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Abstract. Due to Android's flexibility in installing applications, it is one of the 
most popular mobile operating systems. Some Android users install 
applications from third-party stores even though they have the official 
application store, Google Play. These third-party stores usually have the mod 
version and the self-proclaimed original applications, which can be repackaged 
applications. Applications on these third-party stores can introduce security 
risks because of the non-transparent alteration and uploading processes. In this 
research, we inspect 492 Android applications from ten third-party stores for 
repackaged applications using information of APK files and a token-based code 
clone detection technique. We also classify repackaged applications as benign 
or malicious and categorize malicious applications into twelve malware 
categories. For the malware classification, we use machine learning techniques, 
including Random Forest, Decision Tree, and XGBoost, with the CCCS-CIC-
AndMal-2020 Android malware dataset. Finally, we compare the results with 
VirusTotal, a well-known malware scanning website.               

Keywords: Android Security, Android Malware Detection, Repackaged 
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1 Introduction 

Android OS has the most market share in the mobile OS from the first and second 
quarter of 2023 [1]. Based on Statista [2], The application category Android users 
downloaded the most is the game category. Usually, users download game 
applications from Google Play, the official application store for Android devices. To 
protect users from malicious applications, Google Play has a feature called Google 
Play Protect [3], which automatically detects and protects Android devices from 
potentially harmful applications from both Google Play itself and from other sources. 
However, some people download Android applications from untrusted sources 
because the applications are not available on Google Play or are regionally restricted, 
or they need to use the other version of applications. Unfortunately, downloading 
games from third-party stores poses security risks due to their non-transparent 
alteration and uploading processes and lack of security features. Malicious actors can 
repackage applications, turn them into malware, and trick users to install these altered 



malicious applications. Installing them can lead to malicious activities, such as 
collecting sensitive data without user consent, stealing users' credentials, injecting 
hidden malware, adware, or backdoor, and compromising and harming the devices. 
Therefore, detecting these malicious applications from third-party stores is essential. 

In this paper, we inspect ten selected third-party stores and their game applications 
including the self-proclaimed original and the mod versions of games. Regarding the 
self-proclaimed original game applications, we investigate whether they are 
repackaged applications by comparing hash values, a token-based code clone 
detection, and other attributes of the APK files. Next, we classify and categorize both 
repackaged and mod versions of game applications into twelve malware categories 
using machine learning techniques, including Random Forest, Decision Tree, and 
XGBoost, with the CCCS-CIC-AndMal-2020 Android malware dataset [4][5]. 

The contributions of this paper are as follows. 
• We inspect a total of 557 selected game applications: 65 original games from 

Google Play and 492 games from selected third-party stores. Among 492 
applications, there are 196 self-proclaimed original applications, which we 
investigate whether they are repackaged. 

• We use machine learning techniques with a recent Android malware dataset to 
classify altered game applications, including the repackaged version and mod 
versions of games, whether they are benign or malicious applications. Malicious 
applications are classified into twelve categories based on malware characteristics. 

• We compare the results with VirusTotal [6], a famous malware scanning website. 
This research paper's outlines are as follows. Section 2 describes the background 

and related works. The proposed work details are in Section 3. Section 4 shows the 
experiments and results. Lastly, we conclude and discuss our findings in Section 5. 

2   Background and Related Work 

This section provides the definitions, the background, and the related work. 

2.1   Types of Altered Android Game Applications  

On third-party Android application stores, there are games stating they are the 
same as the original ones on Google Play and altered games. Some modifications are 
with malicious intentions, while some of them are not. The alteration processes of 
applications affect their appearance, source code, functionalities, and behaviors. There 
are two categories of altered applications based on owners' authorization. Authorized 
altered applications have the owners' approval, such as games with updates and UI 
improvement. However, most application alterations do not have the proper 
authorization from the owners and violate the copyrights and distribution rights. 
Games are modified for some reasons, for example, accessing the premium features 
without paying, using the advertisement-free applications, and cheating the games by 
gaining the advantage against them. Examples of altered game applications are 
cracked games, repackaged applications, and mod versions of applications. Below are 
the definitions of the repackaged applications and the mod versions of applications. 



• Repackaged Applications  

Third-party developers decompile an original APK file, do unauthorized alteration, 
recompile, repackage it into a Repackaged Application, and distribute it on third-party 
stores. These repackaged applications have significant security risks because the 
alteration usually contains malicious intents. Malicious actors use these applications' 
appearance and functionalities as baits to trick users to download and install them. On 
third-party stores, applications claiming they are the same as the original ones on 
Google Play are called "Self-Proclaimed Original Application." Therefore, users will 
not know if they download "Repackaged Applications." 

• Mod Version of Game Applications 

Mod versions of game applications are created by enthusiasts and third-party 
developers who modify the original applications and then distribute them to third-
party stores. They may modify the games to enhance gameplay, add new features, or 
cheat games. Even though mod versions of games are usually not modified with 
malicious intent, using applications from untrusted sources always carries security 
risks. Third-party stores always tell users that the games are the "Mod Versions" in 
their descriptions. Thus, users always know whether they install the mod versions.  

2.2 CCFinderSW 

Semura et al. [7][8] proposed CCFinderSW, a token-based code clone detection tool. 
CCFinderSW uses a lexical analysis mechanism. Users can select programming 
languages such as Python, Java, and Ruby by selecting options for comments and 
reserved words of each language. CCFinderSW can detect Type-1 and Type-2 clone 
pairs. According to Roy and Cordy [9], Type-1 pairs are pairs with identical code 
fragments, while Type-2 pairs are similar to Type-1, but the variable names, values, 
and identifiers are changed. 

2.3 Related Work 

To prevent downloading malicious applications, some researchers proposed 
approaches for detecting Android malware. Chen et al. [10] proposed an Android 
malware detection with text-based classification and static analysis technique. After 
extracting static features, they converted them into word vectors for text classification 
using the BiLSTM processing model. They also used the DPCNN and Fasttext 
algorithms for performance comparison. However, the BiLiSTM has the highest 
accuracy score at 97.47% and the F1-score at 97.43%. Jaiswal et al. [11] provided a 
study of differences between benign, malicious, and clone applications based on 
system calls and behaviors. They also proposed a gaming malware detection system 
using dynamic analysis techniques. They found that some system calls, such as stat64 
and llseek, are more frequently called in malicious games. Moreover, some system 
calls that are not in the original games, such as stat64, pread63, and brk, but appear in 
the clone ones. The clone applications also ask for high-level permissions that the 
original ones do not require. 



Several papers use the CCCS-CIC-AndMal-2020 dataset for Android malware 
detection. DIDroid [12] provided a detection system using 2D images with a deep 
learning algorithm based on CNN. They extracted static features, created vectors, 
selected the features, converted them into 2D gray images, and used the convolutional 
layers for training and testing models. DIDroid has an accuracy of 93.36%. The other 
provided work regarding this dataset is the EntropLyzer. The EntropLyzer [13] is an 
entropy-based detection system using dynamic features. Its entropy algorithm is 
Shannon entropy. They used Naive Bayes, Support Vector Machine, Random Forest, 
and Decision Tree algorithms for training the models. They analyzed and compared 
the entropy values of their features before and after rebooting and visualized their 
behavioral changes. They found that Decision Tree with the F1-score of 98.3% has 
the best performance for classifying malware categories. 

3   Proposed Work 

This section provides an explanation of the workflow, including the repackaged 
application detection and the malware detection and categorization.  

 
3.1   List of Target Applications 

We select top 200 free Android game applications for this study. We collected the 
Android games from the following ten third-party stores based on their popularity:
• APKAward 
• APKCombo 
• APKMody 
• APKPure 

• APKVision 
• HappyMod 
• LiteAPKs 
• LuckyModAPK 

• ModYolo 
• PlayMods 

The following are the criteria for selecting the target applications. 
• Original games must have at least five third-party stores with the same versions. 
• If the third-party stores have both self-proclaimed original and mod versions of 

applications, we will select the mod versions as our target. 
• If there are many mod versions of an application, we will select the mod version 

with the latest updated date as our target. 
• We will filter out the selected applications with the updated date and versions 

conflicted with the original ones on Google Play. 

Table 1.  Numbers of target applications in each category.  

   Amount Description 
Original Applications  65 Filtered games from the top 200 free game applications  

on Google Play 
Self-Proclaimed 
Original Applications 

196 Applications on third-party stores which claimed that  
they are the same as the original ones on Google Play  

Mod Version of 
Applications 

296 Modified games on third-party stores for adding 
features and cheating games. 

Total 557  



After the collection and filtering, we retrieve 557 games for this study. We classify 
target game applications into three categories: original, self-proclaimed original, and 
mod versions. Table 1 shows the amount of target applications in each category. 

3.2   Analysis Workflow  

We propose an approach for inspecting the self-proclaimed original games whether 
they are repackaged. Then, we classify and categorize mod versions and the 
repackaged games whether they are in one of twelve malware categories or benign. 
Therefore, our proposed approach consists of two main processes: (1) the repackaged 
application detection and (2) the malicious application detection and categorization. 
Fig. 1 shows the workflow of the proposed approach in detail. The analysis steps of 
the proposed approach are as follows. 
1. Download and decompile the target applications. 
2. Select a self-proclaimed original game and pair it with the original one for 

repackaged application detection processes. 
3. Conduct the repackaged application detection on the pair. 
4. Sort the result from the experiment. We will store the repackaged games for the 

malicious applications detection and categorization section. However, if the game 
is not a repackaged, record it as a "Benign Original Application." 

5. If any self-proclaimed original games are remained, select a new one and repeat the 
process. If not, go to the next step. 

6. Conduct malicious application detection and categorization on the repackaged and 
mod versions of games. 

7. Sort the result from the experiment. If the application is benign, record it as a 
"Benign Application" with its type. However, if the application is malicious, 
classify it as a "Malicious Application" with its malware category. 

 

 
Fig. 1. Analysis workflow of the proposed approach 



 
(a)  (b) 

Fig. 2 (a) Inputs and Outputs of the system (b) Malicious Application Output 
 
As shown in Fig. 2 (a), there are three possible inputs and four main possible 

outputs. Three inputs include the original applications from Google Play, the self-
proclaimed original, and the mod versions of games. On the other hand, four main 
possible outputs are as follows: 
• Benign Original Applications (The same as the original games) 
• Benign Repackaged Applications (The repackaged games but not malicious) 
• Benign Mod Version Applications (The mod versions of games but not malicious) 
• Malicious Applications (The malicious games with possible twelve categories) 

In case of malicious applications, they are categorized into one of twelve malware 
categories as depicted in Fig. 2(b). 

3.3 Repackaged Application Detection 

This section explains the method used to detect repackaged applications from the self-
proclaimed original games in detail. Fig. 3 illustrates the workflow of the repackaged 
application detection process. The following steps are how the process works. 
1. Compute and compare the APK files' hash values. 
2. Get and compare the number of files in both APK files. 
3. Get and compare the names of all files in both APK files. We store all files with 

different names and additional files, except files for Android Application Binary 
Interface (ABI). 

4. Compute and compare all file hash values in both APK files. We store all files with 
different hash values for the next step. 

5. Conduct token-based code clone detection using CCFinderSW [7][8] on the JAVA 
files with different hash values. 
The following are conditions for reporting that a self-proclaimed original 

application is a "Repackaged Application." 
1. The APK files’ hash values, numbers of files, and filename are not the same. 

Moreover, not all additional and different files are for Android ABI. 
2. There are files having different hash values when comparing with the original one. 

On the other hand, the conditions for approving that a self-proclaimed original 
game application is a "Benign Original Application” are as follows. 



1. Their APK files’ hashes, numbers, and names of files, and each file’s hash values 
are the same compared to the original APK file. 

2. Even though the APK files' hashes, numbers of files, and filenames are not the 
same, all additional and different files are for Android ABI, and all files’ hash 
values are the same as their original ones. 

 

 
Fig. 3 Workflow of the Repackaged Application Detection Process 

3.4 Malicious Application Detection and Categorization 

This section presents the method used for detecting the malicious repackaged and 
mod versions of games and categorizing them into twelve categories. We use codes 
and unique lists provided by AndroidAppLyzer [14] for feature extraction and the 
CCCS-CIC-AndMal-2020 Android malware dataset [4][5] for training the machine 
learning models. Characteristics of this dataset are as shown in Table 2. The machine 
learning algorithms include Random Forest, Decision Tree, and XGBoost. 

Table 2.  Number of malware samples in the CCCS-CIC-AndMal-2020 dataset.  

Malware Categories Numbers of Families Numbers of Samples 
Adware 48 47,210 
Backdoor 11 1,538 
File Infector 5 669 
No Category - 2,296 
PUA 8 2,051 
Ransomware 8 6,202 
Riskware 21 97,349 
Scareware 3 1,556 
Trojan 45 13,559 
Trojan-Banker 11 887 
Trojan-Dropper 9 2,302 
Trojan-SMS 11 3,125 

 Note that this dataset also contains 200k benign Android applications. The following 
steps are the workflow of the malicious application detection and categorization 
process.  



1. Extract and create vectors of the APK file’s 9,503 static features. There are 9,491 
features from the provided unique lists, including permissions, actions, and 
categories. The rest are the additional information on the APK file as listed below.
• Numbers of Icons 
• Numbers of Audio 
• Numbers of Videos 
• Size of the App 
• Numbers of Activities 
• Numbers of Meta-data 

• Numbers of Services 
• Numbers of Permissions 
• Numbers of Categories 
• Numbers of Actions 
• Numbers of Providers 
• Numbers of Receivers 

2. Train the machine learning models with the CCCS-CIC-AndMal-2020 Android 
malware dataset. However as from Table 2, our number of samplings in each 
category of dataset is unbalanced. Therefore, for training we data-sampled each 
label in the dataset into 3,200 and 15,000 samples for training the model. 

3. Use the models for malware detection and categorization on the target applications. 

4   Experimental Results 

4.1   Hardware and Software Specifications 

We used Oracle VM VirtualBox version 7.0.4 to virtualize Kali Linux version 2023.2 
VM with 2-core CPU and 8-GB RAM for conducting the repackaged application 
detection. Kali Linux has GNU bash 5.2.15, Python 3.10.9, JADX 1.4.7, and 
CCFinderSW 1.0 installed. For malicious application detection and categorization, we 
used Katana GF66 11 UG, CPU 8 cores, and RAM 16 GB with Windows 10. 

4.2   Repackaged Application Detection 

We experimented on the pair of a self-proclaimed original game and its original one 
on Kali Linux. We used JADX tool to decompile the APK files, SHA256 for the hash 
algorithm, and CCFinderSW to inspect Java files with different hash values from their 
original ones. The information of APK files used in the experiment are (1) The hash 
value of APK file, (2) numbers of files in each APK file, (3) filenames, and (4) hash 
values of each file. The expected outputs are the "Benign Original Application" and 
the "Repackaged Application." However, there is the "Exceptional Application," 
which are applications that has the same numbers of files, the same filenames, the 
same hash values of each file, but the hash values of APK files are not the same. 

We conducted experiments on 196 self-proclaimed original games from third-party 
stores with 65 original games from Google Play. Table 3 shows results based on each 
third-party repository. We found 93 repackaged applications out of 196 self-
proclaimed original games, which is 47.45%. We also found 19 exceptional 
applications. Only 84 applications are benign original applications. The store with the 
highest percentage of repackage applications is ModYolo which has 100%, while the 
store with the lowest percentage of application is LiteAPKs which has 33.33%. 

Fig. 4 depicts the results of the repackaged application detection in the pie chart. In 
conclusion, there are 93 repackaged applications out of 492 targets from third-party 



stores, which is 18.90%. The benign original and the exceptional applications are 
17.07% and 3.86% out of the targets, respectively. 

Table 3.  Repackaged applications on each third-party repository.  

Third-Party 
Stores 

Self-
Proclaimed 

Original 
Applications 

Repackaged 
Applications 

Benign 
Original 

Applications 

Exceptional 
Applications 

Repackaged 
Application 
Percentage 

APKAward 9 7 1 1 77.78% 
APKCombo 56 24 28 4 42.86% 
APKMody - - - - 0.00% 
APKPure 65 22 35 8 33.85% 
APKVision 11 6 2 3 54.55% 
HappyMod 14 6 6 2 42.86% 
LiteAPKs 9 3 5 1 33.33% 
LuckyModAPK - - - - 0.00% 
ModYolo 6 6 0 0 100.00% 
PlayMods 26 19 7 0 73.08% 
TOTAL 196 93 84 19 47.45% 
* APKMody and LuckyModAPK do not have any self-proclaimed original games. 
 

 
Fig. 4 Target applications after Repackaged Application Detection 

4.3   Malicious Application Detection and Categorization 

We experimented on 389 game applications, 93 of which are repackaged games and 
296 of which are mod versions of games. Regarding extracting static features, we 
used the AndroidAppLyzer’s code and unique lists, including permissions, actions, 
and categories lists [14]. Then, we used machine learning models including Random 
Forest (RF), Decision Tree (DT), and XGBoost (XGB) algorithms that are trained on 
the CCCS-CIC-AndMal-2020 Android malware dataset to classify them as malware 
or benign applications. For training the model, to balance the dataset from each 
category, we data-sampled each label in the dataset into 3,200 and 15,000 samples, 
respectively. Table 4 shows each algorithm and its performance. Criteria for 
performance evaluation of each algorithm are the accuracy and the F1-score. The 



algorithm with the highest accuracy and F1-score for both 3,200 and 15,000 samples 
is the Random Forest algorithm. It has accuracy and F1-score of 91.80% and 91.85% 
for 3,200 samples. Regarding 15,000 samples, it has accuracy and F1-score of 94.78% 
and 94.83%. Using 15,000 samples resulted in higher accuracy and F1-score, but all 
three algorithms have similar performances. 

Table 4.  Algorithms and their performances.  

ML Algorithms 
3,200 Samples 15,000 Samples 

Accuracy F1-Score Accuracy F1-Score 
Random Forest (RF) 91.80% 91.85% 94.78% 94.83% 
Decision Tree (DT) 90.29% 90.31% 93.98% 94.03% 
XGBoost (XGB) 90.99% 91.04% 93.12% 93.17% 

We then tested 389 game applications with the trained models. Table 5 shows the 
malware classification results of each machine learning algorithm. There are 13 
outputs: one benign and twelve malware categories. The decision tree algorithm 
detected the most numbers of malware, with 84 malwares for 3,200 samples and 39 
malwares for 15,000 samples. Using the decision tree with 3,200 samples, the most 
numbers of malware is the SMS category. However, when using decision tree with 
15,000 samples, Adware is the category with the most number of malware samples. 

Table 5.  Malware classification results of each algorithm.  

Label 
  3,200 Samples 15,000 Samples 

RF DT XGB RF DT XGB 
Adware 0 14 0 0 30 0 
Backdoor 0 0 0 0 0 0 
Banker 2 6 2 1 2 2 
Benign 383 305 381 387 350 384 
Dropper 0 3 0 0 0 0 
File Infector 0 0 0 0 0 0 
PUA 0 8 0 0 0 3 
Ransomware 0 3 0 0 0 0 
Riskware 4 0 0 1 5 0 
SMS 0 49 0 0 0 0 
Scareware 0 1 2 0 1 0 
Spy 0 0 0 0 0 0 
Trojan 0 0 4 0 1 0 
TOTAL (Malware) 6 84 8 2 39 5 

 
We then verified our malware detection results by comparing with the APK 

scanning results with VirusTotal [6], a popular online malware-scanning website 
containing results from 62-65 security vendors. However, from 389 applications, 
there are 37 APK files we could not upload to VirusTotal due to their excessive size. 



Therefore, we could verify only 352 applications. We counted an application as 
malware if one or more security vendor on VirusTotal detected the malware. Table 6 
summarizes our machine learning results and VirusTotal results. Results from 
VirusTotal stated that 57.33% of the targets are malware. However, the highest 
percentage of malware from our machine learning results is only 21.59%, when using 
the decision tree algorithm with 3,200 samples.  

Table 6.  Results of the experiment and VirusTotal.  

Label VirusTotal 
3,200 Samples 15,000 Samples 

RF DT XGB RF DT XGB 
Benign 129 383 305 381 387 350 384 
Malware 223 6 84 8 2 39 5 
Malware Percentage 57.33% 1.54% 21.59% 2.06% 0.51% 10.03% 1.29% 

Table 7 compares the percentage of the detection when compares the results from 
our machine learning (ML) to the VirusTotal. According to Table 7, the Random 
Forest and the XGBoost algorithm when using 15,000 samples could detect the 
highest percentage of benign applications with 99.22%. On the other hand, the 
decision tree algorithm with 3,200 samples could detect the highest percentage of 
malware applications with 22.87%.  

Table 7.  Comparison and percentage of the results and VirusTotal.  

Label 
3,200 Samples 15,000 Samples 

RF DT XGB RF DT XGB 
ML Result = Benign 
VirusTotal = Benign 

124/129 
(96.12%) 

101/129 
(78.29%) 

123/129 
(95.35%) 

128/129 
(99.22%) 

122/129 
(94.57%) 

128/129 
(99.22%) 

ML Result = Benign 
VirusTotal = Malware 

222/223 
(99.55%) 

172/223 
(77.13%) 

221/223 
(99.10%) 

222/223 
(99.55%) 

202/223 
(90.58%) 

222/223 
(99.55%) 

ML Result = Malware 
VirusTotal = Benign 

5/129 
(3.88%) 

28/129 
(21.71%) 

6/129 
(4.65%) 

1/129 
(0.78%) 

7/129 
(5.43%) 

1/129 
(0.78%) 

ML Result = Malware 
VirusTotal = Malware 

1/223 
(0.45%) 

51/223 
(22.87%) 

2/223 
(0.90%) 

1/223 
(0.45%) 

21/223 
(9.42%) 

1/223 
(0.45%) 

5   Conclusion and Discussions 

Installing applications from third-party stores comes with security risks. Users do 
not know whether games on third-party Android application stores are benign, 
repackaged, or malicious. Therefore, we proposed a method to detect the repackaged 
applications from the self-proclaimed original games. We found that 93 applications 
are repackaged applications, which is 47.45% of the self-proclaimed original games. 
Then, we detected and categorized repackaged applications and mod versions of 



games whether they were malicious by using three machine learning techniques 
including Random Forest, Decision Tree, and XGBoost with the CCCS-CIC-AndMal-
2020 Android malware dataset. We also used VirusTotal for the result verification. 
The Random Forest algorithm has the highest accuracy and F1-score at 94.78% and 
94.83%, using 15,000 samples, respectively. The decision tree algorithm detected the 
most numbers of malware which is 84 from 389 application or 21.59%. However, 
VirusTotal detected 223 malwares from 389 targets, which is 57.33%. The decision 
tree with 3,200 samples has the highest percentage of malware detection which is 
22.87% when comparing to the VirusTotal detection results. However as mentioned 
earlier, VirusTotal uses the scanning results from around 62-65 security vendors, but 
among our total of 223 applications identified as malware by VirusTotal, 138 
applications or around 61.88% of them are detected as malware by only 1-2 virus 
security vendors. Therefore, some results from VirusTotal may be false positives and 
need further investigation. For the future work, to increase the accuracy and 
performance of this research, we should also use the dynamic analysis technique. 
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