
Detecting Malicious Android Game Applications on
Third-Party Stores using Machine Learning

Thanaporn Sanamontre1, Vasaka Visoottiviseth1, and Chaiyong Ragkhitwetsagul1

1Faculty of Information and Communication Technology,
 Mahidol University, Nakhon Pathom, Thailand

thanaporn.sa4@student.mahidol.edu, vasaka.vis@mahidol.edu,
chaiyong.rag@mahidol.edu

Abstract. Due to Android's flexibility in installing applications, it is one of the
most popular mobile operating systems. Some Android users install
applications from third-party stores even though they have the official
application store, Google Play. These third-party stores usually have the mod
version and the self-proclaimed original applications, which can be repackaged
applications. Applications on these third-party stores can introduce security
risks because of the non-transparent alteration and uploading processes. In this
research, we inspect 492 Android applications from ten third-party stores for
repackaged applications using information of APK files and a token-based code
clone detection technique. We also classify repackaged applications as benign
or malicious and categorize malicious applications into twelve malware
categories. For the malware classification, we use machine learning techniques,
including Random Forest, Decision Tree, and XGBoost, with the CCCS-CIC-
AndMal-2020 Android malware dataset. Finally, we compare the results with
VirusTotal, a well-known malware scanning website.

Keywords: Android Security, Android Malware Detection, Repackaged
Applications, Machine Learning

1 Introduction

Android OS has the most market share in the mobile OS from the first and second
quarter of 2023 [1]. Based on Statista [2], The application category Android users
downloaded the most is the game category. Usually, users download game
applications from Google Play, the official application store for Android devices. To
protect users from malicious applications, Google Play has a feature called Google
Play Protect [3], which automatically detects and protects Android devices from
potentially harmful applications from both Google Play itself and from other sources.
However, some people download Android applications from untrusted sources
because the applications are not available on Google Play or are regionally restricted,
or they need to use the other version of applications. Unfortunately, downloading
games from third-party stores poses security risks due to their non-transparent
alteration and uploading processes and lack of security features. Malicious actors can
repackage applications, turn them into malware, and trick users to install these altered

malicious applications. Installing them can lead to malicious activities, such as
collecting sensitive data without user consent, stealing users' credentials, injecting
hidden malware, adware, or backdoor, and compromising and harming the devices.
Therefore, detecting these malicious applications from third-party stores is essential.

In this paper, we inspect ten selected third-party stores and their game applications
including the self-proclaimed original and the mod versions of games. Regarding the
self-proclaimed original game applications, we investigate whether they are
repackaged applications by comparing hash values, a token-based code clone
detection, and other attributes of the APK files. Next, we classify and categorize both
repackaged and mod versions of game applications into twelve malware categories
using machine learning techniques, including Random Forest, Decision Tree, and
XGBoost, with the CCCS-CIC-AndMal-2020 Android malware dataset [4][5].

The contributions of this paper are as follows.
• We inspect a total of 557 selected game applications: 65 original games from

Google Play and 492 games from selected third-party stores. Among 492
applications, there are 196 self-proclaimed original applications, which we
investigate whether they are repackaged.

• We use machine learning techniques with a recent Android malware dataset to
classify altered game applications, including the repackaged version and mod
versions of games, whether they are benign or malicious applications. Malicious
applications are classified into twelve categories based on malware characteristics.

• We compare the results with VirusTotal [6], a famous malware scanning website.
This research paper's outlines are as follows. Section 2 describes the background

and related works. The proposed work details are in Section 3. Section 4 shows the
experiments and results. Lastly, we conclude and discuss our findings in Section 5.

2 Background and Related Work

This section provides the definitions, the background, and the related work.

2.1 Types of Altered Android Game Applications

On third-party Android application stores, there are games stating they are the
same as the original ones on Google Play and altered games. Some modifications are
with malicious intentions, while some of them are not. The alteration processes of
applications affect their appearance, source code, functionalities, and behaviors. There
are two categories of altered applications based on owners' authorization. Authorized
altered applications have the owners' approval, such as games with updates and UI
improvement. However, most application alterations do not have the proper
authorization from the owners and violate the copyrights and distribution rights.
Games are modified for some reasons, for example, accessing the premium features
without paying, using the advertisement-free applications, and cheating the games by
gaining the advantage against them. Examples of altered game applications are
cracked games, repackaged applications, and mod versions of applications. Below are
the definitions of the repackaged applications and the mod versions of applications.

• Repackaged Applications

Third-party developers decompile an original APK file, do unauthorized alteration,
recompile, repackage it into a Repackaged Application, and distribute it on third-party
stores. These repackaged applications have significant security risks because the
alteration usually contains malicious intents. Malicious actors use these applications'
appearance and functionalities as baits to trick users to download and install them. On
third-party stores, applications claiming they are the same as the original ones on
Google Play are called "Self-Proclaimed Original Application." Therefore, users will
not know if they download "Repackaged Applications."

• Mod Version of Game Applications

Mod versions of game applications are created by enthusiasts and third-party
developers who modify the original applications and then distribute them to third-
party stores. They may modify the games to enhance gameplay, add new features, or
cheat games. Even though mod versions of games are usually not modified with
malicious intent, using applications from untrusted sources always carries security
risks. Third-party stores always tell users that the games are the "Mod Versions" in
their descriptions. Thus, users always know whether they install the mod versions.

2.2 CCFinderSW

Semura et al. [7][8] proposed CCFinderSW, a token-based code clone detection tool.
CCFinderSW uses a lexical analysis mechanism. Users can select programming
languages such as Python, Java, and Ruby by selecting options for comments and
reserved words of each language. CCFinderSW can detect Type-1 and Type-2 clone
pairs. According to Roy and Cordy [9], Type-1 pairs are pairs with identical code
fragments, while Type-2 pairs are similar to Type-1, but the variable names, values,
and identifiers are changed.

2.3 Related Work

To prevent downloading malicious applications, some researchers proposed
approaches for detecting Android malware. Chen et al. [10] proposed an Android
malware detection with text-based classification and static analysis technique. After
extracting static features, they converted them into word vectors for text classification
using the BiLSTM processing model. They also used the DPCNN and Fasttext
algorithms for performance comparison. However, the BiLiSTM has the highest
accuracy score at 97.47% and the F1-score at 97.43%. Jaiswal et al. [11] provided a
study of differences between benign, malicious, and clone applications based on
system calls and behaviors. They also proposed a gaming malware detection system
using dynamic analysis techniques. They found that some system calls, such as stat64
and llseek, are more frequently called in malicious games. Moreover, some system
calls that are not in the original games, such as stat64, pread63, and brk, but appear in
the clone ones. The clone applications also ask for high-level permissions that the
original ones do not require.

Several papers use the CCCS-CIC-AndMal-2020 dataset for Android malware
detection. DIDroid [12] provided a detection system using 2D images with a deep
learning algorithm based on CNN. They extracted static features, created vectors,
selected the features, converted them into 2D gray images, and used the convolutional
layers for training and testing models. DIDroid has an accuracy of 93.36%. The other
provided work regarding this dataset is the EntropLyzer. The EntropLyzer [13] is an
entropy-based detection system using dynamic features. Its entropy algorithm is
Shannon entropy. They used Naive Bayes, Support Vector Machine, Random Forest,
and Decision Tree algorithms for training the models. They analyzed and compared
the entropy values of their features before and after rebooting and visualized their
behavioral changes. They found that Decision Tree with the F1-score of 98.3% has
the best performance for classifying malware categories.

3 Proposed Work

This section provides an explanation of the workflow, including the repackaged
application detection and the malware detection and categorization.

3.1 List of Target Applications

We select top 200 free Android game applications for this study. We collected the
Android games from the following ten third-party stores based on their popularity:
• APKAward
• APKCombo
• APKMody
• APKPure

• APKVision
• HappyMod
• LiteAPKs
• LuckyModAPK

• ModYolo
• PlayMods

The following are the criteria for selecting the target applications.
• Original games must have at least five third-party stores with the same versions.
• If the third-party stores have both self-proclaimed original and mod versions of

applications, we will select the mod versions as our target.
• If there are many mod versions of an application, we will select the mod version

with the latest updated date as our target.
• We will filter out the selected applications with the updated date and versions

conflicted with the original ones on Google Play.

Table 1. Numbers of target applications in each category.

 Amount Description
Original Applications 65 Filtered games from the top 200 free game applications

on Google Play
Self-Proclaimed
Original Applications

196 Applications on third-party stores which claimed that
they are the same as the original ones on Google Play

Mod Version of
Applications

296 Modified games on third-party stores for adding
features and cheating games.

Total 557

After the collection and filtering, we retrieve 557 games for this study. We classify
target game applications into three categories: original, self-proclaimed original, and
mod versions. Table 1 shows the amount of target applications in each category.

3.2 Analysis Workflow

We propose an approach for inspecting the self-proclaimed original games whether
they are repackaged. Then, we classify and categorize mod versions and the
repackaged games whether they are in one of twelve malware categories or benign.
Therefore, our proposed approach consists of two main processes: (1) the repackaged
application detection and (2) the malicious application detection and categorization.
Fig. 1 shows the workflow of the proposed approach in detail. The analysis steps of
the proposed approach are as follows.
1. Download and decompile the target applications.
2. Select a self-proclaimed original game and pair it with the original one for

repackaged application detection processes.
3. Conduct the repackaged application detection on the pair.
4. Sort the result from the experiment. We will store the repackaged games for the

malicious applications detection and categorization section. However, if the game
is not a repackaged, record it as a "Benign Original Application."

5. If any self-proclaimed original games are remained, select a new one and repeat the
process. If not, go to the next step.

6. Conduct malicious application detection and categorization on the repackaged and
mod versions of games.

7. Sort the result from the experiment. If the application is benign, record it as a
"Benign Application" with its type. However, if the application is malicious,
classify it as a "Malicious Application" with its malware category.

Fig. 1. Analysis workflow of the proposed approach

(a) (b)

Fig. 2 (a) Inputs and Outputs of the system (b) Malicious Application Output

As shown in Fig. 2 (a), there are three possible inputs and four main possible

outputs. Three inputs include the original applications from Google Play, the self-
proclaimed original, and the mod versions of games. On the other hand, four main
possible outputs are as follows:
• Benign Original Applications (The same as the original games)
• Benign Repackaged Applications (The repackaged games but not malicious)
• Benign Mod Version Applications (The mod versions of games but not malicious)
• Malicious Applications (The malicious games with possible twelve categories)

In case of malicious applications, they are categorized into one of twelve malware
categories as depicted in Fig. 2(b).

3.3 Repackaged Application Detection

This section explains the method used to detect repackaged applications from the self-
proclaimed original games in detail. Fig. 3 illustrates the workflow of the repackaged
application detection process. The following steps are how the process works.
1. Compute and compare the APK files' hash values.
2. Get and compare the number of files in both APK files.
3. Get and compare the names of all files in both APK files. We store all files with

different names and additional files, except files for Android Application Binary
Interface (ABI).

4. Compute and compare all file hash values in both APK files. We store all files with
different hash values for the next step.

5. Conduct token-based code clone detection using CCFinderSW [7][8] on the JAVA
files with different hash values.
The following are conditions for reporting that a self-proclaimed original

application is a "Repackaged Application."
1. The APK files’ hash values, numbers of files, and filename are not the same.

Moreover, not all additional and different files are for Android ABI.
2. There are files having different hash values when comparing with the original one.

On the other hand, the conditions for approving that a self-proclaimed original
game application is a "Benign Original Application” are as follows.

1. Their APK files’ hashes, numbers, and names of files, and each file’s hash values
are the same compared to the original APK file.

2. Even though the APK files' hashes, numbers of files, and filenames are not the
same, all additional and different files are for Android ABI, and all files’ hash
values are the same as their original ones.

Fig. 3 Workflow of the Repackaged Application Detection Process

3.4 Malicious Application Detection and Categorization

This section presents the method used for detecting the malicious repackaged and
mod versions of games and categorizing them into twelve categories. We use codes
and unique lists provided by AndroidAppLyzer [14] for feature extraction and the
CCCS-CIC-AndMal-2020 Android malware dataset [4][5] for training the machine
learning models. Characteristics of this dataset are as shown in Table 2. The machine
learning algorithms include Random Forest, Decision Tree, and XGBoost.

Table 2. Number of malware samples in the CCCS-CIC-AndMal-2020 dataset.

Malware Categories Numbers of Families Numbers of Samples
Adware 48 47,210
Backdoor 11 1,538
File Infector 5 669
No Category - 2,296
PUA 8 2,051
Ransomware 8 6,202
Riskware 21 97,349
Scareware 3 1,556
Trojan 45 13,559
Trojan-Banker 11 887
Trojan-Dropper 9 2,302
Trojan-SMS 11 3,125

 Note that this dataset also contains 200k benign Android applications. The following
steps are the workflow of the malicious application detection and categorization
process.

1. Extract and create vectors of the APK file’s 9,503 static features. There are 9,491
features from the provided unique lists, including permissions, actions, and
categories. The rest are the additional information on the APK file as listed below.
• Numbers of Icons
• Numbers of Audio
• Numbers of Videos
• Size of the App
• Numbers of Activities
• Numbers of Meta-data

• Numbers of Services
• Numbers of Permissions
• Numbers of Categories
• Numbers of Actions
• Numbers of Providers
• Numbers of Receivers

2. Train the machine learning models with the CCCS-CIC-AndMal-2020 Android
malware dataset. However as from Table 2, our number of samplings in each
category of dataset is unbalanced. Therefore, for training we data-sampled each
label in the dataset into 3,200 and 15,000 samples for training the model.

3. Use the models for malware detection and categorization on the target applications.

4 Experimental Results

4.1 Hardware and Software Specifications

We used Oracle VM VirtualBox version 7.0.4 to virtualize Kali Linux version 2023.2
VM with 2-core CPU and 8-GB RAM for conducting the repackaged application
detection. Kali Linux has GNU bash 5.2.15, Python 3.10.9, JADX 1.4.7, and
CCFinderSW 1.0 installed. For malicious application detection and categorization, we
used Katana GF66 11 UG, CPU 8 cores, and RAM 16 GB with Windows 10.

4.2 Repackaged Application Detection

We experimented on the pair of a self-proclaimed original game and its original one
on Kali Linux. We used JADX tool to decompile the APK files, SHA256 for the hash
algorithm, and CCFinderSW to inspect Java files with different hash values from their
original ones. The information of APK files used in the experiment are (1) The hash
value of APK file, (2) numbers of files in each APK file, (3) filenames, and (4) hash
values of each file. The expected outputs are the "Benign Original Application" and
the "Repackaged Application." However, there is the "Exceptional Application,"
which are applications that has the same numbers of files, the same filenames, the
same hash values of each file, but the hash values of APK files are not the same.

We conducted experiments on 196 self-proclaimed original games from third-party
stores with 65 original games from Google Play. Table 3 shows results based on each
third-party repository. We found 93 repackaged applications out of 196 self-
proclaimed original games, which is 47.45%. We also found 19 exceptional
applications. Only 84 applications are benign original applications. The store with the
highest percentage of repackage applications is ModYolo which has 100%, while the
store with the lowest percentage of application is LiteAPKs which has 33.33%.

Fig. 4 depicts the results of the repackaged application detection in the pie chart. In
conclusion, there are 93 repackaged applications out of 492 targets from third-party

stores, which is 18.90%. The benign original and the exceptional applications are
17.07% and 3.86% out of the targets, respectively.

Table 3. Repackaged applications on each third-party repository.

Third-Party
Stores

Self-
Proclaimed

Original
Applications

Repackaged
Applications

Benign
Original

Applications

Exceptional
Applications

Repackaged
Application
Percentage

APKAward 9 7 1 1 77.78%
APKCombo 56 24 28 4 42.86%
APKMody - - - - 0.00%
APKPure 65 22 35 8 33.85%
APKVision 11 6 2 3 54.55%
HappyMod 14 6 6 2 42.86%
LiteAPKs 9 3 5 1 33.33%
LuckyModAPK - - - - 0.00%
ModYolo 6 6 0 0 100.00%
PlayMods 26 19 7 0 73.08%
TOTAL 196 93 84 19 47.45%
* APKMody and LuckyModAPK do not have any self-proclaimed original games.

Fig. 4 Target applications after Repackaged Application Detection

4.3 Malicious Application Detection and Categorization

We experimented on 389 game applications, 93 of which are repackaged games and
296 of which are mod versions of games. Regarding extracting static features, we
used the AndroidAppLyzer’s code and unique lists, including permissions, actions,
and categories lists [14]. Then, we used machine learning models including Random
Forest (RF), Decision Tree (DT), and XGBoost (XGB) algorithms that are trained on
the CCCS-CIC-AndMal-2020 Android malware dataset to classify them as malware
or benign applications. For training the model, to balance the dataset from each
category, we data-sampled each label in the dataset into 3,200 and 15,000 samples,
respectively. Table 4 shows each algorithm and its performance. Criteria for
performance evaluation of each algorithm are the accuracy and the F1-score. The

algorithm with the highest accuracy and F1-score for both 3,200 and 15,000 samples
is the Random Forest algorithm. It has accuracy and F1-score of 91.80% and 91.85%
for 3,200 samples. Regarding 15,000 samples, it has accuracy and F1-score of 94.78%
and 94.83%. Using 15,000 samples resulted in higher accuracy and F1-score, but all
three algorithms have similar performances.

Table 4. Algorithms and their performances.

ML Algorithms
3,200 Samples 15,000 Samples

Accuracy F1-Score Accuracy F1-Score
Random Forest (RF) 91.80% 91.85% 94.78% 94.83%
Decision Tree (DT) 90.29% 90.31% 93.98% 94.03%
XGBoost (XGB) 90.99% 91.04% 93.12% 93.17%

We then tested 389 game applications with the trained models. Table 5 shows the
malware classification results of each machine learning algorithm. There are 13
outputs: one benign and twelve malware categories. The decision tree algorithm
detected the most numbers of malware, with 84 malwares for 3,200 samples and 39
malwares for 15,000 samples. Using the decision tree with 3,200 samples, the most
numbers of malware is the SMS category. However, when using decision tree with
15,000 samples, Adware is the category with the most number of malware samples.

Table 5. Malware classification results of each algorithm.

Label
 3,200 Samples 15,000 Samples

RF DT XGB RF DT XGB
Adware 0 14 0 0 30 0
Backdoor 0 0 0 0 0 0
Banker 2 6 2 1 2 2
Benign 383 305 381 387 350 384
Dropper 0 3 0 0 0 0
File Infector 0 0 0 0 0 0
PUA 0 8 0 0 0 3
Ransomware 0 3 0 0 0 0
Riskware 4 0 0 1 5 0
SMS 0 49 0 0 0 0
Scareware 0 1 2 0 1 0
Spy 0 0 0 0 0 0
Trojan 0 0 4 0 1 0
TOTAL (Malware) 6 84 8 2 39 5

We then verified our malware detection results by comparing with the APK

scanning results with VirusTotal [6], a popular online malware-scanning website
containing results from 62-65 security vendors. However, from 389 applications,
there are 37 APK files we could not upload to VirusTotal due to their excessive size.

Therefore, we could verify only 352 applications. We counted an application as
malware if one or more security vendor on VirusTotal detected the malware. Table 6
summarizes our machine learning results and VirusTotal results. Results from
VirusTotal stated that 57.33% of the targets are malware. However, the highest
percentage of malware from our machine learning results is only 21.59%, when using
the decision tree algorithm with 3,200 samples.

Table 6. Results of the experiment and VirusTotal.

Label VirusTotal
3,200 Samples 15,000 Samples

RF DT XGB RF DT XGB
Benign 129 383 305 381 387 350 384
Malware 223 6 84 8 2 39 5
Malware Percentage 57.33% 1.54% 21.59% 2.06% 0.51% 10.03% 1.29%

Table 7 compares the percentage of the detection when compares the results from
our machine learning (ML) to the VirusTotal. According to Table 7, the Random
Forest and the XGBoost algorithm when using 15,000 samples could detect the
highest percentage of benign applications with 99.22%. On the other hand, the
decision tree algorithm with 3,200 samples could detect the highest percentage of
malware applications with 22.87%.

Table 7. Comparison and percentage of the results and VirusTotal.

Label
3,200 Samples 15,000 Samples

RF DT XGB RF DT XGB
ML Result = Benign
VirusTotal = Benign

124/129
(96.12%)

101/129
(78.29%)

123/129
(95.35%)

128/129
(99.22%)

122/129
(94.57%)

128/129
(99.22%)

ML Result = Benign
VirusTotal = Malware

222/223
(99.55%)

172/223
(77.13%)

221/223
(99.10%)

222/223
(99.55%)

202/223
(90.58%)

222/223
(99.55%)

ML Result = Malware
VirusTotal = Benign

5/129
(3.88%)

28/129
(21.71%)

6/129
(4.65%)

1/129
(0.78%)

7/129
(5.43%)

1/129
(0.78%)

ML Result = Malware
VirusTotal = Malware

1/223
(0.45%)

51/223
(22.87%)

2/223
(0.90%)

1/223
(0.45%)

21/223
(9.42%)

1/223
(0.45%)

5 Conclusion and Discussions

Installing applications from third-party stores comes with security risks. Users do
not know whether games on third-party Android application stores are benign,
repackaged, or malicious. Therefore, we proposed a method to detect the repackaged
applications from the self-proclaimed original games. We found that 93 applications
are repackaged applications, which is 47.45% of the self-proclaimed original games.
Then, we detected and categorized repackaged applications and mod versions of

games whether they were malicious by using three machine learning techniques
including Random Forest, Decision Tree, and XGBoost with the CCCS-CIC-AndMal-
2020 Android malware dataset. We also used VirusTotal for the result verification.
The Random Forest algorithm has the highest accuracy and F1-score at 94.78% and
94.83%, using 15,000 samples, respectively. The decision tree algorithm detected the
most numbers of malware which is 84 from 389 application or 21.59%. However,
VirusTotal detected 223 malwares from 389 targets, which is 57.33%. The decision
tree with 3,200 samples has the highest percentage of malware detection which is
22.87% when comparing to the VirusTotal detection results. However as mentioned
earlier, VirusTotal uses the scanning results from around 62-65 security vendors, but
among our total of 223 applications identified as malware by VirusTotal, 138
applications or around 61.88% of them are detected as malware by only 1-2 virus
security vendors. Therefore, some results from VirusTotal may be false positives and
need further investigation. For the future work, to increase the accuracy and
performance of this research, we should also use the dynamic analysis technique.

References
1. Statcounter, Mobile Operating System Market Share Worldwide.

https://gs.statcounter.com/os-market-share/mobile/ worldwide/ #monthly-202301-202306
2. Statcounter, Number of mobile app downloads in the Google Play Store in 1st quarter 2021

and 1st quarter 2022, by category. https://www.statista.com/statistics/1331430/google-play-
app-downloads-by-category

3. Google Play, Use Google Play Protect to help keep your apps safe and your data private.
https://support.google.com/ android/answer/2812853?hl=en

4. University of New Brunswick, CCCS-CIC-AndMal-2020.
https://www.unb.ca/cic/datasets/andmal2020.html

5. D'hooge, L.: CCCS-CIC-AndMal-2020.
https://www.kaggle.com/datasets/dhoogla/cccscicandmal2020

6. VirusTotal. https://www.virustotal.com/gui/home
7. Semura, Y., Yoshida, N., Choi, E., Inoue, K.: CCFinderSW: Clone Detection Tool with

Flexible Multilingual Tokenization. In: 2017 24th Asia-Pacific Software Engineering
Conference (APSEC) (2017) 654-659

8. Semura, Y.: CCFinderSW. https://github.com/YuichiSemura/CCFinderSW
9. Roy, C.K., Cordy, J.R.: A Survey on Software Clone Detection Research. In: School of

Computing TR 2007-541 (2007)
10.Chen, M., Zhou, Q., Wang, K., Zeng, Z.: An Android Malware Detection Method Using

Deep Learning based on Multi-features. In: 2022 IEEE International Conference on
Artificial Intelligence and Computer Applications (ICAICA) (2022) 187-190

11.Jaiswal, M., Malik, Y., Jaafar, F.: Android gaming malware detection using system call
analysis. In: 2018 6th International Symposium on Digital Forensic and Security (ISDFS)
(2018) 1-5

12.Rahali, A., Lashkari, A.H., Kaur, G., Taheri, F., Gagnon, F., Massicotte, F.: DIDroid:
Android Malware Classification and Characterization Using Deep Image Learning. In: 2020
10th International Conference on Communication and Network Security (ICCNS '20)
(2020) 70-82

13.Keyes, D.S., Li, B., Kaur, G., Lashkari, A.H., Gagnon, F., Massicotte, F.: EntropLyzer:
Android Malware Classification and Characterization Using Entropy Analysis of Dynamic
Characteristics. In: 2021 Reconciling Data Analytics, Automation, Privacy, and Security: A
Big Data Challenge (RDAAPS) (2021) 1-12

14.Lashkari, A.H.: AndroidAppLyzer. https://github.com/ahlashkari/AndroidAppLyzer

