
SEE TO BELIEVE: 
Using Visualization to Motivate 
Updating Third-party Dependencies

C. Ragkhitwetsagul, V. Jarukitpipat, M. Choetkiertikul, K. Chhun, W. 
Wanprasert, T. Sunetnanta, Faculty of ICT, Mahidol University, Thailand

JCSSE 2024, 19-21 July 2024

Raula Gaikovina Kula, NAIST, Japan



THIRD-PARTY DEPENDENCIES
A dependency is additional code that a programmer wants to call.

Adding a dependency avoids repeating work already done: designing, writing, 
testing, debugging, and maintaining a specific unit of code. 

Cox, R. (2019). Surviving Software Dependencies. Queue, 17(2), 24–47 





Your 
Program

(P)
Package A

TWO TYPES OF DEPENDENCIES

Direct dependency: 

Cox, R. (2019). Surviving Software Dependencies. Queue, 17(2), 24–47 

Transitive dependency:

Your 
Program 

(P)
Package A Package A

(P → A)

(P → A → B)



NPM ECOSYSTEM

Node.js dependency manager NPM 
(Node Package Manager) provides 
access to more than 750,000 
packages

Number of transitive dependencies 
per one direct dependency is 80.

Zimmermann et al., (2019). Small world with high risks: A study of security threats in the NPM 

ecosystem. Proceedings of the 28th USENIX Security Symposium, 995–1010.



DEPENDENCY VULNERABILITIES
The usage of third-party dependencies may lead to security vulnerabilities.

GitHub Advisory Database (https://github.com/advisories) contains a curated 

list of security vulnerabilities



GITHUB ADVISORY DATABASE



EXISTING TOOL 
SUPPORT



DEPENDABOT



NPM AUDIT



We posit that, given a visual representation, the 
developers may re-prioritize their decisions 

to update the dependencies.



V-ACHILLES

Jarukitpipat, V., Chhun, K., Wanprasert, W., Choetkiertikul, M., Sunetnanta, T., Kula, R. G., 

Chinthanet, B., Ishio, T., & Matsumoto, K. (2022). 

V-Achilles: An Interactive Visualization of Transitive Security Vulnerabilities. 
The 37th IEEE/ACM International Conference on Automated Software Engineering (ASE).



DEPENDENCY GRAPH VISUALIZATION





RESEARCH QUESTION

To what extent does our visualization influence 
the developer’s decision to update?



EMPIRICAL STUDY



We compare V-Achilles to Dependabot and npm audit, using two tasks

Task 1: Navigating dependencies with complex graphs

Task 2: Navigating transitive dependencies with vulnerabilities

TASKS



TASK 1: NAVIGATING DEPENDENCIES WITH 
COMPLEX GRAPHS



TASK 2: NAVIGATING TRANSITIVE DEPENDENCIES 
WITH VULNERABILITIES



PARTICIPANTS’ 
DEMOGRAPHIC 
AND TOOLS 
ASSIGNMENT 



Control Group

Experiment Group

Dependabot

EXPERIMENTAL SETTINGS

npm audit

Task 1

Task 2

Dependabot V-Achilles

Task 1

Task 2

Compare



RESULTS



TASK 1: 
NAVIGATING 
DEPENDENCIES 
WITH COMPLEX 
GRAPHS



PARTICIPANTS FEEDBACK

“I added more emphasis on high severity and complex dependency 

because of its complexity”.

“[After seeing V-Achilles’s visualization, I can see the] number of 

transitive dependencies in each library. If the number is high, it 

may interrupt other libraries once updated.”



TASK 2: 
NAVIGATING 
TRANSITIVE 
DEPENDENCIES 
WITH 
VULNERABILITIES



PARTICIPANTS FEEDBACK

“[After seeing the visualization] I checked their severity and the 

dependency whether direct or not. netmask and base64-url are high 

severity but netmask is direct dependency. I think direct dependency 

is easier to fix than transitive dependency, then I think it is the highest 

priority than others.”.



SEE TO BELIEVE: USING VISUALIZATION TO MOTIVATE 
UPDATING THIRD-PARTY DEPENDENCIES

We study the effectiveness of a dependency graph visualization (DGV) 

to motivate developers to update vulnerable dependencies.

7 out of the 10 participants who used our visualization changed their 

prioritization in the two tasks of a project with vulnerable complex 

dependencies and a project with vulnerable direct and indirect 

dependencies.


