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Abstract—The reuse of already existing code is widely con-
sidered a popular software development practice, that provides
both benefits and drawbacks for all stakeholders involved. Prior
work reports on how code reuse is a common practice in
software development projects and data science projects such
as machine learning pipelines. Recently, there has been much
code reuse work in the context of competitive programming.
Although there is work such as detecting plagiarism, there is no
work that studies how a competitor will reuse their own code.
In this paper, we present a preliminary study on the code reuse
behavior of three grandmasters’ Jupyter notebooks in the Kaggle
Competitions, an online competition platform for data scientists,
and report the types of code they often reuse. Grandmasters are
the highest level reached in competitions (novice, expert, master,
and grandmaster). We find that Grandmasters are less likely
to reuse specialized code, but instead, tend to reuse common
functions like importing packages (importing the pandas library).
They are most likely to reuse common abstractions like importing
packages, configurations, file IO operations, show data, plotting
graphs, defining functions, and exploring files. The work opens
up new research potential into recommending how developers
can reuse their own code.

Index Terms—Jupyter notebook, code reuse, code similarity

I. INTRODUCTION

Nowadays software development does not only limit to writ-
ing programs by developers but also programs (i.e., models)
that are created by learning from data using machine learning
(ML) techniques. This type of ML-based software can have
both similarities and differences from traditional software. In
terms of similarities, the models are still trained by having
the developers write code. The code is used to specify what
data to learn and what machine learning algorithm, along
with its parameter configurations, to be used. Nonetheless, the
software’s behavior is no longer specified by the developers,
but based on the data that it learns.

In software development, code reuse is a common practice.
Developers reuse code from their existing projects, other
people’s projects, or online sources [1], [2]. The significant
advantage is that code reusing might help to reduce time and
effort in development. Code is written once and reused many
times. Additionally, code reusing is able to improve reliability
if the original code is well-written and tested and the devel-
opers are familiar with it. Nevertheless, code reuse provides
some drawbacks too. Code reusing makes redundancy happen

in software development, which affects the maintainability of
the software. Moreover, it can propagate bugs.

Kaggle1 is an online community for data scientists and
people interested in machine learning. Kaggle allows users
to collaborate, find and publish their code and datasets. On
the Kaggle platform, the users can use the provided Jupyter
notebooks2 integrated with GPU to join a competition or
solve challenges about data science and machine learning.
The Kaggle Competitions is a section that made Kaggle
popular. The competitions listed in Kaggle can be both from
a company, like Google or American Express, aiming to solve
its business problems or from the community that shares
challenging problems to practice. Some competitions, mostly
by companies, have a time limit and come with prizes for
the highest scorers as an incentive for joining and producing
results. Kaggle users can compete in a competition by forming
a team (with at least one person). In this paper, we call a
Kaggle user who joins a competition as a “competitor”.

Nonetheless, most of the studies in code reuse have been
performed in software projects or their related artifacts [3]–
[10], but only a few on machine learning or data science
that use Jupyter notebooks [11]–[13]. No study of code reuse
has been done in machine learning competitions like Kaggle
before. Thus, we fill the gap by performing an empirical study
to understand how Kaggle competitors reuse code in their
competitions. The result from this preliminary study can shed
light on understanding code reuse in the context of machine
learning coding competitions and also suggest a way to aid the
developers to manage the reused code or recommend related
code for reuse. In this study, we aim to answer the following
research questions:

• RQ1: What are the most re-used code and their types
for Kaggle competitors? First, we want to explore to
what extent the Kaggle competitors reuse code in their
submissions to competitions, and also investigate the
types of such reused code.

• RQ2: What are the common re-used or similar code and
their types across Kaggle competitors? Second, we want
to study whether the Kaggle competitors also reuse code
from (or share similar code with) other competitors.

1https://www.kaggle.com/
2https://jupyter.org
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Fig. 1: Overview of Data Collection

The main contributions of the paper are as follows.
1) We are the first to study code reuse in machine learning

competitions using the Kaggle platform.
2) We present the different types of reused code cells by

Kaggle competitors.
All code and scripts are available at https://github.com/

NAIST-SE/ReuseJupyterNotebook.

II. STUDY DESIGN

In this section, we explain our study design, which includes
the data preparation and tools employed to answer our research
questions.

A. Data Collection

a) Target Dataset: We choose the dataset called KG-
Torrent [14] for this study. KGTorrent is a dataset of Python
Jupyter notebooks derived from Kaggle. Currently, there are
more than 2,910 competitions [14] and 167,397 datasets
available on Kaggle3. The dataset comprises of a companion
database for keeping metadata such as users, competitions,
teams, and a collection of Jupyter notebooks (called kernels).
The database is derived from the Meta Kaggle4, which is
available freely on the Kaggle website. The dataset contains
248,761 Jupyter notebooks of 175 GB in size.

b) Data Collection: Figure 1 shows an overview of how
we extract Python code snippets from the KGTorrent dataset.
The KGTorrent dataset is in the form of a single directory that
contains all Jupyter notebooks.

In order to retrieve the Jupyter notebook files from the
dataset, we had to set up the provided corresponding database
and query the list of Jupyter notebooks that belong to each
competitor in Kaggle. We wrote an automated shell script to
perform the task of querying the Jupyter notebook filenames
and copying the notebooks from the dataset to disk. Next, we
selected all competitors whose notebook tier is Grandmaster
to be analyzed in this study. KGTorrent has 5,598,921 users
in total, but only 16 competitors were Grandmaster tier of
notebooks and participated in at least 20 competitions at the
time of analysis. After that, we selected 3 of 16 competitions
to be a sample for the experiment.

3Data as of 3 September 2022.
4https://www.kaggle.com/datasets/kaggle/meta-kaggle
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Fig. 2: Notebook Files Extraction

TABLE I: Summary Statistics of Competitors

Competitor #Competitions #Notebook Files

Competitor 1 15 156
Competitor 2 25 815
Competitor 3 12 406

c) Dataset Preparation: We then designed and created
the directory structure for the collected data, as shown in Fig-
ure 2. For each competitor, we created directories containing
the notebook files that they created for competitions that they
joined, one directory per competition. A competitor may have
joined multiple competitions, and one competition can have
more than one Jupyter notebook.

Due to the inconsistency between the metadata of the
companion database and the notebooks dataset, all queried
notebook names might not exist on the notebooks dataset.
Consequently, we run an automated script to check how many
competitions remain before processing the data. For the data
to be processed, we selected three competitions because they
have at least 10 competition files after verification by an
automated script, all of which are notebook grandmasters.
Table I is the summary statistics of the prepared data for the
three competitors.

B. Code Reuse Detection

There are myriad code similarity tools available both for
commercial and research. Each tool has a different technique
to measure the similarity of code and support different pro-
gramming languages [15].

a) Similarity Detection of Code Cells: In this work, we
have chosen NCDSearch [16] as the code similarity tool. The
tool performs the search by receiving a code snippet (a file)
as a query and locating similar code snippets within another
file or a folder of files. The code similarity is calculated using
Lempel-Ziv Jaccard Distance, which is an approximation of
Normalized Compression Distance. Output from NCDSearch
is in the form of the query, the similar code fragment found
from the search, and their distance, which is in the range of 0
to 1. The distance value of zero means that the similar code
fragment is exactly the same as the query. On the contrary, the

TABLE II: Number of Code Reuse Per Competitor

Competitor #Competitions #Reused Code Snippets

Competitor 1 15 48
Competitor 2 25 52
Competitor 3 12 28

Total - 128
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Fig. 3: Overview of the Code Similarity Analysis

distance value of one means they are entirely different. The
tool supports several languages including Python.

The code cells that are considered reused in our study have
a distance in the range of 0 to 0.5. A distance of similarity
that is more than 0.5 is not considered as matched based
on the default configuration of NCDSearch. According to
this approach, if a competitor reuses the code from a prior
competition by splitting the original code of one cell into
multiple smaller code cells, the split code cells will be detected
as reused. This is because the smaller code cells will be used
as a query and would match with a very close or zero distance
to the bigger original code that contains them.

As shown in Table II, 128 code cells are reported by
NCDSearch as reused from the three selected competitors.
For competitor 1, we analyzed 15 competitions and found
48 reused code snippets. For competitor 2, we analyzed 15
competitions with 52 reused code snippets found. Lastly, for
competitor 3, we analyzed 12 competitions and found 28
reused code snippets.

b) Locating Similar Code Cells: To locate reuse code
snippets among the competitions of each competitor, we ran
NCDSearch with the default configuration between the note-
book files in each competition. Figure 3 shows an overview of
locating similar codes among competitions. First, we extracted
each code cell within a Jupyter notebook to a Python file (with
an extension .py). Next, we compared all Python files that are
extracted from Jupyter notebooks of the latest competition, in
which a competitor participated, to other extracted Python files
from all prior competitions. We consider the latest competi-
tion of each competition from the date of Jupyter Notebook
creation, and the created date comes from the metadata from
the database. Only cells of the notebook(s) from the latest
competition will be decided as reused code. This approach
allows us to see which code cells are being reused among the
competitions. The result of NCDSearch was saved for later
analysis.

c) Classification of Similar Code Cells: To characterize
the similar code cells, we then had to manually classify them
into common groupings. Hence, to allow for a systematic
process, the first author investigates similar code snippets and
the related code comments and code surrounding the cells.
Then with the two additional authors, we then abstracted the
coding of the function of the code cell. If the code cell could
be classified into more than one type, the first author chose a
type of code cell that was mostly related. Table III shows our
seven types of code cells in Kaggle notebooks including

1. Import packages: Code in the cell is mostly about
importing packages to the kernel. This cell shows the code
that imports external packages to be used in the notebook. One
example is import pandas as pd. This import statement
adds the Pandas library to the notebook, which allows data
analysis and manipulation.

2. Configure: The code for configuration is used to adjust
some configurations of the library and usually appears in the
code cell that imports the packages. When writers have pre-
ferred configs, they instantly change the library configuration
after importing packages.

3. File I/O: We consider both Python internal library com-
mand (i.e., with open) and the external library’s command (i.e.,
pd.read_csv) as File I/O.

4. Show data: Code cell that contains built-in or exter-
nal function(s) used for printing data (e.g., print() and
pd.head()) is considered as a Show Data type. Writers
mostly use it to preview both a specific part and general of
data.

5. Plot graph: Code cell is about performing graph plotting
with the imported library. Calling a graph plotting function
can be the form of multiple lines of code or only a single line
of code. The keyword that made us consider which code cell
is Plot Graph is a graph displaying commands like .hist()
or .plot().

6. Define function: This code type means code cells that are
used for defining function(s). We classify all the code that has
def to be this type because it is a sign to define the function
in Python.

7. Explore files: This code type is a code cell with OS com-
mand(s) to list files directory and show them as an output of a
cell. Calling OS command with !command syntax (i.e., !ls)
and commands from OS package (i.e., os.listdir(.)) for
file exploration both are considered as this type.

III. FINDINGS

We now return to answering our two research questions.

A. RQ1: What are the most re-used code and its type for each
competitor?

To answer this research question, we need to know the
type of reused code, so performed the code type classification
manually using the predefined code types (see Table III).
We performed this manual analysis on the results from 3
randomly selected competitors out of the total 16 Grandmaster
competitors.



TABLE III: Code Cell classification

Type of Code Description

Import packages Code in the cell Is mostly about importing
packages to the kernel.

Configure Adjusting a configuration for a package or
anything.

File I/O File I/O function(s) or command(s) are
called whether read or write.

Show data The function that is used to print out the
data is called e.g., print(), pd.head().

Plot graph Performing a graph plotting with any library
Define function The code cell is used for defining the func-

tion.
Explore files Calling the OS command to list the file and

show it as an output of a cell.

As shown in Figure 4, the x-axis represents all reused code
cells of each competitor grouped by code type. The y-axis
shows a distance of similarity between reused code and the
original one. Each of the 3 analyzed competitors has different
reused codes and types. The first competitor (Figure 4a) reused
the code cells for importing the package the most, followed
by the code cells for plotting graphs. The second competitor
(Figure 4b) reused the code cells for showing data the most,
followed by the code cells that call the OS command for file
exploration. The last competitor (Figure 4c) reused Import
Package code cells the most, followed by File I/O & Show
Data.

Additionally, we added the suffix number to instances of
reused code that share the same type so that we could
distinguish them. Moreover, we can see that the results in
Figure 4 can have more than one instance of one code type
(e.g., Import package 1 and Import package 2).

B. RQ2: What are the common re-used code and its type
across competitors?

Although the most reused code cells and their type might
be different for all three competitors, according to the finding
shown in Figure 4, they have the same common reused
code type, which is the code for importing the package(s).
Therefore, we can answer RQ2 that Import Package is the
most common type that is reused among the three competitors.

The example of the detected reuse code cells for the Im-
port Package type is import pandas as pd. For plotting
graph, an example is targets.sum(axis=1).hist().
For showing the data, an example is ss.head(). Lastly, an
example of the reused code of File I/O type is shown below.

File I/O and Show data:
# LOAD TEST META DATA
test = pd.read_csv
(’../input/siim-isic-melanoma-
classification/test.csv’)
test.head()}

IV. THREATS TO VALIDITY

Internal Validity: First, we encountered a problem while
analyzing the KGTorrent dataset. There was data inconsistency

(a) Competitor 1

(b) Competitor 2

(c) Competitor 3

Fig. 4: Types of Reused Code by Each Competitor

between metadata in the database and the raw files in the
dataset. Occasionally, we could not find a Jupyter notebook
in the dataset even though its name was available in the
database. Thus, this may affect the number of notebook files
we retrieved. Second, we defined the code cell types by
ourselves by having the first author perform a random check of
the existing Kaggle notebooks. This may lead to incomplete
code types. We mitigated this threat by having the second
author to validated the code types. Lastly, the manual code
type classification may be subject to human errors.

External Validity: We analyzed only the Jupyter notebooks
of the Grandmaster tier. The finding may not be generalized
to other notebook tiers.



V. RELATED WORK

Källén et al. [11] performed a large-scale study of code
cloning in Jupyter notebooks with an analysis of 2.7 million
Jupyter notebooks hosted on GitHub. They found that 50% of
all the analyzed notebooks do not have unique code snippets
at all. Moreover, for notebooks written in Python, 80% of all
the code snippets are clones with some modifications to other
locations. We similarly found that the Kaggle competitors
created clones of their existing competitions. According to the
study of Koenzen et al. [12], snippets of code for visualization
are among the ones that are duplicated the most. Some
developers or data scientists spend time browsing for code
examples online, which usually are API examples. Moreover,
they found that many codes are cloned from the code examples
more than open-source code in the version control system like
GitHub. We similarly observed that code cells for plotting
graphs, i.e., visualizations, are among the mostly reused ones.
Sigvardsson [13] reports that code reuse in Jupyter notebooks
mostly has a strong correlation with numpy, matplotlib,
and pandas libraries. The work also states that code reused
has the benefit of saving time and resources. We also report in
our work that code cells for importing packages are the one
that is reused the most.

Code reuse (i.e., code duplication or code clones) is a
normal practice adopted in modern software development.
Developers reuse the code that has been written by themselves
in existing projects and also from other sources such as Stack
Overflow [1] or GitHub [2]. Reusing code has both benefits
and drawbacks. It can save the developer’s time by not writing
the same code again and also by making good use of well-
implemented code. It also may result in the propagation of
defects or security vulnerabilities and increase maintenance
efforts [17]. Currently, the focus is to inform the developers
about the amount of reused code in their software so that they
can make an informed decision on how to manage them [18]–
[20].

VI. CHALLENGES AND FUTURE WORK

In this paper, we investigated the code reuse in Kaggle com-
petitions by the competitors. We selected 16 competitors who
are Grandmaster tier of notebooks in Kaggle. All notebooks
of all competitors have been compared by using NCDSearch
to find similar code, which implies code reuse. We randomly
selected 3 of the 16 competitors to do a manual code type
classification and report the result.

Interestingly, we find that grandmasters are less likely to
reuse specialized code from their prior experiments. Instead,
they are most likely to reuse common abstractions like import-
ing packages, configurations, file IO operations, show data,
plotting graphs, defining functions, and exploring files.

There are many potential future works. For example, we
would like to explore what combinations of these abstract
reused codes can be useful. Furthermore, different from grand-
masters, we would like to also explore how newcomers or
intermediate developers reuse their code.
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