
V-Achilles: An Interactive Visualization of
Transitive Security Vulnerabilities

Vipawan Jarukitpipat, Klinton Chhun,
Wachirayana Wanprasert, Chaiyong

Ragkhitwetsagul, Morakot Choetkiertikul,
Thanwadee Sunetnanta

SERU, Faculty of ICT, Mahidol University
Salaya, Nakhon Pathom, Thailand

Raula Gaikovina Kula, Bodin Chinthanet,
Takashi Ishio, Kenichi Matsumoto

Nara Institute of Science and Technology (NAIST)
Nara, Japan

ABSTRACT
A key threat to the usage of third-party dependencies has been
the threat of security vulnerabilities, which risks unwanted access
to a user application. As part of an ecosystem of dependencies,
users of a library are prone to both the direct and transitive de-
pendencies adopted into their applications. Recent work involves
tool supports for vulnerable dependency updates, rarely show-
ing the complexity of the transitive updates. In this paper, we in-
troduce our solution to support vulnerability updating in npm.
V-Achilles is a prototype that shows a visualization (i.e., using
dependency graphs) affected by vulnerability attacks. In addition to
the tool overview, we highlight three use cases to demonstrate the
usefulness and application of our prototype with real-world npm
packages. The prototype is available at https://github.com/MUICT-
SERU/V-Achilles, with an accompanying video demonstration at
https://www.youtube.com/watch?v=tspiZfhMNcs.

KEYWORDS
software libraries, fixing known vulnerabilities
ACM Reference Format:
Vipawan Jarukitpipat, Klinton Chhun, Wachirayana Wanprasert, Chaiy-
ong Ragkhitwetsagul, Morakot Choetkiertikul, Thanwadee Sunetnanta
and Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio, Kenichi Mat-
sumoto. 2022. V-Achilles: An Interactive Visualization of Transitive Security
Vulnerabilities. In The 37th IEEE/ACM International Conference on Auto-
mated Software Engineering. ACM, New York, NY, USA, 4 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Third-party dependencies in software applications are now preva-
lent due to the rise of available software library ecosystems like the
Node.js packages (npm). The npm ecosystem hosts over 1.6 million
library packages and is relied upon by more than 11 million devel-
opers worldwide1. Furthermore, the importance of npm packages
1https://www.npmjs.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, 10–14 October 2022, Ann Arbor, Michigan, United States
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

is evident in the industry, by its purchase by Microsoft’s GitHub
in 20202. A key threat to the usage of third-party dependencies
has been security vulnerabilities, which risk unwanted access to
a user application. Due to the transitive nature of the ecosystem
of dependencies, applications are prone to any threats not directly
adopted [2, 4, 7].

There have been tools to increase the developers’ awareness of
vulnerable dependencies and their updates. Two tools that have
been widely used and the state of the art are Dependabot and npm
audit. Nonetheless, even with these tools, developers still face
challenges when making decisions to update their dependencies.
Previous studies find that developers are slow in updating their
dependencies [1, 5, 6, 9, 10]. This is due to several factors includ-
ing compatibility issues, being unaware, and the migration effort
outweighing the benefits. Other work [8] similarly finds that most
developerswere unaware of dependency updates and that themigra-
tion effort is a barrier to adopting a dependency update. Although
these tools have been successfully adopted in practice, the key prob-
lem is understanding the effect of the vulnerability, especially if the
vulnerability is detected in a transitive dependency [13].

Hence, in this paper, we introduce our tool that not only consid-
ers the direct dependency, which is a library that the application
calls, but also considers the transitive dependencies. A thread of the
direct and transitive dependencies that depend on each other can
be called a chain of dependencies. For example, in an npm project
P, the project has a direct dependency called karma-mocha. This
direct dependency depends on another dependency, i.e., transitive
dependency, called minimist. This creates a chain of dependencies
of P → karma-mocha → minimist. Prior work [14] shows that
there are approximately 80 transitive dependencies per each di-
rect dependency installed, and this ratio is increasing over time.
These transitive dependencies and their invisibility from the de-
veloper’s point of view can result in difficulty in locating flaws or
vulnerabilities [3, 11].

2 EXISTING TOOL SUPPORT
Nowadays, there are automated tools that can help developers ana-
lyze dependency security vulnerabilities in their software projects.
The two widely-used tools include GitHub Dependabot and npm
audit. We explain each of them below.

Dependabot3 is a bot that analyzes a GitHub repository and au-
tomatically creates pull requests to update outdated and vulnerable

2https://github.blog/2020-03-16-npm-is-joining-github/
3https://github.com/dependabot

https://github.com/MUICT-SERU/V-Achilles
https://github.com/MUICT-SERU/V-Achilles
https://www.youtube.com/watch?v=tspiZfhMNcs
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.npmjs.com
https://doi.org/XXXXXXX.XXXXXXX
https://github.blog/2020-03-16-npm-is-joining-github/
https://github.com/dependabot

ASE ’22, 10–14 October 2022, Ann Arbor, Michigan, United States
Vipawan Jarukitpipat, Klinton Chhun, Wachirayana Wanprasert, Chaiyong Ragkhitwetsagul, Morakot Choetkiertikul, Thanwadee Sunetnanta and Raula Gaikovina Kula, Bodin

Chinthanet, Takashi Ishio, Kenichi Matsumoto

Figure 1: System Architecture of V-Achilles

dependencies. It is acquired by GitHub in 2019. Dependabot cur-
rently supports repositories written in 15 programming languages.
The process of Dependabot consists of three steps: (i) the bot finds
outdated or vulnerable dependencies, (ii) the bot creates a pull
request for each dependency, and (iii) the developers check the
proposed changes and decide if they want to merge them to the
repository.

The second tool is npm audit.4 In 2018, npm introduced a new
command for assessing the vulnerability from npm package de-
pendencies called npm audit. The command submits the list of
dependencies from package.json file (i.e., package metadata file)
to the npm registry for a vulnerability report. By default, Node.js
developers receive the vulnerability report by npm audit while
installing the dependencies from npm. Developers can also execute
the npm audit command manually to generate the vulnerability
report at any time. npm audit can report software vulnerabilities
in both direct and transitive dependencies.

Although Dependabot and npm audit give an analysis of depen-
dencies and their vulnerabilities, they still have some limitations.
Dependabot can detect only vulnerabilities in direct dependencies.5
For npm audit, the tool can analyze transitive dependencies and
their vulnerabilities. However, the tool is only available as a com-
mand line tool with the vulnerability report in a textual and tabular
format. Thus, the developers may not see the relationships of the
dependencies and the severity of the vulnerabilities when making
their decisions to update the vulnerable packages. In this paper,
we aim to fill this gap by introducing an interactive graph
that displays the information needed by developers.

3 THE V-ACHILLES TOOL
In this section, the overview, interactive features, and the output of
V-Achilles.

3.1 Overview and Design
As shown in Figure 1, we create aweb-based tool called “V-Achilles”6
for demonstrating the concept of node-link dependency graph visu-
alization. V-Achilles connects to GitHub and retrieves the user’s
npm repositories. It then analyzes a chosen repository’s dependen-
cies and produces the dependency graph visualization and a security
analysis report (as shown in Figure 2 and Figure 3). The tool consists
of the front-end and the back-end parts. The front-end part consists

4https://docs.npmjs.com/cli/v8/commands/npm-audit
5https://github.com/Dependabot/Dependabot-core/issues/2640
6The name V-Achilles has been chosen as a metaphor for Achilles’ heel, which
represents a weakness in a software project. V stands for both visualization and
vulnerability.

Figure 2: V-Achilles analysis result with dependency graph
visualization and a tool tip that shows the dependency’s vul-
nerability information

of GraphQL, React, and D3.js libraries. The back-end parts con-
sist of Node.js and MongoDB Atlas database. Lastly, V-Achilles
queries the vulnerability information of the direct and transitive
dependencies from GitHub Advisory Database7 using GraphQL
and creates a dependency graph visualization and report.

3.2 Interactive Visual Features
V-Achilles also makes use of the interactions of the D3.js visual-
ization library to display an interactive graph that can be zoomed
in and out and also navigated around. Moreover, the dependency’s
vulnerability information is presented as an interactive tooltip. The
tooltip information is only displayed when a user hovers the cur-
sor over a node in the graph. This way, V-Achilles only shows
relevant security information that the user is interested in.

Figure 2 shows the dependency graph visualization and the de-
sign decisions for the tooltip. If the hovered node is vulnerable,
V-Achilles shows a tooltip with the vulnerability information
including the dependency version, its vulnerability severity (low,
medium, high, critical), the range of the versions that are affected
by the vulnerability, the patch version of this vulnerability, and the
links to the vulnerability’s CVE. The user can use this information
for their further investigation of the vulnerability and support their
decision on making updates. For normal nodes, the tooltip only
shows the version of the dependency.

In terms of visual design, the status of each dependency, i.e.,
node in the graph, is highlighted by a color-blind safe [12] palette.
As depicted in Figure 2, the project node is shown in reddish purple,
and is slightly bigger than other nodes. The vulnerable nodes are

7https://github.com/advisories

https://docs.npmjs.com/cli/v8/commands/npm-audit
https://github.com/Dependabot/Dependabot-core/issues/2640
https://github.com/advisories

V-Achilles: An Interactive Visualization of
Transitive Security Vulnerabilities ASE ’22, 10–14 October 2022, Ann Arbor, Michigan, United States

Achilles: Vulnerability Report
May 22nd 2022, 10:43 pm

cragkhit
my-awesome-project

3
CRITICAL

2
HIGH

2
MODERATE

1
LOW

Summary Total vulnerabilities: 8

Dependency Type Updating Severity

swiper Direct < 6.5.1 6.5.1 critical

immer Direct < 9.0.6 9.0.6 high

immer Direct < 9.0.6 9.0.6 critical

immer Direct < 8.0.1 8.0.1 high

highlight.js Direct < 9.18.2 9.18.2 low

minimist Indirect < 1.2.6 1.2.6 critical

minimist Indirect < 1.2.2 1.2.2 moderate

minimist Indirect >= 1.0.0, < 1.2.3 1.2.3 moderate

Total of vulnerable direct dependency: 5

Total of vulnerable indirect dependency: 3

Vulnerabilities

Potentially Vulnerable: swiper

Severity: critical

Current Usage Version: 6.4.3

Vulnerable Version: < 6.5.1

Patch Version: 6.5.1

Vulnerability Chaining:

Vulnerabilities and Advisory link: GHSA-p3hc-fv2j-rp68

CVE-2021-23370

CWEs: CWE-1321: Improperly Controlled Modification of Object Prototype

Summary of all the vulnerabilities

Dependency update recommendations

Vulnerability information

Figure 3: V-Achilles vulnerability report

shown in vermillion, to make them easily distinguishable from the
others. The normal nodes are shown in four different colors as
follows. The direct dependencies are shown in orange and the tran-
sitive dependencies are shown in blue, yellow, and green according
to how many steps they are from the project node. In addition,
V-Achilles also shows the edges in a chain of dependencies that
contains a vulnerable node in vermillion.

The advantages to having a visualization are that users (i) can
differentiate between vulnerabilities from the direct dependencies
and transitive dependencies based on the usage of different node
colors, (ii) evaluate the complexity of updating a vulnerable depen-
dency by looking at the connections in the graph. Hence, If the
vulnerable dependency contains no other packages that depend on
it (i.e., having no arrows pointing out from the node), that means
the update can be done without impacting other dependencies. On
the other hand, if the vulnerable dependency has several packages
depending on it, then the update may impact such dependencies
and need to be done carefully. (iii) use the tooltip to navigate into
its GHSA and CVE records.

3.3 Reporting Mechanism
Figure 3 shows a vulnerability report that can be created after an
analysis of the dependency vulnerabilities is finished and the depen-
dency graph is generated. The report shows the summary of all the

detected security vulnerabilities in the analyzed npm project. On the
top, the report contains the number of vulnerabilities categorized
by severity levels. In the middle, it shows the recommendations for
updating the vulnerabilities to their patch versions. Lastly, the re-
maining part of the report contains detailed information about each
vulnerability, similar to the information displayed in the tooltip. A
graph showing the chain of dependencies of the vulnerability is
also included along with the link to the corresponding GHSA entry,
the CVE record, and the CWE records of such vulnerability. The
report can be saved in PDF format.

4 USAGE SCENARIO
To demonstrate the usefulness, we present three use cases by which
we believe the tool can be used alone or complement existing tools.

Case 1: Revealing Insights from Transitive Dependencies.
Although recent enhancements of Dependabot include transitive
graphs, we believe that V-Achilles is easier to navigate using the
interactive graph. Dependabot creates alerts8 to help developers
aware and update their dependency vulnerabilities, however, we
find that developers still need to manually fix each vulnerability
by themselves by generating a pull request, and trace the code.
Different from Dependabot, the developers can use V-Achilles
to perform the checking of their npm project in a graph format,
and use the tool tip for more information. Although this might be
the same information, with V-Achilles, the user can easily use
the tool tip information to decide which vulnerability should be
addressed first.

Case 2: Just in time Vulnerability Detection. The develop-
ers can use V-Achilles to analyze their projects each time a new
package is installed. This is to make sure that the newly installed
packages (and their dependencies) do not introduce any vulnera-
bilities into the project. The tool can be used to complement npm
audit to understand the complexity of the dependencies, i.e., how
interconnected the packages within the project are, using the de-
pendency graph visualization.

Case 3: RetrospectiveAnalysis of Project’s Security. V-Achilles
records all the history of the previous analyses as reports. Thus,
if the developers use V-Achilles to analyze their project regu-
larly (e.g., every pull request or every release), the developers can
choose to look back and review the analysis information of any
npm projects since the beginning to see whether the project is
improving in terms of security.

5 APPLICATION
To assess its usability in practice, we used V-Achilles to perform
vulnerability analysis on GitHub projects to see if the tool can detect
any existing security vulnerabilities. There are two criteria that
we chose to sample the repositories. First, the repositories must be
developed by using npm. Second, the repositories must have the
dependencies in package.json or package.yaml file.

Then, we choose two sets of projects. First, we retrieved the
repositories based on the number of stars. Then, we selected the
top 10 projects with the highest number of stars in the study. The
information of the 10 projects is shown in Table 1. The project with

8https://docs.github.com/en/code-security/dependabot/dependabot-alerts/viewing-
and-updating-dependabot-alerts

ASE ’22, 10–14 October 2022, Ann Arbor, Michigan, United States
Vipawan Jarukitpipat, Klinton Chhun, Wachirayana Wanprasert, Chaiyong Ragkhitwetsagul, Morakot Choetkiertikul, Thanwadee Sunetnanta and Raula Gaikovina Kula, Bodin

Chinthanet, Takashi Ishio, Kenichi Matsumoto

Table 1: 10-most starred npm projects

Project Description Stars

npm JavaScript package manager 17.3k
np A better npm publish 6k
sinopia A private/caching npm repository server 5.4k
nwb Toolkit for React, Preact, Inferno, & vanilla JS apps 5.3k
concurrently Command line 4.4k
npm-run-all A tool running multiple npm-scripts in parallel or

sequential
4.1k

node-semver The semver parser for node 3.6k
cnpmjs.org Private npm registry and web for Enterprise 3.4k
windows-
build-tools

Install C++ Build Tools for Windows using npm 3.2k

npx Execute npm package binaries 2.6k

the highest number of stars is npm (17.3k) followed by np (6k) and
sinopia (5.4k). The other projects have a number of stars ranging
from 5k to 2.6k. Second, we retrieved the repositories based on the
number of dependent packages using the information from the npm
registry. This is done using the all-the-package-names9 package
in npm registry. Then, we picked the 10 projects with the high-
est number of dependent packages. The selected projects include
request (having 15,820 dependent packages), express (10,250),
gulp (2,758), mocha (2,074), grunt (1,623), chai (1,577), eslint
(916), should (612), sinon (511), and istanbul (391). Nonetheless,
after analyzing the projects in this category, we did not find any
vulnerabilities. So, we will only discuss the results of the top-10
most starred projects.

As shown in Figure 4, we found that V-Achilles discovered
the vulnerabilities in 4 most-starred GitHub repositories includ-
ing sinopia, cnpmjs.org, windows-build-tools, and npx. For
sinopia, V-Achilless found 9 direct vulnerabilities (1 low, 1medium,
6 high, and 1 critical severity based on GHSA), and 3 transitive
vulnerabilities (2 low and 1 high). For cnpmjs.org, 4 direct vulnera-
bilities are detected (1 medium and 3 high), and 7 transitive vulner-
abilities (4 low, 1 medium, and 2 high). For windows-build-tools,
the tool found 1 transitive vulnerability (1 low). Laslty, for npx, 1
transitive vulnerability is detected (1 low). The full analysis report
of the 4 vulnerable projects can be found in the online appendix10.

6 CONCLUSION
V-Achilles allows the developers to explore dependencies in their
software intuitively and provides information on vulnerable depen-
dencies to help the developers make decisions on updating such
dependencies. The future work includes performing an evaluation
of the dependency graph visualization with developers to assess
its effectiveness in assisting their decision of dependency updates.
We plan to also improve V-Achilles to detect vulnerabilities in a
longer chain of transitive dependencies (the tool currently supports
4 levels of transitive dependencies). An improved visualization
method may be needed due to the complexity of the graph after
analyzing all the transitive dependencies. Moreover, visualization
like V-Achilles can also be included in the code review process
to assist the reviewers with the security of the added packages.

9https://github.com/nice-registry/all-the-package-names
10https://muict-seru.github.io/V-Achilles

Figure 4: Discovered vulnerable direct and transitive depen-
dencies in 4 GitHub most starred npm projects

ACKNOWLEDGMENTS
This work has been supported by Japan Society for the Promo-
tion of Science (JSPS) KAKENHI Grant Numbers JP20H05706 and
JP20K19774.

REFERENCES
[1] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and

Sebastiano Panichella. 2015. How the Apache Community Upgrades Dependen-
cies: An Evolutionary Study. Empirical Software Engineering (ESME) 20, 5 (Oct.
2015), 1275–1317.

[2] Bodin Chinthanet, Raula Gaikovina Kula, Shane McIntosh, Takashi Ishio, Akinori
Ihara, and Kenichi Matsumoto. 2021. Lags in the release, adoption, and propa-
gation of npm vulnerability fixes. Empirical Software Engineering (ESME) 26, 3
(March 2021).

[3] Russ Cox. 2019. Surviving Software Dependencies. Queue 17, 2 (Apr 2019), 24–47.
[4] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of

security vulnerabilities in the npm package dependency network. In IEEE/ACM
Mining Software Repositories Conference (MSR). 181–191.

[5] Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse,
and Marco Tulio Valente. 2015. How Do Developers React to API Evolution? The
Pharo Ecosystem Case. In IEEE International Conference on Software Maintenance
and Evolution (ICSME). 251–260.

[6] Akinori Ihara, Daiki Fujibayashi, Hirohiko Suwa, Raula Gaikovina Kula, and
Kenichi Matsumoto. 2017. Understanding When to Adopt a Library: A Case
Study on ASF Projects. In 13th International Conference on Open Source Systems
(OSS). 128–138.

[7] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. 2017. Structure
and Evolution of Package Dependency Networks. In IEEE/ACM Mining Software
Repositories Conference (MSR). 102–112.

[8] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do Developers Update Their Library Dependencies? Empirical
Software Engineering (ESME) 23, 1 (Feb. 2018).

[9] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How Do Develop-
ers React to API Deprecation?: The Case of a Smalltalk Ecosystem. In International
Symposium on the Foundations of Software Engineering (FSE). 56:1–56:11.

[10] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2016. On the reac-
tion to deprecation of 25,357 clients of 4+1 popular Java APIs. In IEEE International
Conference on Software Maintenance and Evolution (ICSME). 400–410.

[11] Snyk. 2020. The state of open source security report. Technical Report. Snyk.
[12] Bang Wong. 2011. Points of view: Color blindness. Nature Methods 8, 6 (Jun

2011), 441–441.
[13] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-

dra Maddila, and Laurie Williams. 2022. What are Weak Links in the npm Supply
Chain?. In ICSE-SEIP ’22.

[14] Markus Zimmermann, Cristian Alexandru Staicu, Michael Pradel, and CamTenny.
2019. Small world with high risks: A study of security threats in the NPM
ecosystem. Proceedings of the 28th USENIX Security Symposium (2019), 995–1010.

https://github.com/nice-registry/all-the-package-names
https://muict-seru.github.io/V-Achilles

	Abstract
	1 Introduction
	2 Existing Tool Support
	3 The V-Achilles Tool
	3.1 Overview and Design
	3.2 Interactive Visual Features
	3.3 Reporting Mechanism

	4 Usage Scenario
	5 Application
	6 Conclusion
	Acknowledgments
	References

