figure 3.14: Microusity detection tool for Backend for Frontend (BFF) Microservices

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 70

Figure 3.15: Microusity educational part for learner

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 71

Figure 3.16: Microusity home page

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 72

Figure 3.17: Microusity course page

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 73

Figure 3.18: Microusity team members page

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Analysis and Design / 74

3.7 Comparison to Related Work

Table 3.1 below shows the comparison of features from each API security testing

tool. In the Literature Review section, the discussion of how each testing tool works were

mentioned. This comparison section will discuss how different the Microusity system

is compared with other existing tools. The Burp Suite and AppSpider are picked for

the comparison because these API security testing tools are widely used and used as

commercial tools. For the fuzzing framework, the BooFuzz is the representation of the

standard fuzzing framework.

There are several features needed to be compared. First, the API specification

phasing, Burp Suite, AppSpider, and Microusity contain this feature to identify the test­

ing target and generate the API testing request, but BooFuzz does not include this feature.

Second, web crawling, both Burp Suite and AppSpider can crawl through web applica­

tions to identify the test, but BooFuzz and Microusity cannot crawl the web page to gen­

erate the test. Third, Burp Suite and Microusity can generate the stateful API testing, but

for the Burp Suite, the users have to manually look through the test result by themself

to identify the State of each API request and respond while Microusity can automati­

cally do it. Fourth, all tools support the API fuzzing technique except the AppSpider.

Fifth, only the Microusity can support BFF and microservices’ error traceability, while

the other tools can support only the front side. Sixth, for the readable report interface,

only BooFuzz does not contain this feature. BooFuzz provides only raw static text files

and logs as a result of the testing, and this leads to a complicated interpretation for the

user to understand the test result. Seventh, for the graph report visualization, Microucity

can report the test result into the graph format for helping the users understand the API

request and response sequence caused the scalability while other tools only support the

text­based report. Lastly, only Microusity contained API security content for helping the

user to understand the key point of API security vulnerability.

To conclude, from the comparison above, Microusity can cover all of the neces­

sary features for API security vulnerability testing and is built to be different by providing

the graph report for more understandability when identifying the error. Moreover, Mi­

crousity is created especially for the BFF microservice architecture pattern to trace the

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 75

Table 3.1: Comparison of Microusity to Similar Tools

Features Burp Suite AppSpider BooFuzz Microusity
Read API specification x x x
Web crawling x x
Stateful REST API testing x x
API Fuzzing technique x x x
Allow custom input x x x x
Trace Error between BFF and
microservices

x

Readable report interface x x x
Graph report visualization x
Educational content x

error from BFF more efficiently than other tools.

C
.M

akaranond,P.R
attanukul,and

P.W
atanakulcharus

A
nalysisand

D
esign

/76

Figure 3.19: Project timeline

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 77

3.8 Project Timeline, Current Progress, and Future Work

3.8.1 Project Timeline

Figure 3.19 shows the project timeline of Microusity. The project selection phase

occurred in June, then the research for project background and essential information for

the project was conducted from July to September. The documentation phases began in

September after the finding phase ended and lasted until April 2022. The implementation

phase started with the UI design and report design that began in November. As soon

as the idea is solid and validated by the committee after the proposal presentation in

November, the Microusity will be developed and implemented until March 2022.

3.9 Chapter Summary

This chapter discusses the study and design of the Microusity system, which is a

proposed solution to solve an issue of API 3:2019 Excessive Data Exposure [12] within

the Microservices architecture style. Therefore, Microusity is an application that per­

forms API security testing on BFF systems. With the ability to also create visualiza­

tions to help security testers understand the security issues easily, through the use of

Microusity report. As well as offering educational content related to the detected API

security issues. In order to increase the developer’s awareness and expertise of these

issues. Additionally, this chapter includes an introduction to Microusity, the system ar­

chitecture, the use case diagram, the structure chart, and the level 0 and level 1 data

flow diagrams. Additionally, this chapter discusses the user interface design and pro­

vides a comparison to comparable work. Finally, this chapter presents an analysis report

utilizing a Gantt chart to illustrate the project’s timeline, current work, and future work.

C. Makaranond, P. Rattanukul, and P.Watanakulcharus References / 78

REFERENCES

[1] Kamaruzzaman M.. “Looking beyond the hype: Is modular monolithic software

architecture really dead?”, Towards Data Science; Dec 2020, [Online]. Available:

https:// towardsdatascience.com/looking­beyond­the­hype­is­modular­monolithic­

software­architecture­really­dead­e386191610f8.

[2] McCracken H.. “Fifty Years of Basic, the language that made computers personal”,

Time; Apr 2014, [Online]. Available: https://time.com/69316/basic/.

[3] Gültekin M.. “Microservices and Microservice Architecture”, Medium; Aug 2021,

[Online]. Available: https:// medium.com/ @mertgltekin_58750/ microservices­

and­microservice­architecture­3fa69dba089b.

[4] Babu S.. “8 core components of Microservice architecture”; Sep 2021, [On­

line]. Available: https://www.optisolbusiness.com/insight/8­core­components­of­

microservice­architecture.

[5] Abbasi A.. “Message communication patterns for application integration”; Aug

2021, [Online]. Available: https:// tutorialspedia.com/ understanding­message­

communication­patterns­for­application­integration/.

[6] Amazoncasestudy. “Alt/S Case Study”, Amazon Web Services, Inc; 2016, [On­

line]. Available: https://aws.amazon.com/solutions/case­studies/alts/.

[7] Cockcroft A.. “The state of the art in microservices by Adrian Cockcroft”,

YouTube; Jan 2015, [Online]. Available: https:// www.youtube.com/ watch?

v=pwpxq9­uw_0.

[8] Kappagantula S.. “Microservice architecture ­ learn, build, and deploy applications

­ dzone microservices”; Jul 2018, [Online]. Available: https://dzone.com/articles/

microservice­architecture­learn­build­and­deploy­a.

https://towardsdatascience.com/looking-beyond-the-hype-is-modular-monolithic-software-architecture-really-dead-e386191610f8
https://towardsdatascience.com/looking-beyond-the-hype-is-modular-monolithic-software-architecture-really-dead-e386191610f8
https://time.com/69316/basic/
https://medium.com/@mertgltekin_58750/microservices-and-microservice-architecture-3fa69dba089b
https://medium.com/@mertgltekin_58750/microservices-and-microservice-architecture-3fa69dba089b
https://www.optisolbusiness.com/insight/8-core-components-of-microservice-architecture
https://www.optisolbusiness.com/insight/8-core-components-of-microservice-architecture
https://tutorialspedia.com/understanding-message-communication-patterns-for-application-integration/
https://tutorialspedia.com/understanding-message-communication-patterns-for-application-integration/
https://aws.amazon.com/solutions/case-studies/alts/
https://www.youtube.com/watch?v=pwpxq9-uw_0
https://www.youtube.com/watch?v=pwpxq9-uw_0
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 79

[9] Elias JM.. “Backend for frontend (BFF) pattern”, Zinklar Tech; Nov 2019,

[Online]. Available: https://medium.com/zinklar­tech/backend­for­frontend­bff­

pattern­5e8810779d9f.

[10] Newman S.. “Sam Newman ­ backends for frontends”; Nov 2015, [Online]. Avail­

able: https://samnewman.io/patterns/architectural/bff/.

[11] SoundCloud. “Service architecture at soundcloud ­ part 1: Backends for fron­

tends”;, [Online]. Available: https:// developers.soundcloud.com/blog/ service­

architecture­1.

[12] Isbitski2 M.. “API3:2019: Excessive data exposure”; Feb 2021, [Online]. Avail­

able: https://salt.security/blog/api3­2019­excessive­data­exposure.

[13] Microsoft. “Microsoft/Restler­Fuzzer: Restler”;, [Online]. Available: https://

github.com/microsoft/restler­fuzzer.

[14] Bookutils. “Breaking things with random inputs ­ the fuzzing book”;, [Online].

Available: https://www.fuzzingbook.org/beta/html/Fuzzer.html.

[15] Scheunemann P.. “What is Docker”, Abdo Pub. Co.; 2002, [Online]. Available:

https://aws.amazon.com/th/docker/.

[16] ZeekProjectRevision. “About zeek”, The Zeek Project Revision;, [Online]. Avail­

able: https://docs.zeek.org/en/v4.0.0/about.html.

[17] Newman S., “Building Microservices”. feb 2015;1, [Online]. Available: https://

www.oreilly.com/library/view/building­microservices/9781491950340/.

[18] IBM Cloud Education I.. “Microservices”;, [Online]. Available: https://

www.ibm.com/cloud/learn/microservices.

[19] Research and Markets. “Cloud microservices market ­ growth, trends, COVID­

19 impact, and forecasts (2021 ­ 2026)”;, [Online]. Available: https://

www.researchandmarkets.com/ reports/ 4787543/ cloud­microservices­market­

growth­trends.

https://medium.com/zinklar-tech/backend-for-frontend-bff-pattern-5e8810779d9f
https://medium.com/zinklar-tech/backend-for-frontend-bff-pattern-5e8810779d9f
https://samnewman.io/patterns/architectural/bff/
https://developers.soundcloud.com/blog/service-architecture-1
https://developers.soundcloud.com/blog/service-architecture-1
https://salt.security/blog/api3-2019-excessive-data-exposure
https://github.com/microsoft/restler-fuzzer
https://github.com/microsoft/restler-fuzzer
https://www.fuzzingbook.org/beta/html/Fuzzer.html
https://aws.amazon.com/th/docker/
https://docs.zeek.org/en/v4.0.0/about.html
https://www.oreilly.com/library/view/building-microservices/9781491950340/
https://www.oreilly.com/library/view/building-microservices/9781491950340/
https://www.ibm.com/cloud/learn/microservices
https://www.ibm.com/cloud/learn/microservices
https://www.researchandmarkets.com/reports/4787543/cloud-microservices-market-growth-trends
https://www.researchandmarkets.com/reports/4787543/cloud-microservices-market-growth-trends
https://www.researchandmarkets.com/reports/4787543/cloud-microservices-market-growth-trends

C. Makaranond, P. Rattanukul, and P.Watanakulcharus References / 80

[20] Shriramvenugopal. “The story of netflix and microservices”; May 2020,

[Online]. Available: https:// www.geeksforgeeks.org/ the­story­of­netflix­and­

microservices/.

[21] Siriwardena P.. “Building microservices”, FACILELOGIN; Mar 2018, [Online].

Available: https:// medium.facilelogin.com/ building­microservices­designing­

fined­grained­systems­d37b57a97c4e.

[22] Richardson C.. “Microservices pattern: Database per service”;, [Online]. Avail­

able: https://microservices.io/patterns/data/database­per­service.html.

[23] SALT LABS SS.. “Highlights from the 2021 state of API security report”;, [On­

line]. Available: https:// faun.pub/highlights­from­the­2021­state­of­api­security­

report­4b8abb201149?

[24] Isbitski M.. “Details of the owasp API security top 10”, SALT Security; Feb

2020, [Online]. Available: https://salt.security/blog/owasp­api­security­top­10­

explained.

[25] Bureau E.. “Crystal­gazing cybersecurity, 2020 ­ Cyberthreat landscape 2020”;

Dec 2019, [Online]. Available: https://economictimes.indiatimes.com/industry/

tech/ crystal­gazing­cybersecurity­2020/ api­will­be­exposed­as­the­weakest­link­

leading­to­cloud­native­threats/slideshow/72398222.cms.

[26] Ruff J.. “Web apis, Web Services, & microservices: Basics & differences”;

Oct 2021, [Online]. Available: https://www.parasoft.com/blog/web­api­vs­web­

services­microservices­basics­differences/.

[27] IBM; Dec 2020, [Online]. Available: https://www.ibm.com/docs/en/cics­ts/5.2?

topic=services­what­is­web­service.

[28] Monus A.. “Soap vs rest vs JSON ­ a 2021 comparison”, Raygun Blog; Mar 2021,

[Online]. Available: https://raygun.com/blog/soap­vs­rest­vs­json/.

[29] Sustainability of Digital Formats. “Sustainability of digital formats: Planning

for Library of Congress Collections”, Library of congress collection; Jan

https://www.geeksforgeeks.org/the-story-of-netflix-and-microservices/
https://www.geeksforgeeks.org/the-story-of-netflix-and-microservices/
https://medium.facilelogin.com/building-microservices-designing-fined-grained-systems-d37b57a97c4e
https://medium.facilelogin.com/building-microservices-designing-fined-grained-systems-d37b57a97c4e
https://microservices.io/patterns/data/database-per-service.html
https://faun.pub/highlights-from-the-2021-state-of-api-security-report-4b8abb201149?
https://faun.pub/highlights-from-the-2021-state-of-api-security-report-4b8abb201149?
https://salt.security/blog/owasp-api-security-top-10-explained
https://salt.security/blog/owasp-api-security-top-10-explained
https://economictimes.indiatimes.com/industry/tech/crystal-gazing-cybersecurity-2020/api-will-be-exposed-as-the-weakest-link-leading-to-cloud-native-threats/slideshow/72398222.cms
https://economictimes.indiatimes.com/industry/tech/crystal-gazing-cybersecurity-2020/api-will-be-exposed-as-the-weakest-link-leading-to-cloud-native-threats/slideshow/72398222.cms
https://economictimes.indiatimes.com/industry/tech/crystal-gazing-cybersecurity-2020/api-will-be-exposed-as-the-weakest-link-leading-to-cloud-native-threats/slideshow/72398222.cms
https://www.parasoft.com/blog/web-api-vs-web-services-microservices-basics-differences/
https://www.parasoft.com/blog/web-api-vs-web-services-microservices-basics-differences/
https://www.ibm.com/docs/en/cics-ts/5.2?topic=services-what-is-web-service
https://www.ibm.com/docs/en/cics-ts/5.2?topic=services-what-is-web-service
https://raygun.com/blog/soap-vs-rest-vs-json/

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 81

2014, [Online]. Available: https://www.loc.gov/preservation/digital/formats/fdd/

fdd000381.shtml.

[30] Shankar R.. “JSON vs XML in 2021: Comparison, features & example”; Jan 2021,

[Online]. Available: https://hackr.io/blog/json­vs­xml.

[31] Truica CO., Radulescu F., Boicea A., Bucur I., “Performance evaluation for CRUD

operations in asynchronously replicated document oriented database”, 20th Inter­

national Conference on Control Systems and Computer Science. 2015;[Online].

Available: https://bit.ly/3Hgxjsi.

[32] Nurseitov N., Paulson M., Reynolds R., Izurieta C., Comparison of JSON and

XML data interchange formats: A case study. Jan 2019;.

[33] Breje AR., Gyorödi R., Gyorödi C., Zmaranda D., Pecherle G., “Comparative

study of data sending methods for XML and JSON models”, International Journal

of Advanced Computer Science and Applications. 2018;9(12).

[34] Haq Su.. “Introduction to monolithic architecture and microservices architec­

ture”, KoderLabs; Jul 2018, [Online]. Available: https://medium.com/koder­

labs/ introduction­to­monolithic­architecture­and­microservices­architecture­

b211a5955c63.

[35] Richardson C.. “Microservices pattern: Monolithic Architecture Pattern”;, [On­

line]. Available: https://microservices.io/patterns/monolithic.html.

[36] Francesco PD., Malavolta I., Lago P., “Research on architecting microservices:

Trends, Focus, and potential for industrial adoption”, 2017 IEEE International

Conference on Software Architecture (ICSA). 2017;.

[37] Richardson C.. “Microservices pattern: Circuit breaker”;, [Online]. Available:

https://microservices.io/patterns/reliability/circuit­breaker.html.

[38] CDC­Info. “Health Insurance Portability and accountability act of 1996 (HIPAA)”,

U.S. Department of Health & Human Services; Sep 2018, [Online]. Available:

https://www.cdc.gov/phlp/publications/topic/hipaa.html.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000381.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000381.shtml
https://hackr.io/blog/json-vs-xml
https://bit.ly/3Hgxjsi
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-microservices-architecture-b211a5955c63
https://microservices.io/patterns/monolithic.html
https://microservices.io/patterns/reliability/circuit-breaker.html
https://www.cdc.gov/phlp/publications/topic/hipaa.html

C. Makaranond, P. Rattanukul, and P.Watanakulcharus References / 82

[39] Consulting I.. “General Data Protection Regulation GDPR”; Sep 2019, [Online].

Available: https://gdpr­info.eu/.

[40] Qian A.. “Advantages and disadvantages of microservices architecture”, Cloud

Academy; May 2020, [Online]. Available: https:// cloudacademy.com/ blog/

microservices­architecture­challenge­advantage­drawback/.

[41] Kwiecien A.. “10 companies that paved the way for developing microservices”,

Divante; Aug 2019, [Online]. Available: https:// www.divante.com/ blog/

10­companies­that­implemented­the­microservice­architecture­and­paved­the­

way­for­others.

[42] Fulton III SM.. “What led Amazon to its own microservices architecture”, The

New Stack; May 2021, [Online]. Available: https://thenewstack.io/led­amazon­

microservices­architecture/.

[43] Amazon. “Solutions”, National Council on Vocational Education; 1991, [Online].

Available: https://aws.amazon.com/solutions/case­studies/bridestory/.

[44] Nguyen CD.. “A design analysis of cloud­based microservices architecture

at Netflix”, The Startup; May 2020, [Online]. Available: https://

medium.com/ swlh/ a­design­analysis­of­cloud­based­microservices­architecture­

at­netflix­98836b2da45f.

[45] Gluck A.. “Introducing domain­oriented Microservice architecture”; Sep 2020,

[Online]. Available: https://eng.uber.com/microservice­architecture/.

[46] Villamizar M., Garces O., Castro H., Verano M., Salamanca L., Casallas R., et al.,

“Evaluating the monolithic and the microservice architecture pattern to deploy web

applications in the cloud”, 2015 10th Computing Colombian Conference (10CCC).

2015;.

[47] Kamaruzzaman M.. “Microservice Architecture: A brief overview and why

you should use it in your next project”, Towards Data Science; Dec 2020,

[Online]. Available: https://towardsdatascience.com/microservice­architecture­a­

brief­overview­and­why­you­should­use­it­in­your­next­project­a17b6e19adfd.

https://gdpr-info.eu/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://thenewstack.io/led-amazon-microservices-architecture/
https://thenewstack.io/led-amazon-microservices-architecture/
https://aws.amazon.com/solutions/case-studies/bridestory/
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://eng.uber.com/microservice-architecture/
https://towardsdatascience.com/microservice-architecture-a-brief-overview-and-why-you-should-use-it-in-your-next-project-a17b6e19adfd
https://towardsdatascience.com/microservice-architecture-a-brief-overview-and-why-you-should-use-it-in-your-next-project-a17b6e19adfd

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 83

[48] Martinelli S., Samani S., Tucker E., Oliver J., Chang J.. “Backend for frontend

application architecture”, IBM; Dec 2018, [Online]. Available: https://devel­

oper.ibm.com/patterns/create­backend­for­frontend­application­architecture/.

[49] Calçado P.; 2020, [Online]. Available: https://philcalcado.com/.

[50] Creixell J.. “Service architecture at soundcloud ­ part 1: Backends for frontends”,

SoundCloud; Jul 2021, [Online]. Available: https://developers.soundcloud.com/

blog/service­architecture­1/.

[51] Microsoft. “Backends for frontends pattern ­ cloud design patterns”;, [Online].

Available: https://docs.microsoft.com/en­us/azure/architecture/patterns/backends­

for­frontends.

[52] OWASP. “WHO IS THE OWASP® foundation?”;, [Online]. Available: https://

owasp.org/.

[53] OWASP2. “Owasp API Security project”;, [Online]. Available: https://owasp.org/

www­project­api­security.

[54] Berde A., Hegde P.. “Exclusive: Flaw left user data of 2 million Bounceshare

customers vulnerable to hack”, MoneyControl; Nov 2019, [Online]. Avail­

able: https://www.moneycontrol.com/news/ technology/exclusive­flaw­left­user­

data­of­2­million­bounceshare­customers­vulnerable­to­hack­4629331.html.

[55] Katalon. “10 API testing tips for Beginners (Soap & Rest): Complete guide”; Nov

2021, [Online]. Available: https://www.katalon.com/resources­center/blog/api­

testing­tips/.

[56] Besic N.. “The Art of Fuzzing”; Sep 2021, [Online]. Available: https://

www.neuralegion.com/blog/fuzzing/.

[57] OWASP3. “Fuzzing”;, [Online]. Available: https://owasp.org/www­community/

Fuzzing.

[58] Chen C., Cui B., Ma J., Wu R., Guo J., Liu W., “A systematic review of fuzzing

techniques”, Computers & Security. 2018;75:118–137.

https://developer.ibm.com/patterns/create-backend-for-frontend-application-architecture/
https://developer.ibm.com/patterns/create-backend-for-frontend-application-architecture/
https://philcalcado.com/
https://developers.soundcloud.com/blog/service-architecture-1/
https://developers.soundcloud.com/blog/service-architecture-1/
https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends
https://owasp.org/
https://owasp.org/
https://owasp.org/www-project-api-security
https://owasp.org/www-project-api-security
https://www.moneycontrol.com/news/technology/exclusive-flaw-left-user-data-of-2-million-bounceshare-customers-vulnerable-to-hack-4629331.html
https://www.moneycontrol.com/news/technology/exclusive-flaw-left-user-data-of-2-million-bounceshare-customers-vulnerable-to-hack-4629331.html
https://www.katalon.com/resources-center/blog/api-testing-tips/
https://www.katalon.com/resources-center/blog/api-testing-tips/
https://www.neuralegion.com/blog/fuzzing/
https://www.neuralegion.com/blog/fuzzing/
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing

C. Makaranond, P. Rattanukul, and P.Watanakulcharus References / 84

[59] Hamilton T.. “Fuzz Testing(fuzzing) tutorial: What is, types, tools & example”;

Oct 2021, [Online]. Available: https://www.guru99.com/fuzz­testing.html.

[60] TechTarget. “What is Fuzz Testing (fuzzing)?”, TechTarget; Mar 2010, [Online].

Available: https://searchsecurity.techtarget.com/definition/fuzz­testing.

[61] Cunliffe M., Harrington B., Horky K., Chowdhury M., J K., Awais A., et al.. “A

brief history of Node.js”;, [Online]. Available: https://nodejs.dev/learn/a­brief­

history­of­nodejs.

[62] Dahl R.. “Ryan Dahl: Node JS”, YouTube; Oct 2012, [Online]. Available: https://

www.youtube.com/watch?v=EeYvFl7li9E&t=9s.

[63] Izle S., Stacy. “Node.js advantages: What do you need to know before starting the

project?”; Aug 2021, [Online]. Available: https://procoders.tech/blog/advantages­

of­using­node­js/.

[64] Paper D.. “Node.js summary”; Apr 2021, [Online]. Available: https://developpa­

per.com/node­js­summary­2/.

[65] Perry B.. “6 real­world applications of node.js”; Jun 2019, [Online]. Available:

https://businessingmag.com/8371/equipping/node­js/.

[66] Ono K.;, [Online]. Available: https://cytoscape.org/what_is_cytoscape.html.

[67] Slenter D.. “Wikipathways”;, [Online]. Available: https://www.wikipathways.org/

index.php/WikiPathways.

[68] Reactome. org. “Home”;, [Online]. Available: https://reactome.org/.

[69] Genome. “KEGG PATHWAY Database”; 2021, [Online]. Available: https://

www.genome.jp/kegg/pathway.html.

[70] Lang L., Pettkó­Szandtner A., Tunçay Elbaşı H., Takatsuka H., Nomoto Y., Zaki

A., et al., “The dream complex represses growth in response to DNA damage in

Arabidopsis”, Life Science Alliance. 2021;4(12).

https://www.guru99.com/fuzz-testing.html
https://searchsecurity.techtarget.com/definition/fuzz-testing
https://nodejs.dev/learn/a-brief-history-of-nodejs
https://nodejs.dev/learn/a-brief-history-of-nodejs
https://www.youtube.com/watch?v=EeYvFl7li9E&t=9s
https://www.youtube.com/watch?v=EeYvFl7li9E&t=9s
https://procoders.tech/blog/advantages-of-using-node-js/
https://procoders.tech/blog/advantages-of-using-node-js/
https://developpaper.com/node-js-summary-2/
https://developpaper.com/node-js-summary-2/
https://businessingmag.com/8371/equipping/node-js/
https://cytoscape.org/what_is_cytoscape.html
https://www.wikipathways.org/index.php/WikiPathways
https://www.wikipathways.org/index.php/WikiPathways
https://reactome.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 85

[71] Shannon P., “Cytoscape: A software environment for integrated models of

Biomolecular Interaction Networks”, Genome Research. 2003;13(11):2498–2504.

[72] Pico A.. “Cytoscape Ecosystem tutorial”; Sep 2021, [Online]. Available:

https://cytoscape.org/cytoscape­automation/for­scripters/R/notebooks/Cytoscape­

ecosystem­tutorial.nb.html.

[73] Franz M., Lopes CT., Huck G., Dong Y., Sumer O., Bader GD., “Cytoscape.js: A

graph theory library for visualisation and analysis”, Bioinformatics. 2015;.

[74] Ilievski V.. “JavaScript: Graph visualization using cytoscape JS”, Analytics

Vidhya; Apr 2020, [Online]. Available: https://medium.com/analytics­vidhya/

javascript­graph­visualization­using­cytoscape­js­e741556afb96.

[75] Scheunemann P.. “What is Docker”, Abdo Pub. Co.;, [Online]. Available: https://

aws.amazon.com/th/docker/.

[76] Syed A., Karthic K.. “Docker & The Rise of microservices”;, [Online]. Available:

https://timber.io/blog/docker­and­the­rise­of­microservices/.

[77] Wainstein AL., Kovačević AA., Ritz AN., Rajput AM., Pandit AK., Cornelis­

sen AJ., et al.. “Docker use cases ­ how to handle big data with Docker”; Dec

2018, [Online]. Available: https:// bigdata­madesimple.com/docker­use­cases­

how­to­handle­big­data­with­docker/.

[78] Godefroid P., Lehmann D., Polishchuk M.. “Differential regression testing for rest

apis”; Nov 2020, [Online]. Available: https://www.microsoft.com/en­us/research/

publication/differential­regression­testing­for­rest­apis/.

[79] Atlidakis V., Godefroid P., Polishchuk M.. “Restler: Stateful rest api fuzzing”; Mar

2021, [Online]. Available: https://www.microsoft.com/en­us/research/publication/

restler­stateful­rest­api­fuzzing/.

[80] Atlidakis V., Godefroid P., Polishchuk M.. “Checking security properties of cloud

services rest apis”; Nov 2020, [Online]. Available: https://www.microsoft.com/en­

us/research/publication/checking­security­properties­of­cloud­services­rest­apis/.

https://cytoscape.org/cytoscape-automation/for-scripters/R/notebooks/Cytoscape-ecosystem-tutorial.nb.html
https://cytoscape.org/cytoscape-automation/for-scripters/R/notebooks/Cytoscape-ecosystem-tutorial.nb.html
https://medium.com/analytics-vidhya/javascript-graph-visualization-using-cytoscape-js-e741556afb96
https://medium.com/analytics-vidhya/javascript-graph-visualization-using-cytoscape-js-e741556afb96
https://aws.amazon.com/th/docker/
https://aws.amazon.com/th/docker/
https://timber.io/blog/docker-and-the-rise-of-microservices/
https://bigdata-madesimple.com/docker-use-cases-how-to-handle-big-data-with-docker/
https://bigdata-madesimple.com/docker-use-cases-how-to-handle-big-data-with-docker/
https://www.microsoft.com/en-us/research/publication/differential-regression-testing-for-rest-apis/
https://www.microsoft.com/en-us/research/publication/differential-regression-testing-for-rest-apis/
https://www.microsoft.com/en-us/research/publication/restler-stateful-rest-api-fuzzing/
https://www.microsoft.com/en-us/research/publication/restler-stateful-rest-api-fuzzing/
https://www.microsoft.com/en-us/research/publication/checking-security-properties-of-cloud-services-rest-apis/
https://www.microsoft.com/en-us/research/publication/checking-security-properties-of-cloud-services-rest-apis/

C. Makaranond, P. Rattanukul, and P.Watanakulcharus References / 86

[81] Microsoft. “Restler­fuzzer/ compiling.md at main ∙ Microsoft/ Restler­Fuzzer”;,

[Online]. Available: https://github.com/microsoft/restler­fuzzer/blob/main/docs/

user­guide/Compiling.md.

[82] PortSwigger. “BURP suite ­ application security testing software”;, [Online].

Available: https://portswigger.net/burp.

[83] PortSwigger2. “API security testing software from Portswigger”;, [Online]. Avail­

able: https://portswigger.net/burp/vulnerability­scanner/api­security­testing.

[84] Amini P., Ryan. “OpenRCE/sulley: A pure­python fully automated and unattended

fuzzing framework.”;, [Online]. Available: https://github.com/OpenRCE/sulley.

[85] Amini P., Portnoy. “Fuzzing sucks ! Introducing Sulley Fuzzing framework”;,

[Online]. Available: https://github.com/OpenRCE/sulley/blob/master/docs/intro­

ducing_sulley.pdf.

[86] Jtpereyda J.. “JTPEREYDA/Boofuzz: A fork and successor of the Sulley Fuzzing

Framework”;, [Online]. Available: https://github.com/jtpereyda/boofuzz.

[87] AppSpider. “Web application security testing with AppSpider”;, [Online]. Avail­

able: https://www.rapid7.com/products/appspider/.

[88] AppsSpider2. “InsightAppSec”;, [Online]. Available: https://www.rapid7.com/

products/insightappsec/.

[89] AppsSpider3. “The Universal translator ­ 7 feature brief appsec universal trans­

lator”;, [Online]. Available: https://www.rapid7.com/globalassets/_pdfs/product­

and­service­briefs/rapid7­feature­brief­appsec­universal­translator.pdf.

[90] Qualys. “Qualys was getting started guide”; Sep 2020, [Online]. Available: https://

www.qualys.com/docs/qualys­was­getting­started­guide.pdf.

[91] Hassenklöver T.. “Teebytes TNT­Fuzzer”;, [Online]. Available: https://

github.com/Teebytes/TnT­Fuzzer.

https://github.com/microsoft/restler-fuzzer/blob/main/docs/user-guide/Compiling.md
https://github.com/microsoft/restler-fuzzer/blob/main/docs/user-guide/Compiling.md
https://portswigger.net/burp
https://portswigger.net/burp/vulnerability-scanner/api-security-testing
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley/blob/master/docs/introducing_sulley.pdf
https://github.com/OpenRCE/sulley/blob/master/docs/introducing_sulley.pdf
https://github.com/jtpereyda/boofuzz
https://www.rapid7.com/products/appspider/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/globalassets/_pdfs/product-and-service-briefs/rapid7-feature-brief-appsec-universal-translator.pdf
https://www.rapid7.com/globalassets/_pdfs/product-and-service-briefs/rapid7-feature-brief-appsec-universal-translator.pdf
https://www.qualys.com/docs/qualys-was-getting-started-guide.pdf
https://www.qualys.com/docs/qualys-was-getting-started-guide.pdf
https://github.com/Teebytes/TnT-Fuzzer
https://github.com/Teebytes/TnT-Fuzzer

Faculty of ICT, Mahidol Univ. B.Sc. (ICT) / 87

[92] KissPeter. “Kisspeter API Fuzzer”;, [Online]. Available: https:// github.com/

KissPeter/APIFuzzer.

[93] Gitlab. “Integrating security into your DevOps lifecycle”;, [Online]. Available:

https://about.gitlab.com/solutions/dev­sec­ops/.

[94] SPIKE. “Fuzzer automation with spike”; Mar 2021, [Online]. Available: https://

resources.infosecinstitute.com/topic/fuzzer­automation­with­spike/.

[95] Vuagnoux M.. “Autodaf´e: An act of software torture”; 2005, [Online]. Available:

http://autodafe.sourceforge.net/docs/autodafe.pdf.

[96] Godefroid P., Levin MY., Molnar D., Automated Whitebox Fuzz Testing. 2008;p.

151–168.

[97] WebGoat. “WebGoat/WebGoat: WebGoat is a deliberately insecure application”;,

[Online]. Available: https://github.com/WebGoat/WebGoat.

[98] Digininja. “Digininja/ DVWA: Damn Vulnerable Web Application (DVWA)”;,

[Online]. Available: https://github.com/digininja/DVWA.

https://github.com/KissPeter/APIFuzzer
https://github.com/KissPeter/APIFuzzer
https://about.gitlab.com/solutions/dev-sec-ops/
https://resources.infosecinstitute.com/topic/fuzzer-automation-with-spike/
https://resources.infosecinstitute.com/topic/fuzzer-automation-with-spike/
http://autodafe.sourceforge.net/docs/autodafe.pdf
https://github.com/WebGoat/WebGoat
https://github.com/digininja/DVWA

C. Makaranond, P. Rattanukul, and P.Watanakulcharus Biographies / 88

BIOGRAPHIES

NAME Miss. Chansida Makaranond

DATE OF BIRTH 14 July 2000

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Thai Christian School, 2017:

High School Diploma

Mahidol University, 2022:

Bachelor of Science (ICT)

NAME Mr. Pattarakrit Rattanukul

DATE OF BIRTH 4 Octorber 1999

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Suankularb Wittayalai School,2017:

High School Diploma

Mahidol University, 2022:

Bachelor of Science (ICT)

NAME Mr. Pumipat Watanakulcharus

DATE OF BIRTH 15 March 2000

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Triam Udom Suksa School, 2017:

High School Diploma

Mahidol University, 2022:

Bachelor of Science (ICT)

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	 1
	 2
	 3
	REFERENCES
	BIOGRAPHIES

