
Noname manuscript No.
(will be inserted by the editor)

A Comparison of Code Similarity Analysers

Chaiyong Ragkhitwetsagul · Jens Krinke ·

David Clark

Received: date / Accepted: date

Abstract Copying and pasting of source code is a common activity in software engineer-
ing. Often, the code is not copied as it is and it may be modified for various purposes;
e.g. refactoring, bug fixing, or even software plagiarism. These code modifications could
affect the performance of code similarity analysers including code clone and plagiarism
detectors to some certain degree. We are interested in two types of code modification in
this study: pervasive modifications, i.e. transformations that may have a global effect, and
local modifications, i.e. code changes that are contained in a single method or code block.
We evaluate 30 code similarity detection techniques and tools using five experimental sce-
narios for Java source code. These are (1) pervasively modified code, created with tools for
source code and bytecode obfuscation, and boiler-plate code, (2) source code normalisation
through compilation and decompilation using different decompilers, (3) reuse of optimal
configurations over different data sets, (4) tool evaluation using ranked-based measures, and
(5) local + global code modifications. Our experimental results show that in the presence of
pervasive modifications, some of the general textual similarity measures can offer similar
performance to specialised code similarity tools, while in the presence of boiler-plate code,
highly specialised source code similarity detection techniques and tools outperform textual
similarity measures. Our study strongly validates the use of compilation/decompilation as a
normalisation technique. Its use reduced false classifications to zero for three of the tools.
Moreover, we demonstrate that optimal configurations are very sensitive to a specific data set.
After directly applying optimal configurations derived from one data set to another, the tools
perform poorly on the new data set. The code similarity analysers are thoroughly evaluated
not only based on several well-known pair-based and query-based error measures but also on
each specific type of pervasive code modification. This broad, thorough study is the largest
in existence and potentially an invaluable guide for future users of similarity detection in
source code.

Keywords Empirical study · Code similarity measurement · Clone detection · Plagiarism
detection · Parameter optimisation

Chaiyong Ragkhitwetsagul (�), Jens Krinke, David Clark
Department of Computer Science, University College London, UK
Tel.: +44 (0)20 7679, Fax: +44 (0)20 7387 1397
E-mail: cragkhit@gmail.com, {j.krinke, david.clark}@ucl.ac.uk

2 Chaiyong Ragkhitwetsagul et al.

1 Introduction

Assessing source code similarity is a fundamental activity in software engineering and it
has many applications. These include clone detection, the problem of locating duplicated
code fragments; plagiarism detection; software copyright infringement; and code search, in
which developers search for similar implementations.While that list covers themore common
applications, similarity assessment is used inmany other areas, too. Examples include finding
similar bug fixes (Hartmann et al, 2010), identifying cross-cutting concerns (Bruntink et al,
2005), program comprehension (Maletic andMarcus, 2001), code recommendation (Holmes
and Murphy, 2005), and example extraction (Moreno et al, 2015).

1.1 Motivation

The assessment of source code similarity has a co-evolutionary relationship with the mod-
ifications made to the code at the point of its creation. Although there is a large number of
clone detectors, plagiarism detectors, and code similarity detectors invented in the research
community, there are relatively few studies that compare and evaluate their performances.
Bellon et al (2007) proposed a framework for comparing and evaluating 6 clone detectors,
Roy et al (2009) evaluated a large set of clone detection tools but only based on results
obtained from the tools’ published papers, Hage et al (2010) compare five plagiarism detec-
tors against 17 code modifications, Burd and Bailey (2002) compare five clone detectors for
preventive maintenance tasks, Biegel et al (2011) compare three code similarity measures to
identify code that needs refactoring, Svajlenko and Roy (2016) developed and used a clone
evaluation framework called BigCloneEval to evaluate 10 state-of-the-art clone detectors.
Although these studies cover various goals of tool evaluation and cover the different types
of code modification found in the chosen data sets, they suffer from two limitations: (1) the
selected tools are limited to only a subset of clone or plagiarism detectors, and (2) the results
are based on different data sets, so one cannot compare a tool’s performance from one study
to another tool’s from another study. To the best of our knowledge, there is no study that
performs a comprehensive and fair comparison of widely-used code similarity analysers
based on the same data sets.

In this paper,wefill the gap by presenting the largest extant study on source code similarity
that covers the widest range of techniques and tools. We study the tools’ performances on
both local and pervasive (global) code modifications usually found in software engineering
activities such as code cloning, software plagiarism, and code refactoring. This study is
motivated by the question:

“When source code is copied and modified, which code similarity detection tech-
niques or tools get the most accurate results?”

To answer this question, we provide a thorough evaluation of the performance of the
current state-of-the-art similarity detection techniques using several error measures. The
aim of this study is to provide a foundation for the appropriate choice of a similarity
detection technique or tool for a given application based on a thorough evaluation of strengths
and weaknesses on source code with local and global modifications. Choosing the wrong
technique or tool with which to measure software similarity or even just choosing the wrong
parameters may have detrimental consequences.

We have selected asmany techniques for source code similarity measurement as possible,
30 in all, covering techniques specifically designed for clone and plagiarism detection, plus

A Comparison of Code Similarity Analysers 3

the normalised compression distance, string matching, and information retrieval. In general,
the selected tools require the optimisation of their parameters as these can affect the tools’
execution behaviours and consequently their results. A previous study regarding parameter
optimisation (Wang et al, 2013) has explored only a small set of clone detectors’ parameters
using search-based techniques. Therefore, while including more tools in this study, we have
also searched through a wider range of configurations for each tool, studied their impact,
and discovered the best configurations for each data set in our experiments. After obtaining
tools’ optimal configurations derived from one data set, we apply them to another data set
and observe if they can be reused effectively.

Clone and plagiarism detection use intermediate representations like token streams or
abstract syntax trees or other transformations like pretty printing or comment removal to
achieve a normalised representation (Roy et al, 2009). We integrated compilation and de-
compilation as a normalisation pre-process step for similarity detection and evaluated its
effectiveness.

1.2 Contributions

This paper makes the following primary contributions:
1. A broad, thorough study of the performance of similarity tools and techniques: We
compare a large range of 30 similarity detection techniques and tools using five experimental
scenarios for Java source code in order to measure the techniques’ performances and observe
their behaviours. We apply several error measures including pair-based and query-based
measures. The results show that, in overall, highly specialised source code similarity detection
techniques and tools can perform better than more general, textual similarity measures.
However, we also observed some situations where compression-based, and textual similarity
tools are recommended over clone and plagiarism detectors.

The results of the evaluation can be used by researchers as guidelines for selecting
techniques and tools appropriate for their problem domain. Our study confirms both that
tool configurations have strong effects on tool performance and that they are sensitive to
particular data sets. Poorly chosen techniques or configurations can severely affect results.
2.Normalisation by decompilation:Our study confirms that compilation and decompilation
as a pre-processing step can normalise pervasively modified source code and can improve
the effectiveness of similarity measurement techniques with statistical significance. Three
of the similarity detection techniques and tools reported no false classifications once such
normalisation was applied.
3. Data set of pervasive code modifications: The generated data set with pervasive modi-
fications used in this study has been created to be challenging for code similarity analysers.
According to the way we constructed the data set, the complete ground truth is known. We
make the data set publicly available so that it can be used in future studies of tool evaluation
and comparison.

Compared to our previous work (Ragkhitwetsagul et al, 2016), we have expanded the
study further as follows. First, we doubled the size of the data set from 5 original Java
classes to 10 classes and re-evaluated the tools. This change made the number of pairwise
comparisons quadratically increase from 2,500 to 10,000. With this expanded data set, we
could better observe the tools’ performances on pervasively modified source code. We found
some differences in the tool rankings using the new data set when compared to the previous
one. Second, besides source code with pervasive modifications, we compared the similarity

4 Chaiyong Ragkhitwetsagul et al.

analysers on an available data set containing reuse of boiler-plate code, and a data set of
boiler-plate code with pervasive modifications. Since boiler-plate code is inherently different
from pervasively modified code and normally found in software development (Kapser and
Godfrey, 2006), the findings give a guideline to choosing the right tools/techniques when
measuring code similarity in the presence of boiler-plate code. Third, we investigated the
effects of reusing optimal configurations from one data set on another data set. Our empirical
results show that the optimal configurations are very sensitive to a specific data set and not
suitable for reuse.

2 Background

2.1 Source Code Modifications

We are interested in two scenarios of code modifications in this study: pervasive code
modifications (global) and boiler-plate code (local). Their definitions are as follows.

Pervasive modifications are code changes that affect the code globally across the whole file
with multiple changes applied one after another. These are code transformations that are
mainly found in the course of software plagiarism when one wants to conceal copied code by
changing their appearance and avoid detection (Daniela et al, 2012). Nevertheless, they also
represent code clones that are repeatedly modified over time during software evolution (Pate
et al, 2013), and source code before and after refactoring activities (Fowler, 2013). However,
our definition of pervasive modifications excludes strong obfuscation (Collberg et al, 1997),
that aims to protect code from reverse engineering by making it difficult or impossible to
understand.

Most clone or plagiarism detection tools and techniques tolerate different degrees of
change and still identify cloned or plagiarised fragments. However, while they usually have
no problem in the presence of local or confined modifications, pervasive modifications that
transform whole files remain a challenge (Roy and Cordy, 2009). For example, in a situation
that multiple methods are merged into a single method due to a code refactoring activity. A
clone detector focusing on method-level clones would not report the code before and after
merging as a clone pair. Moreover, with multiple lexical and structural code changes applied
repeatedly at the same time, resulting source code can be totally different. When one looks at
code before and after applying pervasive modifications, one might not be able to tell that both
originate from the same file. We found that code similarity tools have the same confusion.

We define source code with pervasive modifications to contain a combination of the
following code changes:

1. Lexical changes of formatting, layout modifications (Type I clones), and identifier re-
naming (Type II clones).

2. Structural changes, e.g. if to case or while to for, or insertions or deletions of
statements (Type III clones).

3. Extreme code transformations that preserve source code semantics but change its syntax
(Type IV clones).

Figure 1 shows an example of code before and after applying pervasive modifications. It
is a real-world example of plagiarism from a university’s programming class submission1.

1 https://www.princeton.edu/pr/pub/integrity/pages/plagiarism/

A Comparison of Code Similarity Analysers 5

/* original */
private static int partition(Comparable[] a, int lo, int hi)
{

int i = lo, j = hi+1;
Comparable v = a[lo];
while (true)
{

while (less(a[++i], v)) if (i == hi) break;
while (less(v, a[--j])) if (j == lo) break;
if (i >= j) break;

exch(a, i, j);
}
exch(a, lo, j);
return j;

}

/* plagiarised code */
private static int partition(int[] bob, int left, int right) {

int x = left;
int y = right+1;
for (;;) {

while (less(bob[left], bob[--y]))
if (y == left) break;

while (less(bob[++x], bob[left]))
if (x == right) break;

if (x >= y) break;
swap(bob, y, x);

}
swap(bob, y, left);
return y;

}

Fig. 1: Pervasive modifications found in a programming submission.

Boiler-plate code occurs when developers reuse a code template, usually a function or a code
block, to achieve a particular task. It has been defined as one of the code cloning patterns
by Kapser and Godfrey (2006, 2008). Boiler-plate code can be found when building device
drivers for operating systems (Baxter et al, 1998), developing android applications (Crussell
et al, 2013), and giving programming assignments (Burrows et al, 2007; Schleimer et al,
2003). Boiler-plate code usually contains small codemodifications in order to adapt the boiler-
plate code to a new environment. In contrast to pervasive modifications, the modifications
made to boiler-plate code are usually contained in a function or block. Figure 2 depicts an
example of boiler-plate code used for creating new HTTP connection threads which can be
reused as-is or with minimum changes.

2.2 Code Similarity Measurement

Since the 1970s, myriads of tools have been introduced to measure the similarity of source
code. They are used to tackle problems such as code clone detection, software licensing
violation, and software plagiarism. The tools utilise different approaches to computing the
similarity of two programs. We can classify them into metrics-based, text-based, token-
based, tree-based, and graph-based approaches. Early approaches to detect software sim-
ilarity (Ottenstein, 1976; Donaldson et al, 1981; Grier, 1981; Berghel and Sallach, 1984;
Faidhi and Robinson, 1987) are based on metrics or software measures. One of the early
code similarity detection tools was created by Ottenstein (1976) and was based on Halstead
complexity measures (Halstead, 1977) and was able to discover a plagiarised pair out of 47

6 Chaiyong Ragkhitwetsagul et al.

private void createConnectionThread(int input)
{

data = new HoldSharedData(startTime , password , pwdCounter);

int numOfThreads = input;
int batch = pwdCounter/numOfThreads + 1;
numOfThreads = pwdCounter/batch + 1;
System.out.println("Number of Connection Threads Used=" + numOfThreads);
ConnectionThread[] connThread = new ConnectionThread[numOfThreads];

for(int index = 0; index < numOfThreads; index ++)
{

connThread[index] = new ConnectionThread(url, index, batch, data);
connThread[index].conn();

}
}

Fig. 2: A boiler-plate code to create connection threads.

programs of students registered in a programming class. Unfortunately, the metrics-based
approaches have been found empirically to be less effective in comparison with other, newer
approaches (Kapser and Godfrey, 2003).

Text-based approaches perform similarity checking based on comparing two string se-
quences of source code. They are able to locate exact copies of source code, while usually
susceptible to finding similar code with syntactic and semantic modifications. Some support-
ing techniques are incorporated to handle syntactic changes such as variable renaming (Roy
and Cordy, 2008). There are several code similarity analysers that compute textual similarity.
One of the widely-used string similarity methods is to find a longest common subsequence
(LCS) which is adopted by the NiCad clone detector (Roy and Cordy, 2008), Plague (Whale,
1990), the first version ofYAP (Wise, 1992), andCoP (Luo et al, 2014). Other text-based tools
with string matching algorithms other than LCS include, but not limited to, Duploc (Ducasse
et al, 1999), Simian (Harris, 2015), and PMD’s Copy/Paste Detector (CPD) (Dangel and
Pelisse, 2011).

To take one step of abstraction up from literal code text, we can transform source code
into tokens (i.e. words). A stream of tokens can be used as an abstract representation of a
program. The abstraction level can be adjusted by defining the types of tokens. Depending on
how the tokens are defined, the token stream may normalise textual differences and capture
only an abstracted sequence of a program. For example, if everyword in a program is replaced
by a W token, a statement int x = 0; will be similar to String s = "Hi"; because they
both share a token stream of W W = W;. Different similarity measurements such as suffix
trees, string alignment, Jaccard similarity, etc., can be applied to sequences or sets of tokens.
Tools that rely on tokens include Sherlock (Joy and Luck, 1999), BOSS (Joy et al, 2005),
Sim (Grune, 2014), YAP3 (Wise, 1996), JPlag (Prechelt et al, 2002), CCFinder (Kamiya
et al, 2002), CP-Miner (Li et al, 2006), MOSS (Schleimer et al, 2003), Burrows et al (2007),
and the Source Code Similarity Detector System (SCSDS) (Duric and Gasevic, 2013). The
token-based representation is widely used in source code similarity measurement and very
efficient on a scale of millions SLOC. An example is the large-scale token-based clone
detection tool SourcererCC (Sajnani et al, 2016).

Tree-based code similarity measurement can avoid issues of formatting and lexical dif-
ferences and focus only on locating structural sameness between two programs. Abstract
Syntax Trees (ASTs) are a widely-used structure when computing program similarity by
finding similar subtrees between two ASTs. The capability of comparing programs’ struc-

A Comparison of Code Similarity Analysers 7

tures allows tree-based tools to locate similar code with a wider range of modifications
such as added or deleted statements. However, tree-based similarity measures have a high
computational complexity. The comparison of two ASTs with # nodes can have an upper
bound of $ (#3) (Baxter et al, 1998). Usually an optimising mechanism or approximation
is included in the similarity computation to lower the computation time (Jiang et al, 2007b).
A few examples of well-known tree-based tools include CloneDR (Baxter et al, 1998), and
Deckard (Jiang et al, 2007b).

Graph-based structures are chosen when one wants to capture not only the structure but
also the semantics of a program. However, like trees, graph similarity suffers from a high
computational complexity. Algorithms for graph comparison are mostly NP-complete (Liu
et al, 2006; Crussell et al, 2012; Krinke, 2001; Chae et al, 2013). In clone and plagiarism
detection, a few specific types of graphs are used, e.g. program dependence graphs (PDG),
or control flow graphs (CFG). Examples of code similarity analysers using graph-based
approaches are the ones invented by Krinke (2001), Komondoor and Horwitz (2001), Chae
et al (2013) and Chen et al (2014). Although the tools demonstrate high precision and
recall (Krinke, 2001), they suffer scalability issues (Bellon et al, 2007).

Code similarity measurement can not only be measured on source code but also on
compiled code. Measuring similarity of compiled code is useful when the source code is
absent or unavailable. Moreover, it can also capture dynamic behaviours of the programs
by executing the compiled code. In the last few years, there have been several studies to
discover cloned and plagiarised programs (especiallymobile applications) based on compiled
code (Chae et al, 2013; Chen et al, 2014; Gibler et al, 2013; Crussell et al, 2013; Tian et al,
2014; Tamada et al, 2004; Myles and Collberg, 2004; Lim et al, 2009; Zhang et al, 2012;
McMillan et al, 2012; Luo et al, 2014; Zhang et al, 2014; Crussell et al, 2012).

Besides the text, token, tree, and graph-based approaches, there are several other alter-
native techniques adopted from other fields of research to code similarity measurement such
as information theory, information retrieval, or data mining. These techniques show positive
results and open further possibilities in this research area. Examples of these techniques in-
clude Software Bertillonage (Davies et al, 2013), Kolmogorov complexity (Li and Vitâanyi,
2008), Latent Semantic Indexing (LSI) (McMillan et al, 2012), and Latent Semantic Analysis
(LSA) (Cosma and Joy, 2012).

2.3 Obfuscation and Deobfuscation

Obfuscation is a mechanism of making changes to a program while preserving its original
functions. It originally aimed to protect intellectual property of computer programs from
reverse engineering or from malicious attack (Collberg et al, 2002) and can be achieved in
both source and binary level. Many automatic code obfuscation tools are available nowa-
days both for commercial (e.g. Semantic Designs Inc.’s C obfuscator (Semantic Designs,
2016), Stunnix’s obfuscators (Stunnix, 2016), Diablo (Maebe and Sutter, 2006)) and re-
search purposes (Chow et al, 2001; Schulze and Meyer, 2013; Madou et al, 2006; Necula
et al, 2002).

Given a program %, and the transformed program %′, the definition of obfuscation trans-
formations) is %)−→ %′ requiring % and %′ to hold the same observational behaviour (Coll-
berg et al, 1997). Specifically, legal obfuscation transformation requires: 1) if % fails to
terminate or terminates with errors then %′ may or may not terminate, and 2) %′ must
terminate if % terminates.

8 Chaiyong Ragkhitwetsagul et al.

Generally, there are three approaches for obfuscation transformations: lexical (layout),
control, and data transformation (Collberg et al, 2002, 1997). Lexical transformations can be
achieved by renaming identifiers and formatting changes, while control transformations use
more sophisticated methods such as embedding spurious branches and opaque predicates
which can be deducted only at runtime. Data transformations make changes to data struc-
tures and hence make the source code difficult to reverse engineer. Similarly, binary-code
obfuscators transform the content of executable files.

Many obfuscation techniques have been invented and put to use in commercial obfusca-
tors. Collberg et al (2003) introduce several reordering techniques (e.g. method parameters,
basic block instructions, variables, and constants), splitting of classes, basic blocks, arrays,
and also merging of method parameters, classes. These techniques are implemented in
their tool, SandMark. Wang et al (2001) propose a sophisticated deep obfuscation method
called control flow flattening which is used in a commercial tool called Cloakware. Pro-
Guard (GuardSquare, 2015) is a Java bytecode obfuscator which performs obfuscation by
removing existing names (e.g. class, method names), replacing them with meaningless char-
acters, and also gets rid of all debugging information from Java bytecode. Loco (Madou et al,
2006) is a binary obfuscator capable of performing obfuscation using control flow flattening
and opaque predicates on selected fragments of code.

Deobfuscation is a method aiming at reversing the effects of obfuscation which can
be achieved at either static and dynamic level. It can be useful in many aspects such as
detection of obfuscated malware (Nachenberg, 1996) or as a resiliency test for a newly
developed obfuscation method (Madou et al, 2006). While surface obfuscation such as
variable renaming can be handled straightforwardly, deep obfuscation which makes large
changes to the structure of the program (e.g. opaque predicates or control flow flattening) is
much more difficult to reverse. However, it is not totally impossible. It has been shown that
one can counter control flow flattening by either cloning the portions of added spurious code
to separate them from the original execution path or use static path feasibility analysis (Udupa
et al, 2005) .

2.4 Program Decompilation

Decompilation of a program generates high-level code from low-level code. It has several
benefits including recovery of lost source code from compiled artifacts such as binary or
bytecode, reverse engineering, finding similar applications (Chen et al, 2014). On the other
hand, decompilation can also be used to create program clones by decompiling a program,
making changes, and repacking it into a new program. An example of this malicious use of
decompilation can be seen from a study by Chen et al (2014). They found that 13.51% of all
applications from five different Android markets are clones. Gibler et al (2013) discovered
that these decompiled and cloned apps can divert advertisement impressions from the original
app owners by 14% and divert potential users by 10%.

Many decompilers have been invented in the literature for various programming lan-
guages (Cifuentes and Gough, 1995; Proebsting and Watterson, 1997; Desnos and Gueguen,
2011; Mycroft, 1999; Breuer and Bowen, 1994). Several techniques are involved to success-
fully decompile a program. The decompiled source code may be different according to each
particular decompiler. Conceptually, decompilers extract semantics of programs from their
executables, then, with some heuristics, generate the source code based on this extraction.
For example Krakatoa (Proebsting and Watterson, 1997), a Java decompiler, extracts ex-
pressions and type information from Java bytecode using symbolic execution, and creates

A Comparison of Code Similarity Analysers 9

a control flow graph (CFG) of the program representing the behaviour of the executable.
Then, to generate source code, a sequencer arranges the nodes and creates an abstract syntax
tree (AST) of the program. The AST is then simplified by rewriting rules and, finally, the
resulting Java source code is created by traversing the AST.

It has been found that program decompilation has an additional benefit of code normal-
isation. An empirical study (Ragkhitwetsagul and Krinke, 2017b) shows that, compared to
clones in the original versions, additional clones were found after compilation/decompilation
in three real-world software projects. Many of the newly discovered clone pairs contained
several modifications which were causing difficulty for clone detectors. Compilation and
decompilation canonicalise these changes and the clone pairs became very similar after the
decompilation step.

3 Empirical Study

Our empirical study consists of five experimental scenarios covering different aspects and
characteristics of source code similarity. Three experimental scenarios examined tool/tech-
nique performance on three different data sets to discover any strengths and weaknesses.
These three are (1) experiments on the products of the two obfuscation tools, (2) exper-
iments on an available data set for identification of reuse boiler-plate code (Flores et al,
2014), and (3) experiments on the combinations of pervasive modifications and boiler-plate
code. The fourth scenario examined the effectiveness of compilation/decompilation as a
preprocessing normalisation strategy and the fifth evaluated the use of error measures from
information retrieval for comparing tool performance without relying on a threshold value.

The empirical study aimed to answer the following research questions:

RQ1 (Performance comparison): How well do current similarity detection techniques
perform in the presence of pervasive source code modifications and boiler-plate code? We
compare 30 code similarity analysers using a data set of 100 pervasively modified pieces
of source code and a data set of 259 pieces of Java source code that incorporate reused
boiler-plate code.

RQ2 (Optimal configurations):What are the best parameter settings and similarity thresh-
olds for the techniques?We exhaustively search wide ranges of the tools’ parameter values to
locate the ones that give optimal performances so that we can fairly compare the techniques.
We are also interested to see if one can gain optimal performance of the tools by relying on
default configurations.

RQ3 (Normalisation by decompilation): How much does compilation followed by decom-
pilation as a pre-processing normalisation method improve detection results for pervasively
modified code? We apply compilation and decompilation to the data set before running the
tools. We compare the performances before and after applying this normalisation.

RQ4 (Reuse of configurations): Can we effectively reuse optimal tool configurations for
one data set on another data set? We apply the optimal tool configurations obtained using
one data set when using the tools with another data set and investigate whether they still offer
the tools’ best performances.

RQ5 (Ranked Results):Which tools perform best when only the top n results are retrieved?
Besides the set-based error measures normally used in clone and plagiarism detection eval-
uation (e.g. precision, recall, F-scores), we also compare and report the tools’ performances

10 Chaiyong Ragkhitwetsagul et al.

test data
(source
code)

source
obfuscator pervasively

modified
source
code

similarity
detectors

comp dcmp
bytecode

obfuscators
similarity

report

2 3 4 5Step 1
preparation transformation post-process detection analysis

Fig. 3: The experimental framework

using ranked results adopted from information retrieval. This comparison has a practical
benefit in terms of plagiarism detection, manual clone study, and automated software repair.

RQ6 (Local + global codemodifications):Howwell do the techniques performwhen source
code containing boiler-plate code clones have been pervasively modified? We evaluate the
tools on a data set combining both local and global code modifications. This question
also studies which types of pervasive modifications (source code obfuscation, bytecode
obfuscation, compilation/decompilation) strongly affect tools’ performances.

3.1 Experimental Framework

The general framework of our study, as shown in Figure 3, consists of 5 main steps. In Step 1,
we collect test data consisting of Java source code files. Next, the source files are transformed
by applying pervasivemodifications at source and bytecode level. In the third step, all original
and transformed source files are normalised. A simple form of normalisation is pretty printing
the source files which is used in similarity or clone detection (Roy and Cordy, 2008). We
also use decompilation. In Step 4, the similarity detection tools are executed pairwise against
the set of all normalised files, producing similarity reports for every pair. In the last step, the
similarity reports are analysed.

In the analysis step, we extract a similarity value sim(G, H) from the report for every
pair of files G, H, and based on the reported similarity, the pair is classified as being similar
(reused code) or not according to some chosen threshold) . The set of similar pairs of files
Sim(�) out of all files � is

Sim(�) = {(G, H) ∈ � × � : sim(G, H) >)} (1)

We selected data sets for which we know the ground truth, allowing decisions on whether
a code pair is correctly classified as a similar pair (true positive, TP), correctly classified
as a dissimilar pair (true negative, TN), incorrectly classified as similar pair while it is
actually dissimilar (false positive, FP), and incorrectly classified as dissimilar pair while it is
actually a similar pair (false negative, FN). Then, we create a confusion matrix for every tool
containing the values of these TP, FP, TN, and FN frequencies. Subsequently the confusion
matrix is used to compute an individual technique’s performance.

A Comparison of Code Similarity Analysers 11

Table 1: List of pervasive code modifications offered by our source code and bytecode
obfuscator, and compiler/decompilers

Code modifications Artifice ProGuard (De)compilers

Lexical modification

Formatting changes (Roy and Cordy, 2009; Duric and Gase-
vic, 2013; Joy and Luck, 1999)

X X

Addition, modification or deletion of comments (Duric and
Gasevic, 2013; Joy and Luck, 1999)

X X

Renaming of identifiers, methods (Roy and Cordy, 2009;
Duric and Gasevic, 2013; Joy and Luck, 1999; Brixtel et al,
2010; Fowler, 2013)

X X X

Modification of constant values (Duric and Gasevic, 2013) X

Structural modification

Split or merge of variable declarations (Duric and Gasevic,
2013)

X X

Addition, modification or deletion of modifiers (Duric and
Gasevic, 2013; Fowler, 2013)

X X

Line insertion/deletion with further edits (Roy and Cordy,
2009)

X X

Reordering of statements & control replacements (Roy and
Cordy, 2009; Duric and Gasevic, 2013; Joy and Luck, 1999;
Brixtel et al, 2010)

X X X

Modification of control structures (Duric and Gasevic, 2013;
Joy and Luck, 1999; Brixtel et al, 2010)

X X

Changing of data types and modification of data struc-
tures (Duric and Gasevic, 2013)

X

Method inlining and method refactoring (Duric and Gasevic,
2013; Fowler, 2013)

X

Structural redesign of source code (Duric and Gasevic, 2013;
Fowler, 2013)

X

3.2 Tools and Techniques

Several tools and techniques were used in this study. These fall into three categories: obfusca-
tors, decompilers, and detectors. The tool set included source and bytecode obfuscators, and
two decompilers. The detectors cover a wide range of similarity measurement techniques and
methods including plagiarism and clone detection, compression distance, string matching,
and information retrieval. All tools are open source in order to expedite the repeatability of
our experiments.

3.2.1 Obfuscators

In order to create pervasive modifications in Step 2 (transformation) of the framework, we
used two obfuscators that do not employ strong obfuscations, Artifice and ProGuard. Arti-
fice (Schulze and Meyer, 2013) is an Eclipse plugin for source-level obfuscation. The tool
makes 5 different transformations to Java source code including 1) renaming of variables,
fields, and methods, 2) changing assignment, increment, and decrement operations to nor-
mal form, 3) inserting additional assignment, increment, and decrement operations when
possible, 4) changing while to for and the other way around, and 5) changing if to its
short form. Artifice cannot be automated and has to be run manually because it is an Eclipse

12 Chaiyong Ragkhitwetsagul et al.

plugin. ProGuard (GuardSquare, 2015) is a well known open-source bytecode obfuscator. It
is a versatile tool containing several functions including shrinking Java class files, optimi-
sation, obfuscation, and pre-verification. ProGuard obfuscates Java bytecode by renaming
classes, fields, and variables with short and meaningless ones. It also performs package hier-
archy flattening, class repackaging, merging methods/classes and modifying package access
permissions.

Using source and bytecode obfuscators, we can create pervasively modified source
code that contains modifications of lexical and structural changes. We have investigated the
code transformations offered by Artifice and ProGuard and found that they cover changes
commonly found in both code cloning and code plagiarism as reported by Roy and Cordy
(2009); Schulze and Meyer (2013); Duric and Gasevic (2013); Joy and Luck (1999); Brixtel
et al (2010). The details of code modifications supported by our obfuscators are shown in
Table 1.

3.2.2 Compiler and Decompilers

Our study uses compilation and decompilation for twopurposes: transformation (obfuscation)
and normalisation.

One can use a combination of compilation and decompilation as a method of source code
obfuscation or transformation. Luo et al (2014) use GCC/G++ with different optimisation
options to generate 10 different binary versions of the same program. However, if the desired
final product is source code, a decompiler is also required in the process in order to transform
the bytecode back to its source form. The only compiler deployed in this study is the standard
Java compiler (javac).

Decompilation is a method for reversing the process of program compilation. Given a
low-level language program such as an executable file, a decompiler generates a high-level
language counterpart that resembles the (original) source code. This has several applications
including recovery of lost source code, migrating a system to another platform, upgrading an
old program into a newer programming language, restructuring poorly-written code, finding
bugs or malicious code in binary programs, and program validation (Cifuentes and Gough,
1995). An example of using the decompiler to reuse code is a well-known lawsuit between
Oracle and Google (United States District Court, 2011). It seems that Google decompiled
a Java library to obtain the source code of its APIs and then partially reused them in their
Android operating system.

Since each decompiler has its own decompiling algorithm, one decompiler usually
generates source codewhich is different from the source code generated by other decompilers.
Using more than one decompiler can also be a method of obfuscation by creating variants
of the same program with the same semantics but with different source code.

We selected two open source decompilers: Krakatau and Procyon. Krakatau (Grosse,
2016) is an open-source tool set comprising a decompiler, a class file dissembler, and an
assembler. Procyon (Strobel, 2016) includes a Java open-source decompiler. It has advantages
over other decompilers for declaration of enum, String, switch statements, anonymous
and named local classes, annotations, and method references. They are used in both the
transformation (obfuscation) and normalisation post-process steps (Steps 2 and 3) of the
framework.

Using a combination of compilation and decompilation to generate code with pervasive
modifications can represent source code that has been refactored (Fowler, 2013), or rewritten
(i.e. Type IV clones) (Roy et al, 2009). While its semantics has been preserved, the source

A Comparison of Code Similarity Analysers 13

code syntax including layout, variable names, and structure may be different. Table 1 shows
code modifications that are supported by our compiler and decompilers.

3.2.3 Plagiarism Detectors

The selected plagiarism detectors include JPlag, Sherlock, Sim, and Plaggie. JPlag (Prechelt
et al, 2002) and Sim (Grune, 2014) are token-based tools which comes in versions for text
(jplag-text and simtext) and Java (jplag-java and simjava), while Sherlock (Pike and Loki,
2002) relies on digital signatures (a number created from a series of bits converted from
the source code text). Plaggie’s detection (Ahtiainen et al, 2006) method is not public but
claims to have the same functionalities as JPlag. Although there are several other plagiarism
detection tools available, some of them could not be chosen for the study due to the absence
of command-line versions preventing them from being automated. Moreover, we require a
quantitative similarity measurement so we can compare their performances. All chosen tools
report a numerical similarity value, sim(G, H), for a given file pair G, H.

3.2.4 Clone Detectors

We cover a wide spectrum of clone detection techniques including text-based, token-based,
and tree-based techniques. Like the plagiarism detectors, the selected tools are command-line
based and produce clone reports providing a similarity value between two files.

Most state-of-the-art clone detectors do not report similarity values. Thus, we adopted
the General Clone Format (GCF) as a common format for clone reports. We modified and
integrated the GCF Converter (Wang et al, 2013) to convert clone reports generated by
unsupported clone detectors into GCF format.

Since a GCF report contains several clone fragments found between two files G and H,
the similarity of x to y can be calculated as the ratio of the size of clone fragment between x
and y found in x (overlaps are handled), i.e. fragG8 (G, H), to the size of x and vice versa.

simGCF (G, H) =
∑=
8=1 |fragG8 (G, H) |

|G | (2)

Using thismethod,we includedfive state-of-the-art clone detectors: CCFinderX,NICAD,
Simian, iClones, and Deckard. CCFinderX (ccfx) (Kamiya et al, 2002) is a token-based clone
detector detecting similarity using suffix trees. NICAD (Roy and Cordy, 2008) is a clone
detection tool embedding TXL for pretty-printing, and compares source code using string
similarity. Simian (Harris, 2015) is a pure, text-based, clone detection tool relying on text line
comparison with a capability for checking basic code modifications, e.g. identifier renaming.
iClones (Göde and Koschke, 2009) performs token-based incremental clone detection over
several revisions of a program. Deckard (Jiang et al, 2007a) converts source code into an
AST and computes similarity by comparing characteristic vectors generated from the AST
to find cloned code based on approximate tree similarity.

Although most of the clone reports only contain clone lines, the actual implementation
of clone detection tools works at a different granularity of code fragments. Measuring clone
similarity at a single granularity level, such as line, may penalise some tools while favouring
another set of tools. With this concern in mind, our clone similarity calculation varies over
multiple granularity levels to avoid biases to any particular tools. We consider three different
granularity levels: line, token, and character. Computing similarity at a level of lines or
tokens is common for clone detectors. Simian and NICAD detect clones based on source

14 Chaiyong Ragkhitwetsagul et al.

code lines while CCFinderX and iClones work at token level. However, Deckard compares
clones based on ASTs so its similarity comes from neither lines nor tokens. To make sure
that we get the most accurate similarity calculation for Deckard and other clone detectors,
we also cover the most fine-grained level of source code: characters. Using these three levels
of granularity (line, word, and character), we calculate three simGCF (G, H) values for each of
the tools.

3.2.5 Compression Tools

Normalised compression distance (NCD) is a distance metric between two documents based
on compression (Cilibrasi and Vitányi, 2005). It is an approximation of the normalised
information distance which is in turn based on the concept of Kolmogorov complexity (Li
and Vitâanyi, 2008). The NCD between two documents can be computed by

NCDI (G, H) =
/ (GH) −min {/ (G), / (H)}

max {/ (G), / (H)} (3)

where / (G) means the length of the compressed version of document G using compressor / .
In this study, five variations of NCD tools are chosen. One is part of CompLearn (Cilibrasi
et al, 2015) which uses the built-in bzlib and zlib compressors. The other four have been
created by the authors as shell scripts. The first one utilises 7-Zip (Pavlov, 2016) with various
compression methods including BZip2, Deflate, Deflate64, PPMd, LZMA, and LZMA2.
The other three rely on Linux’s gzip, bzip2, and xz compressors respectively.

Lastly, we define another, asymmetric, similarity measurement based on compression
called inclusion compression divergence (ICD). It is a compressor based approximation to
the ratio between the conditional Kolmogorov complexity of string G given string H and the
Kolmogorov complexity of G, i.e. to (G |H)/ (G), the proportion of the randomness in G not
due to that of H. It is defined as

ICD/ (G, H) =
/ (GH) − / (H)

/ (G) (4)

and when � is NCD/ or ICD/ then we use sim� (G, H) = 1 − � (G, H).

3.2.6 Other Techniques

We expanded our study with other techniques for measuring similarity including a range of
libraries thatmeasure textual similarity: difflib (PythonSoftware Foundation, 2016) compares
text sequences using Gestalt pattern matching, Python NGram (Poulter, 2012) compares text
sequences via fuzzy search using n-grams, FuzzyWuzzy (Cohen, 2011) uses fuzzy string
tokenmatching, jellyfish (Turk and Stephens, 2016) does approximate and phonetic matching
of strings, and cosine similarity from scikit-learn (Pedregosa et al, 2011) which is a machine
learning library providing data mining and data analysis. We also employed diff, the classic
file comparison tool, and bsdiff, a binary file comparison tool. Using diff or bsdiff, we
calculate the similarity between two Java files G and H using

sim� (G, H) = 1 − min(|H |, |� (G, H) |)
|H | (5)

where � (G, H) is the output of diff or bsdiff.

A Comparison of Code Similarity Analysers 15

Table 2: Tools with their similarity measures

Tool/Technique Similarity calculation

Clone Det.
ccfx (Kamiya et al, 2002) tokens and suffix tree matching
deckard (Jiang et al, 2007b) characteristic vectors of AST optimised by LSH
iclones (Göde and Koschke, 2009) tokens and generalised suffix tree
nicad (Roy and Cordy, 2008) TXL and string comparison (LCS)
simian (Harris, 2015) line-based string comparison

Plagiarism Det.
jplag-java (Prechelt et al, 2002) tokens, Karp Rabin matching, Greedy String Tiling
jplag-text (Prechelt et al, 2002) tokens, Karp Rabin matching, Greedy String Tiling
plaggie (Ahtiainen et al, 2006) N/A (not disclosed)
sherlock (Pike and Loki, 2002) digital signatures
simjava (Grune, 2014) tokens and string alignment
simtext (Grune, 2014) tokens and string alignment

Compression
7zncd NCD with 7z
bzip2ncd NCD with bzip2
gzipncd NCD with gzip
xz-ncd NCD with xz
icd Equation 4
ncd (Cilibrasi et al, 2015) ncd tool with bzlib & zlib

Others
bsdiff Equation 5
diff Equation 5
difflib (Python Software Foundation, 2016) Gestalt pattern matching
fuzzywuzzy (Cohen, 2011) fuzzy string matching
jellyfish (Turk and Stephens, 2016) approximate and phonetic matching of strings
ngram (Poulter, 2012) fuzzy search based using n-gram
cosine (Pedregosa et al, 2011) cosine similarity from machine learning library

The result of sim� (G, H) is asymmetric as it depends on the size of the denominator.Hence
sim� (G, H) usually produces a different result from sim� (H, G). This is because sim� (G, H)
provides the distance of editing G into H which is different in the opposite direction.

The summary of all selected tools and their respective similarity measurement methods
are presented in Table 2. The default configurations of each tools, as displayed in Table 3, are
extracted from (1) the values displayed in the help menu of the tools, (2) the tools’ websites,
(3) or the tools’ papers (e.g. Deckard (Jiang et al, 2007b)). The range of parameter values we
searched for in our study are also included in Table 3.

4 Experimental Scenarios

To answer the research questions, five experimental scenarios have been designed and studied
following the framework presented in Figure 3. The experiment was conducted on a virtual
machine with 2.67 GHz CPU (dual core) and 2 GB RAM running Scientific Linux release
6.6 (Carbon), and 24 Microsoft Azure virtual machines with up to 16 cores, 56 GB memory
running Ubuntu 14.04 LTS. The details of each scenario are explained below.

16 Chaiyong Ragkhitwetsagul et al.

Table 3: Tools and their parameters with chosen value ranges (DF denotes default parameters)

Tool Settings Details DF Range

Clone det.
ccfx b min no. of tokens 50 3 4 5 10 15 16 17 18

19 20 21 22 23 24 25
30 35 40 45 50

t min token kinds 12 1 2 3 .. 14
deckard mintoken min no. of tokens 50 30, 50

stride sliding window size inf 0, 1, 2, inf
similarity clone similarity 1.0 0.90, 0.95, 1.00

iclones minblock min token length 20 8 10 20 30 40 50
minclone min no. of tokens 100 50 60 .. 140 150

nicad UPI % of unique code 0.30 0.30, 0.50
minline min no. of lines 10 5, 8, 10
rename variable renaming none blind, consistent
abstract code abstraction none none, declaration,

statement, expression,
condition, literal

simian threshold min no. of lines 6 3 4 5 .. 10
options other options none none, ignoreCharacters,

ignoreIdentifiers,
ignoreLiterals,
ignoreVariableNames

Plagiarism det.
jplag-java t min no. of tokens 9 1 2 3 .. 12
jplag-text t min no. of tokens 9 1 2 3 .. 12
plaggie M min no. of tokens 11 1 2 3 .. 14
sherlock N chain length 4 1 2 3 .. 8

Z zero bits 3 0 1 2 .. 8
simjava r min run size N/A 10 11 12 .. 24
simtext r min run size N/A 4 5 6 .. 12

Compression
7zncd-BZip2 mx compression level N/A 1 3 5 7 9
7zncd-Deflate mx compression level N/A 1 3 5 7 9
7zncd-Deflate64 mx compression level N/A 1 3 5 7 9
7zncd-LZMA mx compression level N/A 1 3 5 7 9
7zncd-LZMA2 mx compression level N/A 1 3 5 7 9
7zncd-PPMd mx compression level N/A 1 3 5 7 9
bzip2ncd C block size N/A 1 2 3 .. 9
gzipncd C compression speed N/A 1 2 3 .. 9
icd ma compression algo. N/A BZip2, Deflate,

Deflate64, LZMA,
LZMA2, PPMd

mx compression level N/A 1 3 5 7 9
ncd-zlib N/A
ncd-bzlib N/A
xzncd -N compression level 6 1 2 3 .. 9, e

Others
bsdiff N/A
diff N/A
difflib autojunk auto. junk heuristic N/A true, false

whitespace ignoring white space N/A true, false
fuzzywuzzy similarity similarity calculation N/A ratio, partial_ratio,

token_sort_ratio,
token_set_ratio

jellyfish distance edit distance algo. N/A jaro_distance,
jaro_winkler

ngram N/A
cosine N/A

A Comparison of Code Similarity Analysers 17

Table 4: Descriptions of the 10 original Java classes in the generated data set

No. File SLOC Description

1 BubbleSort.java* 39 Bubble Sort implementation
2 EightQueens.java† 65 Solution to the Eight Queens problem
3 GuessWord.java* 115 A word guessing game
4 TowerOfHanoi.java* 141 The Tower of Hanoi game
5 InfixConverter.java* 95 Infix to postfix conversion
6 Kapreka_Transformation.java* 111 Kapreka Transformation of a number
7 MagicSquare.java† 121 Generating a Magic Square of size n
8 RailRoadCar.java* 71 Rearranging rail road cars
9 SLinkedList.java* 110 Singly linked list implementation
10 SqrtAlgorithm.java* 118 Calculating the square root of a number
* classes downloaded from http://www.softwareandfinance.com/Java
† classes downloaded from http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures

Table 5: Size of the data sets. The (generated) data set in Scenario 1 has been compiled and
decompiled before performing the detection in Scenario 2 (generateddecomp). The SOCO data
set is used in Scenario 3 and the SOCO with pervasive modification (SOCOgen) is used in
Scenario 5.

Scenario Data set Files #Comparisons Positives Negatives
1 generated 100 10,000 1,000 9,000
2 generateddecomp 100 10,000 1,000 9,000
3 SOCO 259 67,081 453 66,628
3 SOCOgen 330 20,691 1,045 19,646

4.1 Scenario 1 (Pervasive Modifications)

Scenario 1 studies tool performance against pervasive modifications (as simulated through
source and bytecode obfuscation). At the same time, the best configuration for every tool
is discovered. For this data set, we completed all the 5 steps of the framework: data prepa-
ration, transformation, post-processing, similarity detection, and analysing the similarity
report. However, post-processing is limited to pretty printing and no normalisation through
decompilation is applied.

4.1.1 Preparation, Transformation, and Normalisation

This section follows Steps 1 and 2 in the framework. The original data consists of 10
Java classes: BubbleSort, EightQueens, GuessWord, TowerOfHanoi, InfixConverter,
Kapreka_Transformation, MagicSquare, RailRoadCar, SLinkedList, and, finally,
SqrtAlgorithm.We downloaded them from two programmingwebsites as shown in Table 4
along with the class descriptions. We selected only the classes that can be compiled and
decompiledwithout any required dependencies other than the Java SDK.All of them are short
Java programs with less than 200 LOC and they illustrate issues that are usually discussed
in basic programming classes. The process of test data preparation and transformation is
illustrated in Figure 5. First, we selected each original source code file and obfuscated it
using Artifice. This produced the first type of obfuscation: source-level obfuscation (No. 1).
An example of a method before and after source-level obfuscation by Artifice is displayed
on the top of Figure 4 (formatting has been adjusted due to space limits).

http://www.softwareandfinance.com/Java
http://www.cs.ucf.edu/~dmarino/ucf/cop3503/lectures

18 Chaiyong Ragkhitwetsagul et al.

/* original */ /* ARTIFICE */
public MagicSquare(int n) { public MagicSquare(int v2) {

square=new int[n][n]; f00=new int[v2][v2];
for(int i=0;i<n;i++) int v3;
for(int j=0;j<n;j++){ v3=0;

square[i][j]=0; while(v3<v2) {
... int v4;

} v4=0;
while(v4<v2) {

f00[v3][v4]=0;
v4=v4+1;

}
v3=v3+1;
...

}

/* original + Krakatau */ /* ARTIFICE + Krakatau */
public MagicSquare(int i) { public MagicSquare(int i) {
super(); super();
this.square=new int[i][i]; this.f00=new int[i][i];
int i0=0; int i0=0;
int i1=0; int i1=0;
while(i1<i) { while(i1<i){
this.square[i0][i1]=0; this.f00[i0][i1]=0;
i1=i1+1; i1=i1+1;

} }
i0=i0+1; i0=i0+1;
... ...

} }

/* original + Procyon */ /* ARTIFICE + Procyon */
public MagicSquare(final int n) { public MagicSquare(final int n) {
super(); super();
this.square = new int[n][n]; this.f00=new int[n][n];
for (int i=0;i<n;++i) { for (int i=0;i<n;++i) {
for (int j=0;j<n;++j) { for (int j=0;j<n;++j) {
this.square[i][j]=0; this.f00[i][j]=0;
} }

} }
... ...

} }

Fig. 4: The same code fragments, a constructor of MagicSquare, after pervasive modifica-
tions, and compilation/decompilation.

Next, both the original and the obfuscated versions were compiled to bytecode, producing
two bytecode files. Then, both bytecode files were obfuscated once again by ProGuard,
producing two more bytecode files.

All four bytecode files were then decompiled by either Krakatau or Procyon giving back
eight additional obfuscated source code files. For example, No. 1 in Figure 5 is a pervasively
modified version via source code obfuscation with Artifice. No. 2 is a version which is
obfuscated by Artifice, compiled, obfuscated with ProGuard, and then decompiled with
Krakatau. No. 3 is a version obfuscated by Artifice, compiled and then decompiled with
Procyon. Using this method, we obtained 9 pervasively modified versions for each original
source file, resulting in 100 files for the data set. The only post-processing step in this scenario
is normalisation through pretty printing.

A Comparison of Code Similarity Analysers 19

11

original

source code
obfuscator

bytecode
obfuscator

decompilers pervasively modified
code files

ARTIFICE

compiler

javac

1

2

3

ProGuard
Krakatau

Procyon

Fig. 5: Test data generation process

4.1.2 Similarity Detection

The generated data set of 100 Java code files is used for pairwise similarity detection in
Step 4 of the framework in Figure 3, resulting in 10,000 pairs of source code files with their
respective similarity values. We denote each pair and their similarity as a triple (G, H, B8<).
Since each tool can have multiple parameters to adjust and we aimed to cover as many
parameter settings as possible,we repeatedly ran each tool several timeswith different settings
in the range listed in Table 3. Hence, the number of reports generated by one tool equals
the number of combinations of its parameter values. A tool with two parameters ?1 ∈ %1
and ?2 ∈ %2 has |%1| × |%2| different settings. For example, sherlock has two parameters
∈ {1, 2, 3, ..., 8} and / ∈ {0, 1, 2, 3, ..., 8}. We needed to do 8 × 9 × 10, 000 = 720, 000
pairwise comparisons and generated 72 similarity reports. To cover the 30 tools with all of
their possible configurations, we performed 14,880,000 pairwise comparisons in total and
analysed 1,488 reports.

4.1.3 Analysing the Similarity Reports

In Step 5 of the framework, the results of the pairwise similarity detection are analysed. The
10,000 pairwise comparisons result in 10,000 (G, H, B8<) entries. As in Equation 1, all pairs
G, H are considered to be similar when the reported similarity B8< is larger than a threshold
) . Such a threshold must be set in an informed way to produce sensible results. However, as
the results of our experiment will be extremely sensitive to the chosen threshold, we want
to use the optimal threshold, i.e. the threshold that produces the best results. Therefore, we
vary the cut-off threshold) between 0 and 100.

As shown in Table 5, the ground truth of the generated data set contains 1,000 positives
and 9,000 negatives. The positive pairs are the pairs of files generated from the same original
code. For example, all pairs that are the derivatives of InfixConverter.java must be
reported as similar. The other 9,000 pairs are negatives since they come from different
original source code files and must be classified as dissimilar. Using this ground truth, we

20 Chaiyong Ragkhitwetsagul et al.

can count the number of true and false positives in the results reported for each of the tools.
We choose the F-score as the method to measure the tools’ performance. The F-score is
preferred in this context since the sets of similar files and dissimilar files are unbalanced and
the F-score does not take true negatives into account2.

The F-score is the harmonic mean of precision (ratio of correctly identified reused pairs
to retrieved pairs) and recall (ratio of correctly identified pairs to all the identified pairs):

precision =
TP

TP + FP
recall =

TP
TP + FN

F-score =
2 × precision × recall

precision + recall
Using the F-score we can search for the best threshold) under which each tool has its

optimal performance with the highest F-score. For example in Figure 6, after varying the
threshold from 0 to 100, ncd-bzlib has the best threshold) = 37 with the highest F-score of
0.846. Since each tool may have more than one parameter setting, we call the combination
of the parameter settings and threshold that produces the highest F-score the tool’s “optimal
configuration”.

0 10 20 30 40 50 60 70 80 90 100
Threshold value (T)

0

0.2

0.4

0.6

0.8

1

F-
sc

or
e

0.846481876

37

Fig. 6: The graph shows the F-score and the threshold values of ncd-bzlib. The tool reaches
the highest F-score when the threshold equals 37.

4.2 Scenario 2 (Reused Boiler-Plate Code)

In this scenario, we analyse the tools’ performance against an available data set that contains
files in which fragments of boiler-plate code are reused with or without modifications.
We choose the data set that has been provided by the Detection of SOurce COde Re-
use competition for discovering monolingual re-used source code amongst a given set of
programs (Flores et al, 2014), which we call the SOCO data set. We found that many of
them share the same or very similar boiler-plate code fragments which perform the same
task. Some of the boiler-plate fragments have been modified to adapt to the environment in
which the fragments are re-used. Since we reused the data set from another study (Flores

2 For the same reason, we decided against using Matthews correlation coefficient (MCC).

A Comparison of Code Similarity Analysers 21

et al, 2014), we merely needed to format the source code files by removing comments and
applying pretty-printing to them in step 1 of our experimental framework (see Figure 3). We
later skipped step 2 and 3 of pervasive modifications and followed only step 4 – similarity
detection, and step 5 – analysing similarity report in our framework.

We selected the Java training set containing 259 files for which the answer key of true
clone pairs is provided. The answer key contains 84 file pairs that share boiler-plate code.
Using the provided pairs, we are able to measure both false positives and negatives. For each
tool, this data set produced 259 × 259 = 67, 081 pairwise comparisons. Out of these 67,081
file pairs, 259 + 2 × 84 = 427 pairs are similar. However, after manually investigating false
positives in a preliminary study, we found that the provided ground truth contains errors.
An investigation revealed that the provided answer key contained two large clusters in which
pairs were missing and that two given pairs were wrong3. After removing the wrong pairs
and adding the missing pairs, the corrected ground truth contains 259 + 2 × 97 = 453 pairs.

We performed two analyses on this data set: 1) applying the derived configurations
to the data set and measuring the tools’ performances, and 2) searching for the optimal
configurations. Again, no transformation or normalisation has been applied to this data set
as it is already prepared.

Since the SOCO data set is 2.59 times larger than the generated data set (259 Java files
vs. 100 Java files), it takes much longer to run. For example, it took CCFinderX 7 hours 48
minutes4 to complete 2592 = 67, 081 pairwise comparisons with one of its configurations
on our Azure virtual machine. To complete the search space of 20 × 14 = 280 CCFinderX’s
configurations, it took us 90 days. Executions of the 30 tools with all of their possible
configurations cover 99,816,528 pairwise comparisons in total for this data set compared to
14,880,000 comparisons in Scenario 1. We analysed 1,448 similarity reports in total.

4.3 Scenario 3 (Decompilation)

We are interested in studying the effects of normalisation through compilation/decompilation
before performing similarity detection. This is based on the observation that compilation has
a normalising effect. Variable names disappear in bytecode and nominally different kinds
of control structures can be replaced by the same bytecode, e.g. for and while loops are
replaced by the same if and goto structures at the bytecode level.

Likewise, changesmade by bytecode obfuscatorsmay also be normalised by decompilers.
Suppose a Java program % is obfuscated (transformed,)) into& (%)−→ &), then compiled (�)
to bytecode �&, and decompiled (�) to source code & ′ (& �−→ �&

�−→ & ′). This & ′ should
be different from both % and & due to the changes caused by the compiler and decompiler.
However, with the same original source code %, if it is compiled and decompiled using the
same tools to create %′ (% �−→ �%

�−→ %′), %′ should have some similarity to & ′ due to the
analogous compiling/decompiling transformations made to both of them. Hence, one might
apply similarity detection to find similarity sim(%′, & ′) and get more accurate results than
sim(%,&).

In this scenario, we focus on the generated data set containing pervasive code modifi-
cations of 100 source code files generated in Scenario 1. However, we added normalisation
through decompilation to the post-processing (Step 3 in the framework) by compiling all

3 The authors of the data set confirmed that the data set contains errors.
4 User time measured by /usr/bin/time -p command.

22 Chaiyong Ragkhitwetsagul et al.

the transformed files using javac and decompiling them using either Krakatau or Procyon.
We then followed the same similarity detection and analysis process in Steps 4 and 5. The
results are then compared to the results obtained from Scenario 1 to observe the effects of
normalisation through decompilation.

4.4 Scenario 4 (Ranked Results)

In our three previous scenarios, we compared the tools’ performances using their optimal
F-scores. The F-score offers a weighted harmonic mean of precision and recall. It is a set-
based measure that does not consider any ordering of results. The optimal F-scores are
obtained by varying the threshold) to find the highest F-score. We observed from the
results of the previous scenarios that the thresholds are highly sensitive to each particular
data set. Therefore, we had to repeat the process of finding the optimal threshold every
time we changed to a new data set. This was burdensome but could be done since we knew
the ground truth data of the data sets. The configuration problem for clone detection tools
including setting thresholds has been mentioned by several studies as one of the threats to
validity (Wang et al, 2001). There has also been an initiative to avoid using thresholds at all
for clone detection (Keivanloo et al, 2015). Hence, we try to avoid the problem of threshold
sensitivity affecting our results. Moreover, this approach also has applications in software
engineering including finding candidates for plagiarism detection, automated software repair,
working code examples, and large-scale code clone detection.

Instead of looking at the results as a set and applying a cut-off threshold to obtain true
and false positives, we consider only a subset of the results based on their rankings. We adopt
three error measures mainly used in information retrieval: precision-at-n (prec@n), average
r-precision (ARP), and mean average precision (MAP) to measure the tools’ performances.
We present their definitions below.

Given n as a number of top n results ranked by similarity, precision-at-n (Manning et al,
2009) is defined as:

prec@n =
TP
=

In the presence of ground truth, we can set the value of n to be the number of relevant
results (i.e. true positives). With a known ground truth, precision-at-n when n equals to the
number of true positives is called r-precision (RP) where r stands for “relevant” (Manning
et al, 2009). If a set of relevant files for each query @ ∈ & is '@ = {rf@1 , ..., rf@= }, then the
r-precisions for a query @ is:

RP@ =
TP@
|'@ |

With presence of more than one query, an average r-precision (ARP) can be computed
as the mean of all r-precision values (Beitzel et al, 2009):

ARP =
1
|& |

|& |∑
8=1

RP@

Lastly, mean average precision (MAP) measures the quality of results across several
recall levels where each relevant result is returned. It is calculated from multiple average
precision-at-n values where =@8 is the number of retrieved results after each relevant result

A Comparison of Code Similarity Analysers 23

rf@8 ∈ '@ of a query @ is found. An average precision-at-n (aprec@n) of a query @ is
calculated from:

aprec@n@ =
1
|'@ |

|'@ |∑
8=1

prec@n@8

Mean average precision (MAP) is then derived from the mean of all aprec@n values of
all the queries in & (Manning et al, 2009):

MAP =
1
|& |

|& |∑
8=1

aprec@n@8

Precision-at-n, ARP, and MAP are used to measure how well the tools retrieve relevant
results within top-n ranked items for a given query (Manning et al, 2009). We simulate a
querying process by 1) running the tools on our data sets and generating similarity pairs,
and 2) ranking the results based on their similarities reported by the tools. The higher the
similarity value, the higher the rank. The top ranked result has the highest similarity value.
If a tie happens, we resort to a ranking by alphabetical order of the file names.

For precision-at-n, the query is “what are the most similar files in this data set?” and
we inspect only the top n results. Our calculation of precision-at-n in this study can be
considered as a hybrid between a set-based and a ranked-based measure. We put the results
from different original files in the same “set” and we “rank” them by their similarities. This
is suitable for a case of plagiarism detection. To locate plagiarised source code files, one may
not want to give a specific file as a query (since they do not know which file has been copied)
but they want to retrieve a set of all similar pairs in a set ranked by their similarities. JPlag
uses this method to report plagiarised source code pairs (Prechelt et al, 2002). Moreover,
finding the most similar files is useful in a manual study of large-scale code clones (e.g. in
a study by Yang et al (2017)) when too many clones are reported and researchers are only
feasibly able to investigate by hand a few of the most similar clone candidates.

ARP and MAP are calculated by considering the question “what are the most similar
files for each given query @?” For example, since we had a total of 100 files in our generated
data set, we queried 100 times. We picked one file at a time from the data set as a query
and retrieved a ranked result of 100 files (including the query itself) according to the query.
An r-precision was calculated from the top 10 results. We limited results to only the top 10,
since our ground truth contained 10 pervasively modified versions for each original source
code file (including itself). Thus, the number of relevant results, r, is 10 in this study. We
derive ARP from the average of the 100 r-precision values. The same process is repeated for
MAP except using average precision-at-n instead of r-precision. The query-based approach
is suitable when one does not require the retrieval of all the similar pairs of code but only
the most relevant ones for a given query. This situation occurs when performing code search
for automated software repair (Ke et al, 2015). One may not feasibly try all returned repair
candidates but only the top-ranked ones. Another example is searching for working code
examples (Keivanloo et al, 2014) when one wants to pick only the top ranked solution.

Using these three error measures, we can compare performances of the similarity detec-
tion techniques and tools without relying on the threshold at all. They also provide another
aspect of evaluating the tools’ performances by observing how well the tools report correct
results within the top n pairs.

24 Chaiyong Ragkhitwetsagul et al.

4.5 Scenario 5 (Pervasive Modifications + Boiler-plate Code)

We have two objectives for this experimental scenario. First, we are interested in a situation
where local and global code modifications are combined together. This is done by applying
pervasive modifications on top of reused boiler-plate code. This scenario occurs in software
plagiarism when only a small fragment of code is copied and later pervasive modifications
are applied to the whole source code to conceal the copied part of the code. It also represents
a situation where a boiler-plate code has been reused and repeatedly modified (or refactored)
during software evolution.We are interested to see if the tools can still locate the reused boiler-
plate code. Second, we shift our focus frommeasuring howwell our tools find all similar pairs
of pervasively modified code pieces, as we did in Scenario 1, to measuring howwell our tools
find similar pairs of code pieces based on each pervasive code modification type. This is a
finer-grained result and provides insights into the effects of each pervasive code modification
type on code similarity. The default configurations are chosen for this experimental scenario
to reflect a real use case when one does not know the optimal configurations of the tools and
also to show the effect of each pervasive code modifications on the tools’ performances when
they are picked off-the-shelf without any tuning. Since some threshold needs to be chosen,
we used the optimal threshold for each tool.

We use the data set called SOCOgen which is derived from the SOCO data set used in
Scenario 3. We follow the 5 steps in our experimental framework (see Figure 3) by using the
SOCO’s data set with boiler-plate code as a test data (Step 1). Among 259 SOCO files, 33
are successfully compiled and decompiled after code obfuscations by our framework. Each
of the 33 files generates 10 pervasively modified files (including itself) resulting in 330 files
available for detection (Step 4). The statistics of SOCOgen is shown in Table 5.

We change the similarity detection in Step 4 to focus only on comparing modified code
to their original. Given" as a set of the 10 pervasive code modification types, a set of similar
pairs of files Sim< (�) out of all files � with a pervasive code modification < is

" = {$, �, , %2 , %6 , %6%2 , � , �%2 , �%6 , �%6%2}
Sim< (�) = {(G, H) ∈ �$ × �< : < ∈ "; sim(G, H) >)} (6)

Table 6 presents the 10 pervasive code modification types; including the original ($),
source code obfuscation by Artifice (�), decompilation by Krakatau (), decompilation by
Procyon (%2), bytecode obfuscation by ProGuard and decompilation by Krakatau (%6),
bytecode obfuscation by ProGuard and decompilation by Procyon (%6%2), and four other
combinations (� , �%2 , �%6 , �%6%2); and ground truth for each of them. The number
of code pairs and true positive pairs of � to �%6%2 are twice larger than the Original ($)
type because of asymmetric similarity between pairs, i.e. Sim(G, H) and Sim(H, G).

We measured the tools’ performance on each Sim< (�) set. By applying tools on a pair
of original and pervasively modified code, we measure the tools based on one particular
type of code modifications at a time. In total, we made 620,730 pairwise comparisons and
analysed 330 similarity reports in this scenario.

5 Results

We used the five experimental scenarios of pervasive modifications, decompilation, reused
boiler-plate code, ranked results, and the combination of local and global code modification
to answer the six research questions. The execution of 30 similarity analysers on the data
sets along with searching for their optimal parameters took several months to complete. We

A Comparison of Code Similarity Analysers 25

Table 6: 10 pervasive code modification types

Obfuscation Decomp. Pairs TP
Type Modification Source Bytecode

$ Original 1,089 55
� Artifice X 2,178 110
 Krakatau X 2,178 110
%2 Procyon X 2,178 110
%6 ProGuard + Krakatau X X 2,178 110
%6%2 ProGuard + Procyon X X 2,178 110
� Artifice + Krakatau X X 2,178 110
�%2 Artifice + Procyon X X 2,178 110
�%6 Artifice + ProGuard + Krakatau X X X 2,178 110
�%6%2 Artifice + ProGuard + Procyon X X X 2,178 110

carefully observed and analysed the similarity reports and the results are discussed below in
order of the six research questions.

5.1 RQ1: Performance Comparison

How well do current similarity detection techniques perform in the presence of pervasive
source code modifications and boiler-plate code?

The results for this research question are collected from the experimental Scenario 1 (perva-
sive modifications) and Scenario 2 (reused boiler-plate code).

5.1.1 Pervasively Modified Code

A summary of the tools’ performances and their optimal configurations on the generated data
set are listed in Table 7. We show seven error measures in the table including false positives
(FP), false negatives (FN), accuracy (Acc), precision (Prec), recall (Rec), area under ROC
curve (AUC), and F-score (F1). The tools are classified into 4 groups: clone detection tools,
plagiarism detection tools, compression tools, and other similarity analysers. We can see that
the tools’ performances vary over the same data set. For clone detectors, we applied three
different granularity levels of similarity calculation: line (L), token (T), and character (C).
We find that measuring code similarity at different code granularity levels has an impact
on the performance of the tools. For example, ccfx gives a higher F-score when measuring
similarity at character level than at line or token level. We present only the results for the
best granularity level in each case here. The complete results of the tools can be downloaded
from the study website (Ragkhitwetsagul and Krinke, 2017a), including the generated data
set before and after compilation/decompilation.

In terms of accuracy and F-score, the token-based clone detector ccfx is ranked first.
The top 10 tools with highest F-score include ccfx (0.9760) followed by fuzzywuzzy
(0.876), jplag-java (0.8636), difflib (0.8629), simjava (0.0.8618), deckard (0.8509), bzip2ncd
(0.8494), ncd-bzlib (0.8465), simian (0.8413), and ncd-zlib (0.8361) respectively. Interest-
ingly, tools from all the four groups appear in the top ten.

For clone detectors, we have a token-based tool (ccfx), an AST-based tool (deckard),
and a string-based tool (simian) in the top ten. This shows that with pervasive modifications,

26 Chaiyong Ragkhitwetsagul et al.

0 0.1 0.2 0.3 0.4 0.5
False positive rate

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

ccfx (0.9995)
fuzzywuzzy (0.9772)
simjava (0.9711)
jplag-text (0.9658)
ncd-bzlib (0.9636)
bzip2ncd (0.9635)
deckard (0.9585)
ncd-zlib (0.9584)
jplag-java (0.9563)
7zncd-BZip2 (0.9557)

Fig. 7: The (zoomed) ROC curves of the 10 tools that have the highest area under the curve
(AUC).

multiple clone detectors with different detection techniques can offer comparable results
given their optimal configurations are provided. However, some clone detectors, e.g. iclones
and nicad, did not perform well in this data set. ccfx performs the best – possibly due to a
combination of using a suffix tree matching algorithm on a small number of tokens (b=5).
This means that ccfx performs similarity computation on one small chunk of code at a time.
This approach is flexible and effective in handling code with pervasive modifications that
spread changes over the whole file. We also manually investigated the similarity reports
of poorly performing iclones and nicad and found that the tools were susceptible to code
changes involving the two decompilers, Krakatau and Procyon. When comparing files after
decompilation by Krakatau to Procyon with or without bytecode obfuscation, they could not
find any clones and hence reported zero similarity.

For plagiarism detection tools, jplag-java and simjava, which are token-based plagiarism
detectors, are the leaders. Other plagiarism detectors give acceptable performance except
simtext. This is expected since the tool is intended for plagiarism detection on natural text
rather than source code. Compression tools show promising results using NCD for code
similarity detection. They are ranked mostly in the middle from 7th to 24th with comparable
results. The three bzip2-based NCD implementations, ncd-zlib, ncd-bzlib, and bzip2ncd only
slightly outperform other compressors like gzip or LZMA. So the actual compressionmethod
may not have a strong effect in this context. Other techniques for code similarity offer varied
performance. Tools such as ngram, diff, cosine, jellyfish and bsdiff perform badly. They are
ranked among the last positions at 22th, 26th, 28th, 29th, and 30th respectively. Surprisingly,
two Python tools using difflib and fuzzywuzzy string matching techniques produce very high
F-scores.

To find the overall performance over similarity thresholds from 0 to 100, we drew the
receiver operating characteristic (ROC) curves, calculated the area under the curve (AUC),
and compared them. The closer the value is to one, the better the tool’s performance. Figure 7
include the ten highest AUCvalued tools.We can see from the figure that ccfx is again the best
performing tool with the highest AUC (0.9995), followed by fuzzywuzzy (0.9772), simjava

A Comparison of Code Similarity Analysers 27

Table 7: Generated data set (Scenario 1): rankings (R) by F-scores (F1) and optimal
configuration of every tool and technique.

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx (C)* b=5,t=11 36 24 24 0.9952 0.9760 0.9760 0.9995 0.9760 1
deckard (T)* mintoken=30 17 44 227 0.9729 0.9461 0.7730 0.9585 0.8509 6

stride=2
similarity=0.95

iclones (L)* minblock=10 0 36 358 0.9196 0.9048 0.4886 0.7088 0.6345 27
minclone=50

nicad (L)* UPI=0.50 38 38 346 0.9616 0.9451 0.6540 0.8164 0.7730 23
minline=8
rename=blind
abstract=literal

simian (C)* threshold=4 5 150 165 0.9685 0.8477 0.8350 0.9262 0.8413 9
ignoreVariableNames

Plag. det.
jplag-java t=7 19 58 196 0.9746 0.9327 0.8040 0.9563 0.8636 3
jplag-text t=4 14 66 239 0.9695 0.9202 0.7610 0.9658 0.8331 12
plaggie M=8 19 83 234 0.9683 0.9022 0.7660 0.9546 0.8286 15
sherlock N=4, Z=2 6 142 196 0.9662 0.8499 0.8040 0.9447 0.8263 17
simjava r=16 15 120 152 0.9728 0.8760 0.8480 0.9711 0.8618 5
simtext r=4 14 38 422 0.9540 0.9383 0.5780 0.8075 0.7153 25

Compression
7zncd-BZip2 mx=1,3,5 45 64 244 0.9692 0.9220 0.7560 0.9557 0.8308 14
7zncd-Deflate mx=7 38 122 215 0.9663 0.8655 0.7850 0.9454 0.8233 20
7zncd-Deflate64 mx=7,9 38 123 215 0.9662 0.8645 0.7850 0.9453 0.8229 21
7zncd-LZMA mx=7,9 41 115 213 0.9672 0.8725 0.7870 0.9483 0.8275 16
7zncd-LZMA2 mx=7,9 41 118 213 0.9669 0.8696 0.7870 0.9482 0.8262 18
7zncd-PPMd mx=9 42 140 198 0.9662 0.8514 0.8020 0.9467 0.8260 19
bzip2ncd C=1..9 38 62 216 0.9722 0.9267 0.7840 0.9635 0.8494 7
gzipncd C=7 31 110 203 0.9687 0.8787 0.7970 0.9556 0.8359 11
icd ma=LZMA2 50 86 356 0.9558 0.8822 0.6440 0.9265 0.7445 24

mx=7,9
ncd-zlib N/A 30 104 207 0.9689 0.8841 0.7930 0.9584 0.8361 10
ncd-bzlib N/A 37 82 206 0.9712 0.9064 0.7940 0.9636 0.8465 8
xzncd -e 39 120 203 0.9677 0.8691 0.7970 0.9516 0.8315 13

Others
bsdiff* N/A 71 199 577 0.9224 0.6801 0.4230 0.8562 0.5216 30
diff (C)* N/A 8 626 184 0.9190 0.5659 0.8160 0.9364 0.6683 26
difflib whitespace=false 28 12 232 0.9756 0.9846 0.7680 0.9412 0.8629 4

autojunk=false
fuzzywuzzy token_set_ratio 85 58 176 0.9766 0.9342 0.8240 0.9772 0.8757 2
jellyfish jaro_distance 78 340 478 0.9182 0.6056 0.5220 0.8619 0.5607 29
ngram N/A 49 110 224 0.9666 0.8758 0.7760 0.9410 0.8229 22
cosine N/A 48 292 458 0.9250 0.6499 0.5420 0.9113 0.5911 28

* — Tools that do not report similarity value directly. Similarity is measured at the granularity level of
line (L), token (T), or character (C).

(0.9711), jplag-text (0.9658), ncd-bzlib (0.9636), bzip2ncd (0.9635), deckard (0.9585), and
ncd-zlib (0.9584). The two other tools, jplag-java and 7zncd-BZip2, offer AUCs of 0.9563
and 0.9557.

The best tool with respect to accuracy, and F-score is ccfx. The tool with the lowest
false positive is difflib. The lowest false negatives is given by diff. However, considering
the large amount of false positive for diff (8,810 false positives which mean 8,810 out of
9,000 dissimilar files are treated as similar), the tool tends to judge everything as similar.
The second lowest false negative is once again ccfx.

28 Chaiyong Ragkhitwetsagul et al.

Compared to our previous study (Ragkhitwetsagul et al, 2016), we expanded the gener-
ated data set to be two times bigger. Although half (i.e. 50 files) of the generated data set are
the same Java files as in the previous study, our 50 newly added files potentially introduce
more diversity into the data set. This, as a result, makes our results more generalisable,
i.e. mitigates our threats to external validity.

To sum up, we found that specialised tools such as source code clone and plagiarism
detectors perform well against pervasively modified code. They were better than most of
the compression-based and general string similarity tools. Compression-based tools mostly
give decent and comparable results for all compression algorithms. String similarity tools
perform poorly and mostly ranked among the last. However, we found that Python difflib
and fuzzywuzzy perform surprisingly better with this expanded version of the data set than
on the original data set in our previous study (Ragkhitwetsagul et al, 2016). They are both
ranked highly among the top 5. Lastly, ccfx performed well on both the smaller data set in
our previous study and the current data set, and is ranked the 1st on several error measures.

5.1.2 Boiler-plate Code

We report the complete evaluation of the tools on the SOCO data set with the optimal
configurations in Table 8. Among the 30 tools, the top ranked tool in terms of F-score is
jplag-text (0.9692), followed by simjava (0.9682), simian (0.9593) and jplag-java (0.9576).
Most of the tools and techniques perform well on this data set. We observed high accuracy,
precision, recall, and an F-score of over 0.7 for every tool except for diff and bsdiff. Since
the data set contains source code that is copied and pasted with local modifications, the
three clone detectors; ccfx, deckard, nicad, and simian; and plagiarism detectors; jplag-text,
jplag-java and simjava; performed very well with F-scores between 0.9576 and 0.9692. ccfx
and deckard produced the highest F-score when measuring similarity at character and token
levels respectively. Other clone detectors including iclones, nicad, and simian provide the
highest F-score at line level. The Python difflib and fuzzywuzzy are outliers of the Others
group offering high performance against boiler-plate codewith F-score of 0.9338 and 0.9443.
Once again, these two string similarity techniques show promising results. The compression-
based techniques are among the last although they still offer relatively high F-scores ranging
from 0.8630 to 0.8776.

Regarding the overall performance over similarity thresholds of 0 to 100, the results are
illustrated as ROC curves in Figure 8. The tool with the highest AUC is difflib (0.9999),
followed by sherlock (0.9996), fuzzywuzzy (0.9989), and simjava (0.9987).

To sum up, we observed that almost every tool detected boiler-plate code effectively
by reporting high scores on all error measures. jplag-text, simjava, simian, jplag-java, and
deckard are the top 5 tools for this data set in terms of F-score. Similar to pervasive modifi-
cations, we found the string matching techniques difflib and fuzzywuzzy ranked among the
top 10.

5.1.3 Observations of the Tools’ Performances on the Two Data Sets

We can notice a clear distinction between the F-score rankings of clone/plagiarism detectors
and string/compression-based tools on the SOCO data set. This is due to the nature of boiler-
plate code that has local modifications, contained within a single method or code block on
which clone and plagiarism detectors perform well. However, on a more challenging perva-
sive modifications data set, there is no clear distinction in terms of ranking between dedicated
code similarity techniques, compression-based, and general text similarity tools. We found

A Comparison of Code Similarity Analysers 29

Table 8: SOCO data set (Scenario 3): rankings (R) by F-scores (F1) and optimal configu-
ration of every tool and technique.

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx (C)* b=15,16,17

t=12
25 42 15 0.9992 0.9125 0.9669 0.9905 0.9389 7

deckard (T)* mintoken=50 19 27 17 0.9993 0.9417 0.9625 0.9823 0.9520 5
stride=2
similarity=1.00

iclones (L)* minblock=40 19 20 57 0.9989 0.9519 0.8742 0.9469 0.9114 12
minclone=50

nicad (L)* UPI=0.30 22 19 51 0.9990 0.9549 0.8874 0.9694 0.9199 9
minline=5
rename=consistent
abstract=condition

simian (L)* threshold=4 26 20 17 0.9994 0.9561 0.9625 0.9921 0.9593 3
ignoreVariableNames

Plag. det.
jplag-java t=12 29 26 13 0.9994 0.9442 0.9713 0.9895 0.9576 4
jplag-text t=9 32 16 12 0.9996 0.9650 0.9735 0.9939 0.9692 1
plaggie M=14 33 36 37 0.9989 0.9204 0.9183 0.9753 0.9193 10
sherlock N=5, Z=0 22 22 54 0.9989 0.9477 0.8808 0.9996 0.9130 11
simjava r=25 46 18 11 0.9996 0.9607 0.9757 0.9987 0.9682 2
simtext r=12 17 73 19 0.9986 0.8560 0.9581 0.9887 0.9042 13

Compression
7zncd-BZip2 mx=1,3,5 64 24 118 0.9979 0.9331 0.7395 0.9901 0.8251 26
7zncd-Deflate mx=7 64 27 97 0.9982 0.9295 0.7859 0.9937 0.8517 24
7zncd-Deflate64 mx=7 64 27 96 0.9982 0.9297 0.7881 0.9957 0.8530 23
7zncd-LZMA mx=7,9 69 11 99 0.9984 0.9699 0.7815 0.9940 0.8655 20
7zncd-LZMA2 mx=7,9 69 11 99 0.9984 0.9699 0.7815 0.9939 0.8655 20
7zncd-PPMd mx=9 68 19 106 0.9981 0.9481 0.7660 0.9948 0.8474 25
bzip2ncd C=1,2,3,..,8,9 54 20 94 0.9983 0.9473 0.7925 0.9944 0.8630 22
gzipncd C=9 54 25 82 0.9984 0.9369 0.8190 0.9961 0.8740 16
icd† ma=LZMA

mx=1,3
84 12 151 0.9976 0.9618 0.6667 0.9736 0.7875 27

ncd-zlib N/A 57 10 91 0.9985 0.9731 0.7991 0.9983 0.8776 14
ncd-bzlib N/A 52 30 82 0.9983 0.9252 0.8190 0.9943 0.8689 18
xzncd 2,3 64 13 94 0.9984 0.9651 0.7925 0.9942 0.8703 17

6,7,8,9,e 65

Others
bsdiff N/A 90 2125 212 0.9652 0.1019 0.5320 0.9161 0.1710 29
diff (C) N/A 29 7745 5 0.8845 0.0547 0.9890 0.9180 0.1036 30
difflib autojunk=true 42 30 21 0.9992 0.9351 0.9536 0.9999 0.9443 6

whitespace=true
fuzzywuzzy ratio 65 30 30 0.9991 0.9338 0.9338 0.9989 0.9338 8
jellyfish jaro_distance 82 0 162 0.9976 1.0000 0.6424 0.9555 0.7823 28
ngram N/A 59 20 84 0.9984 0.9486 0.8146 0.9967 0.8765 15
cosine N/A 68 50 68 0.9982 0.8851 0.8499 0.9973 0.8671 19

* — Tools that do not report similarity value directly. Similarity is measured at the granularity level of
line (L), token (T), or character (C).

that Python difflib string matching and Python fuzzywuzzy token similarity techniques even
outperform several clone and plagiarism detection tools on both data sets. Provided that they
are simple and easy-to-use Python libraries, one can adopt these two techniques to measure
code similarity in a situation where dedicated tools are not available (e.g. unparsable, incom-
plete methods or code blocks). Compression-based techniques are not ranked at the top in
either scenario, possibly due to the small size of the source code – NCD is known to perform
better with large files.

30 Chaiyong Ragkhitwetsagul et al.

0 0.05 0.1 0.15 0.2
False positive rate

0.9

0.95

1

Tr
ue

 p
os

iti
ve

 ra
te

difflib (0.9999)
sherlock (0.9996)
fuzzywuzzy (0.9989)
simjava (0.9987)
ncd-zlib (0.9983)
sklearn (0.9973)
ngram (0.9967)
gzipncd (0.9961)
7zncd-Deflate64 (0.9957)
7zncd-PPMd (0.9948)

Fig. 8: The (zoomed) ROC curves of the 10 tools that have the highest area under the curve
(AUC) for SOCO.

5.2 RQ2: Optimal Configurations

What are the best parameter settings and similarity thresholds for the techniques?

In the experimental Scenarios 1 and 2, we thoroughly analysed various configurations
of every tool and found that some specific settings are sensitive to pervasively modified and
boiler-plate code while others are not.

5.2.1 Pervasively Modified Code

The complete list of the best configurations of every tool for pervasive modifications from
Scenario 1 can be found in the second column of Table 7. The optimal configurations are
significantly different from the default configurations, in particular for the clone detectors.
For example, using the default settings for ccfx (b=50, t=12) leads to a very low F-score
of 0.5781 due to a very high number of false negatives. Interestingly, a previous study on
agreement of clone detectors (Wang et al, 2013) observed the same difference between
default and optimal configurations.

In addition, we performed a detailed analysis of ccfx’s configurations. This is because
ccfx is a widely-used tool in several clone research studies. Two parameter settings are chosen
for ccfx in this study: 1, the minimum length of clone fragments in the unit of tokens, and
C, the minimum number of kinds of tokens in clone fragments. We initially observed that
the optimal F-scores of the tool were at either b=5 or b=19. Hence, we expanded the search
space of ccfx parameters from 280 (|1 | = 20 × |C | = 14) to 392 settings (|1 | = 28 × |C | = 14)
to reduce chances of finding a local optimum.We did a fine-grained search of b starting from
3 to 25 stepping by one and coarse-grained search from 30 to 50 stepping by 5.

A Comparison of Code Similarity Analysers 31

Table 9: ccfx’s parameter settings for the highest precision and recall

Error measure Value ccfx’s parameters

b t

Precision 1.000 19 7 8 9
Recall 0.980 5 12

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
ca

ll

Default

Fig. 9: Trade off between precision and recall for 392 ccfx parameter settings. The default
settings provide high precision but low recall against pervasive code modifications.

From Figure 9, we can see that the default settings of ccfx, b=50 and t=12 (denoted with
a × symbol), provides a decent precision but very low recall. While there is no setting for
ccfx to obtain the optimal precision and recall at the same time, there are a few cases that
ccfx can obtain high precision and recall as shown on the top right corner of Figure 9. Our
derived ccfx’s optimal configuration is one of them. The best settings for precision and recall
of ccfx are described in Table 9. The ccfx tool gives the best precision with b=19 and t=7, 8,
9 and gives the best recall with b=5 and t=12.

The landscape of ccfx performance in terms of F-score is depicted in Figure 10. Visually,
we can distinguish regions that are the sweet spot for ccfx’s parameter settings against
pervasive modifications from the rest. There are two regions covering the b value of 19 with
t value from 7 to 9, and b value of 5 with t value from 11 to 12. The two regions provide
F-scores ranging from 0.9589 up to 0.9760.

5.2.2 Boiler-plate Code

For boiler-plate code, we found another set of optimal configurations for the 30 tools by once
again analysing a large search space of their configurations. The complete list of the best
configurations for every tool from Scenario 3 can be found in the second column of Table 8.
Similar to the generated data set, the derived optimal configurations for SOCO are different
from the tools’ default configurations. For example, ccfx’s best configurations have a smaller
b, minimum number of tokens, of 15 compared to the default value of 50 while jplag-java’s
best configurations have a higher t value, the minimum number of tokens, of 12 compared
to the default value of 9.

32 Chaiyong Ragkhitwetsagul et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t

5
0

4
5

4
0

3
5

3
0

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9
8

7
6

5
4

3

b

0.5

0.6

0.7

0.8

0.9

Fig. 10: F-scores of 392 ccfx’s b and t parameter values on pervasive code modifications

The results for both pervasively modified code and boiler-plate code show that the default
configurations cannot offer the tools’ their best performance. These empirical results support
the findings ofWang et al (2013) that one cannot rely on the tools’ default configurations. We
suggest researchers and practitioners try their best to tune the tools before performing any
benchmarking or comparisons of the tools’ results to mitigate the threats to internal validity
in their studies. Our optimal configurations can be used as guidelines for studies involving
pervasive modifications and boiler-plate code. Nevertheless, they are only effective against
their respective data set and not guaranteed to work well on other data sets.

5.3 RQ3: Normalisation by Decompilation

How much does compilation followed by decompilation as a pre-processing normalisation
method improve detection results of pervasively modified code?

The results after adding compilation and decompilation for normalisation to the post-
processing step before performing similarity detection on the generated data set in the
experimental scenario 3 is shown in Figure 11. We can clearly observe that decompilation
by both Krakatau and Procyon boosts the F-scores of every tool in the study.

Table 10 shows the performances of the tools after decompilation by Krakatau in terms
of false positive (FP) rate, false negative (FN) rate, accuracy (Acc), precision (Prec), re-
call (Rec), area under ROC curve (AUC), and F-score. We can see that normalisation by

A Comparison of Code Similarity Analysers 33

ccfx
py-fuzzyw

uzzy
jplag-java
py-difflib
sim

java
deckard
bzip2ncd
ncd-bzlib
sim

ian
ncd-zlib
gzipncd
jplag-text
xzncd
7zncd-BZip2
plaggie
7zncd-LZM

A
sherlock
7zncd-LZM

A2
7zncd-PPM

d
7zncd-D

eflate
7zncd-D

eflate2
py-ngram
nicad
icd
sim

text
diff
iclones
py-sklearn
py-jellyfish
bsdiff

0

0.2

0.4

0.6

0.8

1

F-
sc
or
e

original
krakatau
procyon

Fig. 11: Comparison of tool performances (F1-score) before and after decompilation

compilation/decompilation has a strong effect on the number of false results reported by
the tools. Every tool has its number of false positives and negatives greatly reduced and
three tools, simian, jplag-java, and simjava, even no longer report any false results. All com-
pression or other techniques still report some false results. This supports the results of our
previous study (Ragkhitwetsagul et al, 2016) that using compilation/decompilation as a code
normalisation method can improve the F-scores of every tool.

To strengthen the findings, we performed a statistical test to see if the performances before
and after normalisation via decompilation differ with statistical significance. We chose the
non-parametric two-tailed Wilcoxon signed-rank test (Wilcoxon, 1945)5 and performed the
test with a confidence interval value of 95% (i.e. U ≤ 0.05). Table 11 shows that the observed
F-scores before and after decompilation are different with statistical significance for both
Krakatau and Procyon. We complemented the statistical test by employing a non-parametric
effect size measure called Vargha and Delaney’s A12 measure (Vargha and Delaney, 2000)
to measure the level of differences between two populations. We choose Vargha and De-
laney’s A12 measure because it is robust with respect to the shape of the distributions being
compared (Thomas et al, 2014). Put it another way, it does not require the two populations
under comparison to be normally distributed, which is the case in our results of the tools’
F1 scores. According to Vargha and Delaney (2000), the A12 value of 0.5 means there is
no difference between the two populations. A12 value over or below 0.5 means the first
population outperforms the second population, and vice versa. The guideline in Vargha and
Delaney (2000) shows that 0.56 is interpreted as small, 0.64 as medium, and 0.71 as large.
Using this scale, our F-score differences after decompilation by Krakatau (A12 = 0.969) and
Procyon (A12 = 0.937) compared to the original are large. According to the interpretation
of A12 in (Vargha and Delaney, 2000), with Krakatau’s A12 of 0.969 we can compute the
probability that a random -1 score from the set of tools’ performance after decompilation
by Krakatau will be greater than a random -2 score from the set of tools’ performance
before decompilation by 2�12 − 1 = 2 × 0.969 − 1 = 0.938. This A12 effect size confirms
that the tools’ performance after decompilation by Krakatau will be higher than the original

5 However, we also tried using the randomisation (i.e. permutation) test (Fisher, 1935; Box et al, 1978) on
the results and found identical test results in all cases

34 Chaiyong Ragkhitwetsagul et al.

Table 10: Optimal configuration of every tool obtained from the generateddecomp data set
decompiled by Krakatau in Scenario 2 and their rankings (R) by F-scores (F1).

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx*† (T) b=5, t=8 50 0 18 0.9982 1.0000 0.9820 0.9991 0.9909 4
deckard*† (L) mintoken=30 29 0 84 0.9916 1.0000 0.9160 0.9459 0.9562 11

stride=1
similarity=0.95

iclones* (L) minblock=8 10 0 86 0.9914 1.0000 0.9140 0.9610 0.9551 14
minclone=50

nicad*† (T) UPI=0.30 19 0 106 0.9894 1.0000 0.8940 0.9526 0.9440 24
minline=8
rename=blind
abstract=literal

simian*† (T) threshold=3 17 0 0 1.0000 1.0000 1.0000 0.9960 1.0000 1
ignoreidentifiers

Plagiarism det.
jplag-java t=4..12,default 23 0 0 1.0000 1.0000 1.0000 0.9964 1.0000 1
jplag-text t=1 56 16 24 0.9960 0.9839 0.9760 0.9993 0.9799 6
plaggie M=9 29 0 84 0.9916 1.0000 0.9160 0.9454 0.9562 13
sherlock N=1,Z=0 60 34 22 0.9944 0.9664 0.9780 0.9989 0.9722 7
simjava† r=18 17 0 0 1.0000 1.0000 1.0000 0.9998 1.0000 1
simtext r=4; 33 33 60 0.9907 0.9661 0.9400 0.9862 0.9529 16

r=5 31

Compression
7zncd-BZip2 mx=1,3,5 49 40 40 0.9920 0.9600 0.9600 0.9983 0.9600 10
7zncd-Deflate mx=9 46 28 71 0.9901 0.9707 0.9290 0.9978 0.9494 18
7zncd-
Deflate64

mx=9 46 28 72 0.9900 0.9707 0.9280 0.9978 0.9489 19

7zncd-LZMA mx=7,9 48 28 72 0.9900 0.9707 0.9280 0.9977 0.9489 19
7zncd-LZMA2 mx=7,9 48 28 72 0.9900 0.9707 0.9280 0.9977 0.9489 19
7zncd-PPMd mx=9 49 40 31 0.9929 0.9604 0.9690 0.9985 0.9647 8
bzip2ncd C=1..9,default 43 40 36 0.9924 0.9602 0.9640 0.9983 0.9621 9
gzipncd C=8,9 38 28 63 0.9909 0.9710 0.9370 0.9980 0.9537 15
icd† ma=LZMA,

mx=7,9
54 45 68 0.9887 0.9539 0.9320 0.9921 0.9428 25

ncd-zlib N/A 37 28 72 0.9900 0.9707 0.9280 0.9981 0.9489 19
ncd-bzlib N/A 42 46 36 0.9918 0.9545 0.9640 0.9984 0.9592 11
xzncd -1 43 16 83 0.9901 0.9829 0.9170 0.9967 0.9488 23

Others
bsdiff N/A 78 0 171 0.9829 1.0000 0.8290 0.9595 0.9065 28
diff (C) N/A 23 12 186 0.9802 0.9855 0.8140 0.9768 0.8916 29
difflib autojunk=true 23 28 66 0.9906 0.9709 0.9340 0.9823 0.9521 17
fuzzywuzzy token_set_ratio 90 0 32 0.9968 1.0000 0.9680 0.9966 0.9837 5
jellyfish jaro_winkler 89 40 220 0.9740 0.9512 0.7800 0.9473 0.8571 30
ngram N/A 60 48 104 0.9848 0.9492 0.8960 0.9726 0.9218 26
cosine N/A 68 98 66 0.9836 0.9050 0.9340 0.9955 0.9193 27

* — Tools that do not report similarity value directly. The similarity is measured at the granularity level of
line (L), token (T), or character (C).

† — Tools that have several optimal configurations. The complete lists can be found on our study website
(Ragkhitwetsagul and Krinke, 2017a).

93.8% of the time. The similar finding also applies to Procyon (87.4%). The large effect sizes
clearly supports the findings that compilation and decompilation is an effective normalisation
technique against pervasive modifications.

To gain insight, we carefully investigated the source code after normalisation and found
that decompiled files created by Krakatau are very similar despite the applied obfuscation.

A Comparison of Code Similarity Analysers 35

Table 11: Wilcoxon signed-rank test of tools’ performances before and after decompilation
by Krakatau and Procyon (U = 0.05).

Test p-value Significant? Effect size (A12)
Before-after decompiled by Krakatau 1.863e-09 Yes 0.969 (large)
Before-after decompiled by Procyon 1.863e-09 Yes 0.937 (large)

As depicted in Figure 4 in the middle, the two code fragments become very similar after
compilation and decompilation by Krakatau. This is because Krakatau has been designed to
be robust with respect to minor obfuscations and the transformations made by Artifice and
ProGuard are not very complex. Code normalisation byKrakatau resulted inmultiple optimal
configurations found for some of the tools. We selected only one optimal configuration to
include in Table 10 and separately reported the complete list of optimal configurations on
our study website (Ragkhitwetsagul and Krinke, 2017a).

Normalisation via decompilation using Procyon also improves the performance of the
similarity detectors, but not as much as Krakatau (see Table 12). Interestingly, Procyon
performs slightly better for deckard, sherlock, and cosine. An example of code before and
after decompilation by Procyon is shown in Figure 4 at the bottom.

The main difference between Krakatau and Procyon is that Procyon attempts to produce
much more high-level source code while Krakatau’s is nearer to the bytecode. It seems that
the low-level approach of Krakatau has a stronger normalisation effect. Hence, compila-
tion/decompilation may be used as an effective normalisation method that greatly improves
similarity detection between Java source code.

5.4 RQ4: Reuse of Configurations

Can we reuse optimal configurations from one data set in another data set effectively?

We answer this research question using the results from RQ1 and RQ2 (experimental
Scenario 1 and 2 respectively). For the 30 tools from RQ1, we applied the derived optimal
configurations obtained from the generated data set (denoted as �gen) to the SOCO data set.
Table 13 shows that using these configurations has a detrimental impact on the similarity
detection results for another data set, even for tools that have no parameters (e.g. ncd-zlib
and ncd-bzlib) and are only influenced by the chosen similarity threshold. We noticed that
the low F-scores when �gen are reused on SOCO come from high number of false positives
possibly due to their relaxed configurations.

To confirm this, we refer for the best configurations (settings and threshold) for the SOCO
data set discussed in RQ1 (see Table 8), the comparison of best configurations between the
two data sets is shown in Table 13. The reported F-scores are very high for the dataset-based
optimal configurations (denoted as �soco), confirming that configurations are very sensitive
to the data set on which the similarity detection is applied. We found the dataset-based
optimal configurations, �soco, to be very different from the configuration for the generated
data set �gen. Although the table shows only the top 10 tools from the generated data set, the
same findings apply for every tool in our study. The complete results can be found from our
study website (Ragkhitwetsagul and Krinke, 2017a).

36 Chaiyong Ragkhitwetsagul et al.

Table 12: Optimal configuration of every tool obtained from the generateddecomp data set
(decompiled by Procyon) in Scenario 2 and their rankings (R) by F-scores (F1).

Tool Settings T FP FN Acc Prec Rec AUC F1 R

Clone det.
ccfx* (L) b=20, t=1..7 11 4 38 0.9958 0.9959 0.962 0.9970 0.9786 4
deckard* (T) mintoken=30 10 0 32 0.9968 1.0000 0.9680 0.9978 0.9837 2

stride=1, inf
similarity=1.00

iclones* (C) minblock=10 0 18 98 0.9884 0.9804 0.9020 0.9508 0.9396 11
minclone=50

nicad* (W) UPI=0.30 11 16 100 0.9884 0.9825 0.9000 0.9536 0.9394 12
minline=10
rename=blind
abstract=
condition,literal

simian* (C) threshold=3 23 8 70 0.9922 0.9915 0.9300 0.9987 0.9598 8
ignoreIdentifiers

Plagiarism det.
jplag-java t=8 22 0 72 0.9928 1.0000 0.9280 0.9887 0.9627 7
jplag-text t=9 11 16 48 0.9936 0.9835 0.9520 0.9982 0.9675 6
plaggie M=13,14 10 16 80 0.9904 0.9829 0.9200 0.9773 0.9504 9
sherlock N=1, Z=0 55 28 16 0.9956 0.9723 0.9840 0.9997 0.9781 5
simjava r=default 11 8 0 0.9992 0.9921 1.0000 0.9999 0.9960 1
simtext r=4 15 42 100 0.9858 0.9554 0.9000 0.9686 0.9269 14

r=default 0

Compression
7zncd-BZip2 mx=1,3,5 51 30 116 0.9854 0.9672 0.8840 0.9909 0.9237 16
7zncd-Deflate mx=9 49 25 154 0.9821 0.9713 0.8460 0.9827 0.9043 20
7zncd-
Deflate64

mx=9 49 25 154 0.9821 0.9713 0.8460 0.9827 0.9043 20

7zncd-LZMA mx=7,9 52 16 164 0.9820 0.9812 0.8360 0.9843 0.9028 23
7zncd-LZMA2 mx=7,9 52 17 164 0.9819 0.9801 0.8360 0.9841 0.9023 24
7zncd-PPMd mx=9 53 22 122 0.9856 0.9756 0.8780 0.9861 0.9242 15
bzip2ncd C=1..9,default 47 12 140 0.9848 0.9862 0.8600 0.9922 0.9188 18
gzipncd C=3 36 40 133 0.9827 0.9559 0.8670 0.9846 0.9093 25
icd ma=LZMA,

mx=7,9
54 37 150 0.9813 0.9583 0.8500 0.9721 0.9009

ma=LZMA2,
mx=7,9

ncd-zlib N/A 41 30 158 0.9812 0.9656 0.8420 0.9876 0.8996 26
ncd-bzlib N/A 47 8 140 0.9852 0.9908 0.8600 0.9923 0.9208 17
xzncd -e 49 35 148 0.9817 0.9605 0.8520 0.9860 0.9030 22

Others
bsdiff N/A 73 48 236 0.9716 0.9409 0.7640 0.9606 0.8433 29
diff (C) N/A 23 6 244 0.9750 0.9921 0.7560 0.9826 0.8581 28
difflib autojunk=true 26 12 94 0.9894 0.9869 0.9060 0.9788 0.9447 10
fuzzywuzzy token_set_ratio 90 0 36 0.9964 1.0000 0.9640 0.9992 0.9817 3
jellyfish jaro_winkler 87 84 270 0.9646 0.8968 0.7300 0.9218 0.8049 30
ngram N/A 58 8 192 0.9800 0.9902 0.8080 0.9714 0.8899 27
cosine N/A 69 54 74 0.9872 0.9449 0.9260 0.9897 0.9354 12

* — Tools that do not report similarity value directly. The similarity is measured at the granularity level of
line (L), token (T), or character (C).

A Comparison of Code Similarity Analysers 37

Table 13: The table displays the results after applying the best configurations (�gen) from
Scenario 1 to the SOCO data set and the derived best configurations for the SOCO set (�soco).
The selected 10 tools are compared by their F-scores.

Tools
�gen �soco

Settings)
generated SOCO Settings)

SOCO
F-score F-score F-score

ccfx (C) b=5,t=11 36 0.9760 0.8441 b={15 16 17}, 25 0.9389
t=12

fuzzywuzzy token_set_ratio 85 0.8757 0.6012 ratio 65 0.9338
jplag-java t=7 19 0.8636 0.3168 t=12 29 0.9576
difflib autojunk=false 28 0.8629 0.2113 autojunk=true 42 0.9443

whitespace=false whitespace=true
simjava r=16 15 0.8618 0.5888 r=25 46 0.9682
deckard (T) M=30 17 0.8509 0.3305 M=50 19 0.9520

S1=2 S1=1
S2=0.95 S2=1.0

bzip2ncd C=1..9 38 0.8494 0.3661 C=1 .. 9 54 0.8630
ncd-bzlib N/A 37 0.8465 0.3357 N/A 52 0.8689
simian (C) threshold=4, I1 5 0.8413 0.6394 threshold=4, I1 26 0.9593
ncd-zlib N/A 30 0.8361 0.3454 N/A 57 0.8776
Note: M=mintoken, S1=stride, S2=similarity, I1=ignoreVariableNames

Table 14: Top-10 rankings of using prec@n, ARP, and MAP over the generated data set with
the tools’ optimal configurations

Rank Pair-based Query-based
F-score prec@n ARP MAP

1 (0.976) ccfx (0.976) ccfx (1.000) ccfx (1.000) ccfx
2 (0.876) fuzzywuzzy (0.860) simjava (0.915) fuzzywuzzy (0.949) fuzzywuzzy
3 (0.864) jplag-java (0.858) fuzzywuzzy (0.913) ncd-bzlib (0.943) ncd-bzlib
4 (0.863) difflib (0.842) simian (0.912) 7zncd-BZip2 (0.942) bzip2ncd
5 (0.862) simjava (0.836) deckard (0.909) bzip2ncd (0.938) 7zncd-BZip2
6 (0.851) deckard (0.836) jplag-java (0.900) 7zncd-PPMd (0.937) gzipncd
7 (0.849) bzip2ncd (0.832) bzip2ncd (0.900) gzipncd (0.935) ncd-zlib
8 (0.847) ncd-bzlib (0.828) difflib (0.898) ncd-zlib (0.933) jplag-text
9 (0.841) simian (0.826) ncd-bzlib (0.898) xzncd (0.930) 7zncd-PPMd
10 (0.836) ncd-zlib (0.820) 7zncd-BZip2 (0.895) 7zncd-LZMA2 (0.929) xzncd

Lastly, we noticed that the best thresholds for the tools are very different between one
data set and another and that the chosen similarity threshold tends to have the largest impact
on the performance of similarity detection. This observation provides further motivation for
a threshold-free comparison using precision-at-n.

5.5 RQ5: Ranked Results

Which tools perform best when only the top n results are retrieved?

38 Chaiyong Ragkhitwetsagul et al.

Table 15: Top-10 rankings of using prec@n, ARP, and MAP over the SOCO data set with
the tools’ optimal configurations

Rank Pair-based Query-based
F-score prec@n ARP MAP

1 (0.969) jplag-text (0.965) jplag-text (0.998) jplag-java (0.997) jplag-java
2 (0.968) simjava (0.960) simjava (0.998) difflib (0.997) difflib
3 (0.959) simian (0.956) simian (0.989) ccfx (0.993) jplag-text
4 (0.958) jplag-java (0.947) deckard (0.989) simjava (0.988) simjava
5 (0.952) deckard (0.943) jplag-java (0.987) gzipncd (0.987) gzipncd
6 (0.944) difflib (0.938) difflib (0.986) jplag-text (0.987) ncd-zlib
7 (0.939) ccfx (0.929) ccfx (0.985) ncd-zlib (0.986) sherlock
8 (0.934) fuzzywuzzy (0.929) fuzzywuzzy (0.984) 7zncd-Deflate (0.986) 7zncd-Deflate64
9 (0.920) nicad (0.914) plaggie (0.984) 7zncd-Deflate64 (0.986) 7zncd-Deflate
10 (0.919) plaggie (0.901) nicad (0.983) 7zncd-LZMA (0.984) fuzzywuzzy

In experimental scenario 4, we applied three error measures; precision-at-n (prec@n),
average r-precision (ARP) and mean average precision (MAP); adopted from information
retrieval to the generated and SOCO data set. The results are discussed below.

5.5.1 Precision-at-n

As discussed in Section 4.4, we used prec@n in a pair-based manner. For the generated data
set, we sorted the 10,000 pairs of documents by their similarity values from the highest to the
lowest. Then, we evaluated the tools based on a set of top n elements. We varied the value of
n from 100 to 1500. In Table 14, we only reported the n equals to 1,000 since it is the number
of true positives in the data set. The tools’ optimal configurations are not included in the
table but can be found on our study website (Ragkhitwetsagul and Krinke, 2017a). The ccfx
tool is ranked 1st with the highest prec@n of 0.976 followed by simjava, and fuzzywuzzy.
In comparison with the rankings for F-scores, the ranking of the ten tools changed slightly,
as simjava and simian perform better while jplag-java and difflib tool now performed worse.
ncd-zlib is no longer in the top 10 and is replaced by 7ncd-BZip2 in the 10th place.

As illustrated in Figure 12, varying fifteen n values of prec@n from 100 to 1500, stepping
up by 100, gave us an overview of how well the tools perform across different n sizes. The
number of true positives is depicted by a dotted line. We could see that most of the tools
performed really well in the very first few hundreds of top n results by having steady flat lines
at prec@n of 1.0 until the top 500 pairs. However, at the top 600 pairs, the performance of
7zncd-BZip2, deckard, ncd-bzlib, simian and simjava started dropping. bzip2ncd, jplag-java,
and fuzzywuzzy started reporting false positives after the top 700 pairs while difflib could
stay until the top 800 pairs. ccfx was the only tool that could maintain 100% correct results
until the top 900 pairs. After that, it also started reporting false positives. At the top 1,500
pairs, all the tools offered prec@n at approximately 0.6 to 0.7. Due to a fairly small data set,
this finding of perfect 1.0 prec@n until the first 500 pairs may not generalise to other data
sets, as the similar performances achieved by the tools on the first 500 pairs might be due to
intrinsic properties of the analysed programs.

For the SOCO data set, we varied the n value from 100 to 800, also stepping up by 100.
The results in Table 15 used the n value of 453 which is the number of true positives in the
corrected ground truth. We can clearly see that the ranking of 10 tools using prec@n closely
resembles the one using F-scores. jplag-text is the top ranked tool followed by simjava, jplag-
java, simian, and deckard. The ranking of eight tools is exactly the same as using F-score.

A Comparison of Code Similarity Analysers 39

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
No. of files (n)

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

@
n

7zncd-BZip2
bzip2ncd
ccfx
deckard
jplag-java
ncd-bzlib
difflib
fuzzywuzzy
simian
simjava

Fig. 12: Precision-at-n of the tools according to varied numbers of n against generated data
set

100 200 300 400 453 500 600 700 800
No. of files (n)

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

@
n

ccfx
deckard
jplag-java
jplag-text
nicad
plaggie
difflib
fuzzywuzzy
simian
simjava

Fig. 13: Precision-at-n of the tools according to varied numbers of n against SOCO data set

jplag-java and nicad perform slightly worse using prec@453 and move down one position.
The overall performances of the tools across various n values is depicted in Figure 13 with
the dotted line representing the number of true positives. The chart is somewhat analogous
to the generated data set (Figure 12). Most of the tools started reporting false positives at the
top 300 pairs except jplag-java, difflib, fuzzywuzzy and simjava. After the top 400 pairs, no
tool could any longer maintain 100% true positive results.

Since prec@n is calculated from a set of top-n ranked results, its value shows how fast a
tool can retrieve correct answers to a limited set of n most similar files. It also reflects how
well the tool can differentiate between similar and dissimilar documents. A good tool should
not be confused and should produce a large gap in the similarity values between the true
positive and the true negative results. In this study, ccfx and jplag-text have shown to be the
best tools in terms of prec@n for pervasive modifications and boiler-plate code respectively.
They are the also the best tools based on F-scores in RQ1.

5.5.2 Average r-Precision

ARP is a query-based error measure that needs knowledge of ground truth. Since we knew
the ground truth for our two data sets, we did not need to vary the values of n as in prec@n.
The value of n was set to the number of true positives.

40 Chaiyong Ragkhitwetsagul et al.

Table 16: One-tailed randomization test with 100K samples of the ARP and MAP values
from the generated data set.

Tool ccfx fuzzywuzzy ncd-bzlib bzip2ncd ncd-zlib deckard simjava jplag-java simian difflib

ccfx I I I I I I I I I
fuzzywuzzy � � � � � � � � �
ncd-bzlib � � � � � � � � �
bzip2ncd � � � � � � � � �
ncd-zlib � � � � � � � � �
deckard � � � � � � � � �
simjava � � � � � � � � �
jplag-java � � � � � � � � �
simian � � � � � � � � �
difflib � � � � � � � � �

I— statistically significant difference of 1st tool’s ARP (row) to 2ndnd tool’s ARP (column), i.e. U ≤ 0.05.
�— no statistically significant difference.

For the generated data set, each file in the set of 100 files was used as a query once. Each
query received 100 files ranked by their similarity values. We knew the ground truth that
each file has 10 other similar files including itself (i.e. r or the number of relevant documents
equals 10). We cut off after the top 10 ranked results and calculated an r-precision value.
Finally, we computed ARP from an average of the 100 r-precisions. We reported the ARPs
of the ten tools in Table 14. We can see that ccfx is still ranked first with the perfect ARP
of 1.0000 followed by fuzzywuzzy. ncd-bzlib now performs much better using ARP and is
ranked third. Interesting, the 3rd to 10th ranks are all compression-based tools. This shows
that with the presence of pervasive modifications, code similarity using NCD-compression
method is better at query-based results than most of the clone and plagiarism detectors and
the string similarity tools.

For SOCO, only files with known, corrected, ground truth were used as queries. This
is because ARP can only be computed when relevant answers are retrieved. We found that
the 453 pairs in the ground truth were formed by 115 unique files, and we used them as
our queries. The value of r here was not fixed as for the generated data set. It depended on
how many relevant answers existed in the ground truth for each particular query file and
we calculated the r-precision based on that. The ARPs of the SOCO data set is reported
in Table 15. jplag-java and difflib are ranked first with an ARP of 0.998, followed by ccfx
and simjava both with an ARP of 0.989. Similar to the findings for the generated data set,
compression-based tools work well with a query-based approach by having 5 NCD tools
ranked in the top 10.

SinceARP are computed based onmeans, we performed a statistical test to strengthen our
results by testing for the statistical significance of differences in the set of r-precision values
between tools. We chose a one-tailed non-parametric randomisation test (i.e. permutation
test) due to its robustness in information retrieval as shown by Smucker et al (2007)6.
We performed the test using 100,000 random samples with a confidence interval value of
95% (i.e. U ≤ 0.05). The statistical test results are shown in Table 16 and Table 17. The
tables are matrices of pairwise one-tailed statistical test results in the direction of rows ≥
columns. The symbol I represents statistical significance while the symbol � represents no
statistical significance. For example, in Table 16, theI on the left most of the top row [ccfx,
fuzzywuzzy] shows that the mean of r-precision values of ccfx are higher than or equal to
fuzzywuzzy’s with statistical significance. On the other hand, we can see that the mean of

6 We also tried using one-tailed Wilcoxon signed-rank test on the results and found identical test results in
all cases

A Comparison of Code Similarity Analysers 41

Table 17: One-tailed randomization test with 100K samples of the ARP values from the
SOCO data set.

Tool jplag-java difflib ccfx simjava gzipncd jplag-text ncd-zlib deflate deflate64 LZMA

jplag-java � � � � � � I I I
difflib � � � � � � I I I
ccfx � � � � � � � � �
simjava � � � � � � � � �
gzipncd � � � � � � � � �
jplag-text � � � � � � � � �
ncd-zlib � � � � � � � � �
deflate � � � � � � � � �
deflate64 � � � � � � � � �
LZMA � � � � � � � � �

I— statistically significant difference of 1st tool’s ARP (row) to 2ndnd tool’s ARP (column), i.e. U ≤ 0.05.
�— no statistically significant difference.

r-precision values of fuzzywuzzy is higher than ncd-bzlib with no statistical significance as
represented by � at the location of [fuzzywuzzy, ncd-bzlib].

For the generated data set (Table 16), we found that ccfx is the only tool that dominates
other tools on their r-precisions values with statistical significance. For SOCO data set
(Table 17), jplag-java and difflib outperform 7zncd-Deflate, 7zncd-Deflate64, and 7zncd-
LZMA with statistical significance.

ARP tells us how well the tools perform when we want all the true positive results in
a query-based manner. For example, in automated software repair one wants to find similar
source code given some original, buggy, source code that one possesses. One can use the
original source code as a query and look for similar source files in a set of source code files.
In our study, ccfx is the best tool for this retrieval method against pervasive modifications.
jplag-java and difflib are the best tool for boiler-plate code.

5.5.3 Mean Average Precision

We included MAP in this study due to its well-known quality of discrimination and stability
across several recall levels. It is also used when the ground truth for relevant documents
is known. We computed MAP in a very similar way to ARP except that instead of only
looking at the top r pairs, we calculated precision every time a new, relevant, source code
file is retrieved. An average across all recall levels is then calculated. Lastly, the final average
across all the queries is computed as MAP. We used the same number of relevant files as
in the ARP calculations for the generated and the SOCO data set. The results for MAP are
reported in Table 14 and Table 15.

For the generated data set (Table 14), the rankings are very similar to those for ARP. ccfx,
fuzzywuzzy, and ncd-bzlib are ranked 1st, 2nd and 3rd. For SOCO (Table 15), the rankings
are very different to those obtained when using F-score and prec@n but similar to those
for ARP. Tools jplag-java and difflib become the best performers followed by jplag-text and
simjava.

Compression-based tools are again found to offer good performance with MAP. Five
tools are ranked in the top 10 for both the generated and boiler-plate code data sets.

Similarly, since MAP is also computed based on mean, we performed a one-tailed non-
parametric randomisation statistical test on pairwise comparisons of the tools’ MAP values.
The test results are shown in Table 16 and Table 18. For the generated data set, we found
the same results of ccfx dominating other tools’ MAPs with statistical significance. For the

42 Chaiyong Ragkhitwetsagul et al.

Table 18: One-tailed randomization test with 100K samples of the MAP values from SOCO
data set.

Tool jplag-java difflib jplag-text simjava gzipncd ncd-zlib sherlock deflate64 deflate fuzzywuzzy

jplag-java � � � I I I I I I
difflib � � � I I I I I I
jplag-text � � � � � � � � �
simjava � � � � � � � � �
gzipncd � � � � � � � � �
ncd-zlib � � � � � � � � �
sherlock � � � � � � � � �
deflate64 � � � � � � � � �
deflate � � � � � � � � �
fuzzywuzzy � � � � � � � � �

I— statistically significant difference of 1st tool’s MAP (row) to 2ndnd tool’s MAP (column), i.e. U ≤ 0.05.
�— no statistically significant difference.

SOCO data set, we found that jplag-java and difflib outperform gzipncd, ncd-zlib, sherlock,
7zncd-Deflate64, 7zncd-Deflate, and fuzzywuzzy with statistical significance.

MAP is similar to ARP because recall is taken into account. However, it differs from
ARP by measuring precision at multiple recall levels. It is also different from F-score in
terms of being query-based measure instead of a pair-based measure. It shows how well a
tool performs on average when it has to find all true positives for each query. In this study, the
best performing tool in terms of MAP is ccfx for pervasively modified code and jplag-java
and difflib for boiler-plate code respectively.

5.6 RQ6: Local + Global Code Modifications

How well do the techniques perform when source code containing boiler-plate code has
been pervasively modified?

Using the results from Experimental Scenario 5, we present the tools’ performances
based on F-scores in Table 19 and show the distribution of F-scores in Figure 14. The F-
scores are grouped according to the 10 pervasive code modification types (see Table 6). The
numbers are highlighted when F-scores are higher than 0.8.

5.6.1 Tools’ Performances vs. Individual Pervasive Modification Type

On the original boiler-plate code without any modification ($), every tool except iclones,
nicad, bsdiff, and diff report high F-scores ranging from 0.8 to 1.0. This shows that most
tools with their default configurations do not have a problem detecting boiler-plate code. The
tool nicad performed poorly, possibly due to default configurations that aim at clones without
variable renaming and code abstraction at all (i.e. set renaming=none and abstract=none).
iclone’s default configurations of minimum 100 of clone tokens are too high compared to
the optimal configurations of 40 found in RQ1. diff and bsdiff are too general to handle code
with local modifications.

The tools perform worse after pervasive modifications are applied on top of the boiler-
plate code. Source code obfuscation by Artifice (�) has strong effects to ccfx, iclones,
nicad, simian, bsdiff, and diff according to low F-scores of 0.0 to 0.2. deckard, jplag-java,
plaggie, simjava, difflib, fuzzywuzzy and ngram maintained their high F-scores of over 0.9.

A Comparison of Code Similarity Analysers 43

Table 19: F-scores of the tools on SOCOgen using the default configurations (with optimised
threshold). Highlighted values have F-score higher than 0.8.

Tool

F-Score

$ � %2 %6 %6 � � � �

 %2 %2 %6 %6
 %2

Clone det.
ccfx (C)* 0.8911 0.3714 0.0000 0.6265 0.0000 0.1034 0.0000 0.2985 0.0000 0.1034
deckard (T)* 0.9636 0.9217 0.1667 0.3333 0.0357 0.2286 0.1667 0.3252 0.0357 0.2286
iclones (L)* 0.5000 0.0000 0.0000 0.0357 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
nicad (T)* 0.5823 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
simian (L)* 0.8350 0.1034 0.0357 0.1356 0.0000 0.0357 0.0000 0.0357 0.0000 0.0357

Plagiarism det.
jplag-java 1.0000 1.0000 0.7429 0.9524 0.2973 0.4533 0.7547 0.9720 0.2973 0.4507
jplag-text 0.9815 0.6265 0.5581 0.6304 0.3590 0.4250 0.4906 0.5581 0.3590 0.4304
plaggie 0.9636 0.9159 0.7363 0.9372 0.2171 0.4626 0.7363 0.9423 0.2171 0.4626
sherlock 0.9483 0.8298 0.7872 0.8298 0.3061 0.3516 0.6744 0.7826 0.3061 0.3516
simjava 0.9649 0.9815 1.0000 0.7525 0.3188 0.3913 0.8041 0.7525 0.3188 0.3913
simtext 0.9649 0.7191 0.1667 0.4932 0.0357 0.1667 0.0702 0.2258 0.0357 0.1667

Compression
7zncd-BZip2 0.9273 0.7736 0.6852 0.8649 0.2446 0.3704 0.6423 0.7465 0.2446 0.3704
7zncd-Deflate 0.9483 0.7579 0.6935 0.8406 0.2427 0.3333 0.6360 0.7418 0.2427 0.3333
7zncd-Deflate64 0.9483 0.7579 0.6935 0.8406 0.2427 0.3333 0.6360 0.7373 0.2427 0.3333
7zncd-LZMA 0.9649 0.7967 0.7488 0.8851 0.2663 0.3842 0.6768 0.7665 0.2632 0.3842
7zncd-LZMA2 0.9649 0.7934 0.7536 0.8851 0.2718 0.3923 0.6700 0.7632 0.2697 0.4000
7zncd-PPMd 0.9623 0.7965 0.7628 0.8909 0.2581 0.3796 0.6667 0.8019 0.2581 0.3796
bzip2ncd 0.9649 0.8305 0.8302 0.9273 0.3590 0.4681 0.7612 0.8448 0.3562 0.4681
gzipncd 0.9623 0.7965 0.7628 0.8909 0.2581 0.3796 0.6667 0.8019 0.2581 0.3796
icd 0.9216 0.5058 0.4371 0.5623 0.2237 0.2822 0.3478 0.4239 0.2237 0.2822
ncd-zlib 0.9821 0.8571 0.8246 0.9432 0.4021 0.4920 0.7491 0.8559 0.3963 0.4920
ncd-bzlib 0.9649 0.8269 0.8269 0.9273 0.3529 0.4634 0.7500 0.8448 0.3500 0.4719
xzncd 0.9734 0.8416 0.7925 0.9198 0.3133 0.4615 0.7035 0.8148 0.3133 0.4615

Others
bsdiff 0.4388 0.2280 0.1529 0.2005 0.1151 0.1350 0.1276 0.1596 0.1152 0.1353
diff (C) 0.2835 0.2374 0.1585 0.2000 0.1296 0.1248 0.1530 0.1786 0.1302 0.1249
difflib 0.9821 0.9550 0.8952 0.9565 0.4790 0.5087 0.8688 0.9381 0.4606 0.5091
fuzzywuzzy 1.0000 0.9821 0.9259 0.9636 0.4651 0.5116 0.9074 0.9541 0.4557 0.5116
jellyfish 0.9273 0.7253 0.6400 0.6667 0.2479 0.3579 0.5513 0.5000 0.2479 0.3662
ngram 1.0000 0.9464 0.8952 0.9346 0.4110 0.4490 0.8785 0.8908 0.4054 0.4578
cosine 0.9074 0.6847 0.7123 0.6800 0.3500 0.3596 0.5823 0.5287 0.3500 0.3596

* — A tool that does not report similarity value directly. The similarity is measured at the granularity level of
line (L), token (T), or character (C).

O A K Pc PgK PgPc AK APc APgK APgPc

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F1
 S

co
re

s

Fig. 14: Distribution of tools performance for each pervasive modification type

44 Chaiyong Ragkhitwetsagul et al.

Interestingly, jplag-java reported a perfect F-score of 1.0 possibly due to it being designed
for detecting plagiarised code which is usually pervasively modified at source code level.

According to the boxplot in Figure 14, code after decompilation by Krakatau () results
in lower F-scores than after decompilation by Procyon. Since the Krakatau decompilation
process generates source code that is close to Java bytecode and mostly structurally different
from the original, its generated code is challenging for tools that are based on lexical and
syntactic similarity. In the group of clone detectors, ccfx, iclones, and nicad did not report
any correct results at all (F-score = 0.0) while deckard and simian reported very low F-scores
of 0.1667 and 0.0357 respectively. Code after decompilation by Procyon (%2) had milder
effects than Krakatau and Artifice. The tool fuzzywuzzy is the best for both and %2 with
F-scores of 0.9259 and 0.9636 respectively.

A combination of ProGuard and either Krakatau or Procyon (%6 , %6%2) reported the
lowest F-scores as can be clearly seen from Figure 14. This is due to bytecode modifications
(e.g. renaming classes, fields, and variables, package hierarchy flattening, class repackaging,
merging classes and modifying package access permissions) performed by ProGuard com-
bined with a decompilation process that greatly changed both the lexemes and the structure
of the code. It is interesting to see that difflib and fuzzywuzzy, a token matching technique,
are the highest performing tools with F-scores of 0.4790 and 0.5116 for %6 and %6%2
respectively. Thus, in the presence of pervasive modifications that heavily or completely
change code structure, using a simpler, general, text similarity technique may give a higher
chance of finding similar code than dedicated code similarity tools.

Code after source code obfuscation by Artifice and decompilation by Krakatau and Pro-
cyon (� , �%2) has comparable results to and %2 with marginal differences. Fuzzywuzzy
and jplag-java are the best tools for this modification type.

Lastly, two combinations of obfuscation and decompilation (�%6 , �%6%2) also pro-
vide almost identical F-score results to %6 and %6%2 . This suggests that the pervasive
modifications made to source code obfuscation may be no longer effective if decompilation
is included. Vice versa, the modifications made by bytecode obfuscation persist through the
compilation and decompilation process. Difflib and fuzzywuzzy are the best tools for this
modification type.

To sumup,we found thatmost of the tools performwell on detecting boiler-plate code, and
report lower performance when adding pervasive modifications. Some clone detection tools
can tolerate pervasive modifications made by source code obfuscators, but all are susceptible
to pervasive changes made by decompilers or a combination of a bytecode obfuscator
and decompilers. Plagiarism detectors offer decent results over the 10 modification types.
Interestingly, fuzzywuzzy and difflib, token and string matching techniques, outperformed
dedicated tools on heavily modified code with a combination of obfuscators and decompilers.

5.7 Overall discussions

In summary, we have answered the six research questions after performing five experimental
scenarios. We found that the state-of-the-art code similarity analysers perform differently
on pervasively modified code. Properly configured, a well known and often used clone
detector, ccfx, performed the best, closely followed by a Python string matching algorithm,
fuzzywuzzy. A comparison of the tools on boiler-plate code in the SOCO data set found the
jplag-text plagiarism detector performed the best followed by simjava, simian, jplag-java,
and deckard.

A Comparison of Code Similarity Analysers 45

The experiment using compilation/decompilation for normalisation showed that compila-
tion/decompilation is effective and improves similarity detection techniques with statistical
significance. Therefore, future implementations of clone or plagiarism detection tools or
other similarity detection approaches could consider using compilation/decompilation for
normalisation.

However, every technique and tool turned out to be extremely sensitive to its own
configurations consisting of several parameter settings and a similarity threshold. Moreover,
for some tools the optimal configurations turned out to be very different to the default
configuration, showing one cannot just reuse (default) configurations.

Finding an optimal configuration is naturally biased by the particular data set. One
cannot get optimal results from tools by directly applying the optimal derived parameter
settings and similarity thresholds for one data set to another data set. The SOCO data set,
where we have applied the optimal configurations from the generated data set, clearly shows
that configurations that work well with a specific data set may not be guaranteed to work
with future data sets. Researchers have to consider this limitation every time when they use
similarity detection techniques in their studies.

The chosen similarity threshold has the strongest impact on the results of similarity de-
tection. We have investigated the use of three information retrieval error measures, precision-
at-n, r-precision, and mean average precision, to remove the threshold completely and rely
only on the ranked pairs. These three error measures are often used in information retrieval
research but are rarely seen in code similarity measurements such as code clone or plagiarism
detection. Using the three measures, we can see how successful the different techniques and
tools are in distinguishing similar code from dissimilar code based on ranked results. The
tool rankings can be used as guidelines to select tools in real-world scenarios of similar code
search or code plagiarism detection, for example, when one is interested in looking at only
the top n most similar source code pairs due to limited time for manual inspection or when
one uses a file to query for the other most similar files.

Lastly, we compare the tools on a data set of pervasively modified boiler-plate code. We
found that while most tools offered high performance on boiler-plate code, they performed
much worse after pervasive modifications were applied. We observed that pervasively mod-
ified code with changes made from a combination of bytecode obfuscation by ProGuard and
the two decompilers had strongest effects on the tools’ F-scores.

5.8 Threats to validity

Construct validity: We carefully chose the data sets for our experiment. We created the
first data set (generated) by ourselves to obtain the ground truth for positive and negative
results. We investigated whether our obfuscators (Artifice and ProGuard), compiler (javac)
and decompilers (Krakatau and Procyon) offer code modifications that are commonly found
in code cloning and code plagiarism (see Table 1). However, they may not totally represent
all possible pervasive modifications found in software. The SOCO data set has been used
in a competition for detecting reused code and a careful manual investigation has revealed
errors in the provided ground truth that have been corrected.

Internal validity:Although we have attempted to use the tools with their best parameter
settings, we cannot guarantee that we have done so successfully and it may be possible that the
poor performance of some detectors is due to wrong usage as opposed to the techniques used
in the detector. Moreover, in this study we tried to compare the tools’ performances based on
several standard measurements of precision, recall, accuracy, F-score, AUC, prec@n, ARP

46 Chaiyong Ragkhitwetsagul et al.

and MAP. However, there might be some situations where other measurements are required
and that might produce different results.

External validity: The tools used in this study were restricted to be open-source or at
least be freely available, but they do cover several areas of similarity detection (including
string-, token-, and tree-based approaches) and some of them are well-known similarity
measurement techniques used in other areas such as normalised compression (information
theory) and cosine similarity (information retrieval). Nevertheless, they might not be com-
pletely representative of all available techniques and tools.

The generated (100 Java files) and SOCO (259 Java files) data sets are fairly small and
contain a single class with one or a few methods. They might not adequately represent real
software projects. Hence, our results are limited to pervasive modifications and boiler-plate
code at a file-level, not a whole software project. The optimal configurations presented in this
paper are found relative to the data set of code modifications from which they were derived
and may not generalise to all type of code modifications. In addition, the two decompilers
(Krakatau, Procyon) are only a subset of all decompilers available. So they may not totally
represent the performance of the other decompilers in the market or even other source code
normalisation techniques. However, we have chosen two instead of only one so we can
compare their behaviours and performances. As we are exploiting features of Java source
and byte code, our findings only apply to Java code.

6 Related Work

Plagiarism is obviously a problem of serious concern in education. Similarly in industry,
the copying of code or programs is copyright infringement. They affect both the originality
of one’s idea, one’s credibility, and also the quality of one’s organisation. The problem of
software plagiarismhas been occurring for several decades in schools and universities (Cosma
and Joy, 2008; Daniela et al, 2012) and in law, where one of the more visible cases regarding
copyright infringement of software is the ongoing lawsuit betweenOracle andGoogle (United
States District Court, 2011).

To detect plagiarism or copyright infringement of source code, one has to measure the
similarity of two programs. Two programs can be similar at the level of purpose, algorithm,
or implementation (Zhang et al, 2012). Most software plagiarism tools and techniques focus
on the level of implementation since it is most likely to be plagiarised. The process of code
plagiarism involves pervasive modifications to hide the plagiarism which often includes ob-
fuscation. The goal of code obfuscation is to make the modified code harder to understand
by humans and harder to reverse engineer while preserving its semantics (Whale, 1990;
Collberg et al, 2003, 2002, 1997). Deobfuscation attempts to reverse engineer obfuscated
code (Udupa et al, 2005). Because Java byte code is comparatively high-level and easy to de-
compile, obfuscation of Java bytecode has focused on preventing decompilation (Batchelder
and Hendren, 2007) while decompilers like Krakatoa (Proebsting and Watterson, 1997),
Krakatau (Grosse, 2016) and Procyon (Strobel, 2016) attempt to decompile even in the
presence of obfuscation.

Although there are a large number of clone detectors, plagiarism detectors, and code
similarity detectors invented in the research community, there are relatively few studies that
compare and evaluate their performances. Bellon et al (2007) proposed a framework for
comparing and evaluating clone detectors and six tools (Dup, CloneDr, CCFinder, Duplix,
CLAN, Duploc) were chosen for the studies. Later, Roy et al (2009) performed a thorough
evaluation of clone detection tools and techniques covering a wider range of tools. However,

A Comparison of Code Similarity Analysers 47

they compare the tools and techniques using the evaluation results obtained from the tools’
published papers without any real experimentation. Moreover, the performances in terms
of recall for 11 modern clone detectors are evaluated based on four different code clone
benchmark frameworks including Bellon’s (Svajlenko and Roy, 2014). Hage et al (2010)
compare five plagiarism detectors in term of their features and performances against 17
code modifications. Burd and Bailey (2002) compare five clone detectors for preventive
maintenance task. Biegel et al (2011) compare three code similarity measures to identify
code that need refactoring. Roy and Cordy (2009) use a mutation based approach to create
a framework for the evaluation of clone detectors. However, their framework was mostly
limited to locally confined modifications, only including systematic renaming as a pervasive
modification. Due to the limitations, we haven’t included their framework in our study.
Moreover, they used their framework for a comparison limited to three variants of their
own clone detector NICAD (Roy and Cordy, 2008). Svajlenko and Roy (2016) developed a
clone evaluation framework called BigCloneEval that aimed to automatically measure clone
detectors’ recall on the BigCloneBench data set. The BigCloneBench’s manually-confirmed
clone oracle is built from IJaDataset, the repository of 25,000 Java open source projects,
by searching for methods containing keywords and source code patterns representing 43
functionalities. While BigCloneEval offers a benefit of manually confirmed clones from a
large set of real-world Java software projects, their clone oracle, and also the measured recall,
is limited to the selected functionalities. If a tool reports other clone pairs besides these 43
functionalities, the framework does not take them into account. Although our two data sets
in this study are much smaller in size in comparison with the BigCloneBench, we were able
to measure both precision and recall. Since we created one data set using code obfuscators,
a compiler, and decompilers, and reused another data set from a competition, we had a
complete knowledge of the ground truth for both of them and could take all possible similar
code pairs, i.e. clones, into account.

Several code obfuscation methods can be found in the work of Luo et al (2014). The
techniques utilised include obfuscation by different compiler optimization levels or using
different compilers. Obfuscating tools exist at either source code level (e.g. Semantic Designs
Inc.’s C obfuscator, Stunnix’s CXX-obfuscator), and binary level (e.g. Diablo, Loco (Madou
et al, 2006), CIL (Necula et al, 2002)).

An evaluation of code obfuscation techniques has been performed by Ceccato et al
(2009). They evaluated how layout obfuscation by identifier renaming affects the participants’
comprehension of, and ability to modify, two given programs. They found that obfuscation
by identifier renaming could slow down an attack by two to four times the time needed for
clear, un-obfuscated programs. Their later study (Ceccato et al, 2013) confirms that identifier
renaming is an effective obfuscation technique, even better than control-flow obfuscation by
opaque predicates. Our two chosen obfuscators also perform layout obfuscation, including
identifier renaming, in this study. However, instead ofmeasuring understanding of obfuscated
programs by human, we measure how well code similarity analysers perform on obfuscated
code, whichwe use as a kind of pervasive codemodifications.We also decompiled obfuscated
bytecode and compared the tools’ performances based on the resulting source code.

There are studies that try to enhance the performance of clone detectors by looking for
more clones from the code’s intermediate representation such as Jimple code (Selim et al,
2010), bytecode (Chen et al, 2014; Kononenko et al, 2014), or assembler code (Davis and
Godfrey, 2010). Using intermediate representation for clone detection gives satisfying results
mainly by increasing the recall of the tools. Our study is different from them in the way that
we apply decompilation as another code modification step before applying code similarity
analysers. Our decompiled code is also Java source code and we can choose any source-based

48 Chaiyong Ragkhitwetsagul et al.

similarity analysers directly out of the box. Our results show that compilation/decompilation
can also help in improving tools’ performances. An empirical study of using compilation/de-
compilation to enhance the performance of clone detection tool in three real-world system
found similar results to our study (Ragkhitwetsagul and Krinke, 2017b).

Keivanloo et al (2015) discussed the problem of using a single threshold for clone
detection over several repositories and propose a solution using threshold-free clone detection
based on unsupervised learning. The method mainly utilises :-means clustering with the
Friedman quality optimization method. Our investigation of precision-at-n, ARP, and MAP
focuses on the same problem but our goal is to compare the performance of several similarity
detection tools instead of boosting the performance of one tool as in their study.

The work that is closest to ours is the empirical study of the efficiency of current
detection tools against code obfuscation (Schulze and Meyer, 2013). The authors created the
Artifice source code obfuscator and measured the effects of obfuscation on clone detectors.
However, the number of tools chosen for the study was limited to only three detectors: JPlag,
CloneDigger, and Scorpio. Nor has bytecode obfuscation been considered. The study showed
that token-based clone detection outperformed text-, tree- and graph-based clone detection
(similar to our findings).

7 Conclusions

This study of source code similarity analysers is the largest existing similarity detection
study covering the widest range (30) of similarity detection techniques and tools to date.
We found that the techniques and tools achieve varied performances when run against five
different scenarios of modifications on source code. Our analysis provides a broad, thorough,
performance-based evaluation of tools and techniques for similarity detection.

Our experimental results show that highly specialised source code similarity detection
techniques and tools can perform better than more general textual similarity measures. ccfx
offers the highest performance on pervasively modified code and jplag-text on boiler-plate
code. However, general string matching techniques, fuzzywuzzy and difflib, outperform
dedicated code similarity tools in some cases especially for code with heavy structural
changes. Moreover, we confirmed that compilation and decompilation can be used as an
effective normalisationmethod that greatly improves similarity detection between Java source
code, leading to three clone and plagiarism tools not reporting any false classification on our
generated data set. The evaluation of ranked results provides a guideline for tool selections
when one wants to retrieve only the highly similar results to the code query.

Once again, our study showed that similarity detection techniques and tools are very
sensitive to their parameter settings. One cannot just use default settings or re-use settings
that have been optimised for one data set to another data set.

Importantly, the results of the study can be used as a guideline for researchers to select a
proper technique with appropriate configurations for their data sets.

8 Acknowledgments

Chaiyong Ragkhitwetsagul is supported by the Ph.D. scholarship from the Faculty of Infor-
mation and Communication Technology, Mahidol University, Thailand. The authors would
like to thankMicrosoft Azure for Research award (CRM:0518332) that allowed us to leverage

A Comparison of Code Similarity Analysers 49

cloud computing power and feasibly explore the large search space of the tools’ configura-
tions. Lastly, the authors extend their gratitude to the anonymous reviewers for their valuable
comments on the earlier versions of this paper.

References

Ahtiainen A, Surakka S, Rahikainen M (2006) Plaggie: GNU-licensed source code plagia-
rism detection engine for Java exercises. In: Baltic Sea ’06, pp 141–142

Batchelder M, Hendren L (2007) Obfuscating Java: The most pain for the least gain. In:
Compiler Construction, pp 96–110

Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L (1998) Clone detection using abstract
syntax trees. In: ICSM’98, pp 368–377

Beitzel SM, Jensen EC, Frieder O (2009) Average R-Precision, Springer US, pp 195–195
Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and evaluation of

clone detection tools. Transactions on Software Engineering 33(9):577–591
Berghel HL, Sallach DL (1984) Measurements of program similarity in identical task envi-

ronments. ACM SIGPLAN Notices 19(8):65
Biegel B, Soetens QD, Hornig W, Diehl S, Demeyer S (2011) Comparison of similarity

metrics for refactoring detection. In: MSR ’11
Box GE, Hunter JS, Hunter WG (1978) Statistics for Experimenters. John Wiley and Sons
Breuer PT, Bowen JP (1994) Decompilation: the enumeration of types and grammars. Trans-

actions on Programming Languages and Systems 16(5):1613–1647
Brixtel R, Fontaine M, Lesner B, Bazin C, Robbes R (2010) Language-independent clone

detection applied to plagiarism detection. In: Proceedings of the 10thWorking Conference
on Source Code Analysis and Manipulation (SCAM ’10), pp 77–86

BruntinkM, vanDeursenA, vanEngelenR, TourweT (2005)On the use of clone detection for
identifying crosscutting concern code. Transactions on Software Engineering 31(10):804–
818

Burd E, Bailey J (2002) Evaluating clone detection tools for use during preventative main-
tenance. In: SCAM ’02, pp 36–43

Burrows S, Tahaghoghi SMM, Zobel J (2007) Efficient plagiarism detection for large code
repositories. Software: Practice and Experience 37(2):151–175

Ceccato M, Di Penta M, Nagra J, Falcarin P, Ricca F, Torchiano M, Tonella P (2009) The
effectiveness of source code obfuscation: An experimental assessment. In: ICPC ’09, pp
178–187

Ceccato M, Di Penta M, Falcarin P, Ricca F, Torchiano M, Tonella P (2013) A family
of experiments to assess the effectiveness and efficiency of source code obfuscation
techniques. Empirical Software Engineering pp 1040–1074

Chae DK, Ha J, Kim SW, Kang B, Im EG (2013) Software Plagiarism Detection: A Graph-
based Approach. In: CIKM ’13, pp 1577–1580

Chen K, Liu P, Zhang Y (2014) Achieving accuracy and scalability simultaneously in
detecting application clones on Android markets. In: ICSE ’14, pp 175–186

Chow S, Chow S, Gu Y, Gu Y, Johnson H, Johnson H, Zakharov Va, Zakharov Va (2001)
An Approach to the Obfuscation of Control-Flow of Sequential Computer Programs. In:
ISC ’01, pp 144–155

Cifuentes C, Gough KJ (1995) Decompilation of binary programs. Software: Practice and
Experience 25(7):811–829

50 Chaiyong Ragkhitwetsagul et al.

Cilibrasi R, Vitányi PMB (2005) Clustering by compression. Transactions on Information
Theory 51(4):1523–1545

Cilibrasi R, Cruz AL, de Rooij S, Keijzer M (2015) Complearn. http://complearn.org/
index.html, accessed: 2016-02-14

Cohen A (2011) FuzzyWuzzy: Fuzzy string matching in Python. http://chairnerd.
seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/, accessed:
2016-02-14

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating transformations.
Tech. Rep. 148, Department of Computer Science University of Auckland

Collberg C,Myles G, Huntwork A (2003) Sandmark – a tool for software protection research.
Security and Privacy 1(4):40–49

Collberg CS, Thomborson C, Member S (2002) Watermarking, tamper-proofing, and obfus-
cation – tools for software protection. Computer 28(8):735–746

Cosma G, Joy M (2008) Towards a definition of source-code plagiarism. Transactions on
Education 51(2):195–200

Cosma G, Joy M (2012) An approach to source-code plagiarism detection and investigation
using latent semantic analysis. Transactions on Computers 61(3):379–394

Crussell J, Gibler C, Chen H (2012) Attack of the Clones: Detecting Cloned Applications
on Android Markets. In: ESORICS ’12, pp 37–54

Crussell J, Gibler C, Chen H (2013) AnDarwin: Scalable Detection of Semantically Similar
Android Applications. In: ESORICS ’13, pp 182–199

Dangel A, Pelisse R (2011) Pmd’s copy/paste detector (cpd). http://pmd.sourceforge.
net/pmd-4.3.0/cpd.html, accessed: 2017-05-28

Daniela C, Navrat P, Kovacova B, Humay P (2012) The issue of (software) plagiarism: A
student view. Transactions on Education 55(1):22–28

Davies J, German DM, Godfrey MW, Hindle A (2013) Software bertillonage: Determin-
ing the provenance of software development artifacts. Empirical Software Engineering
18:1195–1237

Davis IJ, Godfrey MW (2010) From Where It Came: Detecting Source Code Clones by
Analyzing Assembler. In: WCRE’10, pp 242–246

Desnos A, Gueguen G (2011) Android: From reversing to decompilation. Black Hat Abu
Dhabi pp 1–24

Donaldson J, Lancaster A, Sposato P (1981) A plagiarism detection system. SIGCSE ’81 pp
21–25

Ducasse S, Rieger M, Demeyer S (1999) A language independent approach for detecting
duplicated code. In: ICSM ’99, pp 109–118

Duric Z, Gasevic D (2013) A source code similarity system for plagiarism detection. The
Computer Journal 56(1):70–86

Faidhi J, Robinson S (1987) An empirical approach for detecting program similarity and pla-
giarismwithin a university programming environment. Computers & Education 11(1):11–
19

Fisher R (1935) The Design of Experiments. Oliver and Boyd
Flores E, Rosso P, Moreno L, Villatoro-Tello E (2014) Detection of source code re-use.
http://users.dsic.upv.es/grupos/nle/soco/, accessed: 2016-02-14

Fowler M (2013) Catalog of refactorings. https://refactoring.com/catalog/, ac-
cessed: 2017-05-28

Gibler C, Stevens R, Crussell J, Chen H, Zang H, Choi H (2013) AdRob: Examining the
Landscape and Impact of Android Application Plagiarism. In: MobiSys’13, p 431

Göde N, Koschke R (2009) Incremental clone detection. In: CSMR’09, pp 219–228

http://complearn.org/index.html
http://complearn.org/index.html
http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/
http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
http://pmd.sourceforge.net/pmd-4.3.0/cpd.html
http://users.dsic.upv.es/grupos/nle/soco/
https://refactoring.com/catalog/

A Comparison of Code Similarity Analysers 51

Grier S (1981) A tool that detects plagiarism in Pascal programs. SIGCSE ’81 13(1):15–20
Grosse R (2016) Krakatau bytecode tools. https://github.com/Storyyeller/
Krakatau, accessed: 2016-02-14

Grune D (2014) The software and text similarity tester SIM. https://dickgrune.com/
Programs/similarity_tester/, accessed: 2019-01-09

GuardSquare (2015) ProGuard: bytecode obfuscation tool. http://proguard.
sourceforge.net/, accessed: 2015-08-24

Hage J, Rademaker P, van Vugt N (2010) A comparison of plagiarism detection tools.
Technical Report UU-CS-2010-015, Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

Halstead MH (1977) Elements of Software Science. Amsterdam: Elsevier North-Holland,
Inc.

Harris S (2015) Simian – similarity analyser, version 2.4. http://www.harukizaemon.
com/simian/, accessed: 2016-02-14

Hartmann B, Macdougall D, Brandt J, Klemmer SR (2010) What would other programmers
do? suggesting solutions to error messages. In: CHI ’10, pp 1019–1028

Holmes R,MurphyGC (2005) Using structural context to recommend source code examples.
In: ICSE ’05, New York, New York, USA

Jiang L, Misherghi G, Su Z, Glondu S (2007a) DECKARD: Scalable and accurate tree-based
detection of code clones. In: ICSE’07, pp 96–105

Jiang L, Su Z, Chiu E (2007b) Context-based detection of clone-related bugs. In: ESEC-FSE
’07

Joy M, Luck M (1999) Plagiarism in programming assignments. Transactions on Education
42(2):129–133

Joy M, Griffiths N, Boyatt R (2005) The BOSS online submission and assessment system.
Educational Resources in Computing 5(3)

Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code
clone detection system for large scale source code. Transactions on Software Engineering
28(7):654–670

Kapser C, Godfrey M (2006) “Cloning Considered Harmful” Considered Harmful. In: 2006
13th Working Conference on Reverse Engineering, pp 19–28

Kapser C, Godfrey MW (2003) Toward a taxonomy of clones in source code: A case study.
In: ELISA ’03, pp 67–78

Kapser CJ, Godfrey MW (2008) “cloning considered harmful” considered harmful: patterns
of cloning in software. Empirical Software Engineering 13(6):645–692

Ke Y, Stolee KT, Goues CL, Brun Y (2015) Repairing programs with semantic code search.
In: Proceedings of the 30th International Conference on Automated Software Engineering
(ASE ’15), pp 295–306

Keivanloo I, Rilling J, Zou Y (2014) Spotting working code examples. In: Proceedings of
the 36th International Conference on Software Engineering (ICSE ’14), pp 664–675

Keivanloo I, Zhang F, Zou Y (2015) Threshold-free code clone detection for a large-scale
heterogeneous java repository. In: SANER ’15, pp 201–210

Komondoor R, Horwitz S (2001) Using slicing to identify duplication in source code. In:
SAS’01, pp 40–56

Kononenko O, Zhang C, Godfrey MW (2014) Compiling Clones: What Happens? In: IC-
SME’14, pp 481–485

Krinke J (2001) Identifying similar code with program dependence graphs. In: WCRE ’01,
pp 301–309

https://github.com/Storyyeller/Krakatau
https://github.com/Storyyeller/Krakatau
https://dickgrune.com/Programs/similarity_tester/
https://dickgrune.com/Programs/similarity_tester/
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
http://www.harukizaemon.com/simian/
http://www.harukizaemon.com/simian/

52 Chaiyong Ragkhitwetsagul et al.

LiM,Vitâanyi PMB (2008)An Introduction toKolmogorovComplexity and ItsApplications.
Springer

Li Z, Lu S, Myagmar S, Zhou Y (2006) CP-Miner: Finding copy-paste and related bugs in
large-scale software code. Transactions on Software Engineering 32(3):176–192

Lim Hi, Park H, Choi S, Han T (2009) A method for detecting the theft of Java programs
through analysis of the control flow information. Information and Software Technology
51(9):1338–1350

Liu C, Chen C, Han J, Yu PS (2006) GPLAG: Detection of software plagiarism by program
dependence graph analysis. In: KDD ’06

Luo L,Ming J,WuD, Liu P, Zhu S (2014) Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software plagiarism detection. In: FSE’14, pp
389–400

Madou M, Put LV, Bosschere KD (2006) Loco: An interactive code (de) obfuscation tool.
In: PEPM’06, pp 140–144

Maebe J, Sutter BD (2006) Diablo. http://diablo.elis.ugent.be, accessed: 2016-02-
14

Maletic J, Marcus A (2001) Supporting program comprehension using semantic and struc-
tural information. In: ICSE ’01, pp 103–112

ManningCD, Raghavan P, SchutzeH (2009)An Introduction toInformation Retrieval, vol 21.
Cambridge University Press

McMillan C, Grechanik M, Poshyvanyk D (2012) Detecting similar software applications.
In: ICSE’12, pp 364–374

Moreno L, Bavota G, Penta MD, Oliveto R, Marcus A (2015) How can i use this method?
In: ICSE ’15

Mycroft A (1999) Type-Based Decompilation (or Program Reconstruction via Type Recon-
struction). Programming Languages and Systems

Myles G, Collberg C (2004) Detecting Software Theft via Whole Program Path Birthmarks.
In: ISC ’04, pp 404–415

Nachenberg C (1996) Understanding and managing polymorphic viruses. The Symantec
Enterprise Papers 30:16

Necula GC, Mcpeak S, Rahul SP, Weimer W (2002) CIL: Intermediate language and tools
for analysis and transformation of C programs. In: CC’02, pp 213–228

Ottenstein K (1976) An algorithmic approach to the detection and prevention of plagiarism.
SIGCSE ’76 8(4):41

Pate JR, Tairas R,Kraft NA (2013) Clone evolution: A systematic review. Journal of software:
Evolution and Process 25:261–283

Pavlov I (2016) 7-Zip. http://www.7-zip.org, accessed: 2016-02-14
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pret-

tenhofer P, Weiss R, Dubourg V, et al (2011) Scikit-learn: Machine learning in python.
Journal of Machine Learning Research 12(Oct):2825–2830

Pike R, Loki (2002) The Sherlock plagiarism detector. http://www.cs.usyd.edu.au/
~scilect/sherlock/, accessed: 2016-02-14

Poulter G (2012) Python ngram 3.3. https://pythonhosted.org/ngram/, accessed:
2016-02-14

Prechelt L, Malpohl G, Philippsen M (2002) Finding plagiarisms among a set of programs
with JPlag. Journal of Universal Computer Science 8(11):1016–1038

Proebsting Ta, Watterson Sa (1997) Krakatoa: Decompilation in Java (does bytecode reveal
source?). In: USENIX, pp 185–198

http://diablo.elis.ugent.be
http://www.7-zip.org
http://www.cs.usyd.edu.au/~scilect/sherlock/
http://www.cs.usyd.edu.au/~scilect/sherlock/
https://pythonhosted.org/ngram/

A Comparison of Code Similarity Analysers 53

Python Software Foundation (2016) difflib – helpers for computing deltas.
http://docs.python.org/2/library/difflib.html, accessed: 2016-02-14

Ragkhitwetsagul C, Krinke J (2017a) The study’s website: Comparison of code similarity
analysers. http://crest.cs.ucl.ac.uk/resources/cloplag/, accessed: 2017-06-
20

Ragkhitwetsagul C, Krinke J (2017b) Using Compilation / Decompilation to Enhance Clone
Detection. In: 11th International Workshop on Software Clone

Ragkhitwetsagul C, Krinke J, Clark D (2016) Similarity of Source Code in the Presence of
Pervasive Modifications. In: SCAM ’16

Roy CK, Cordy JR (2008) NICAD: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization. In: ICPC’08, pp 172–181

Roy CK, Cordy JR (2009) AMutation/Injection-Based Automatic Framework for Evaluating
Code Clone Detection Tools. In: ICSTW ’09, pp 157–166

Roy CK, Cordy JR, Koschke R (2009) Comparison and evaluation of code clone detec-
tion techniques and tools: A qualitative approach. Science of Computer Programming
74(7):470–495

Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016) SourcererCC: Scaling Code
Clone Detection to Big-Code. In: ICSE ’16, pp 1157–1168

Schleimer S, Wilkerson DS, Aiken A (2003) Winnowing: Local algorithms for document
fingerprinting. In: SIGMOD’03

Schulze S, Meyer D (2013) On the robustness of clone detection to code obfuscation. In:
IWSC’13, pp 62–68

Selim GM, Foo KC, Zou Y (2010) Enhancing Source-Based Clone Detection Using Inter-
mediate Representation. In: WCRE’10, pp 227–236

Semantic Designs (2016) ThicketTM family of source code obfuscators. http://www.
semdesigns.com/Products/Obfuscators/, accessed: 2016-02-14

Smucker MD, Allan J, Carterette B (2007) A comparison of statistical significance tests for
information retrieval evaluation. In: Proceedings of the 16th Conference on information
and knowledge management (CIKM ’07), p 623

Strobel M (2016) Procyon / Java Decompiler. https://bitbucket.org/mstrobel/
procyon/wiki/Java%20Decompiler, accessed: 2016-02-14

Stunnix (2016) http://stunnix.com, accessed: 2016-02-14
Svajlenko J, Roy CK (2014) Evaluating modern clone detection tools. In: ICSME ’14, pp

321–330
Svajlenko J, Roy CK (2016) BigCloneEval: A clone detection tool evaluation framework

with BigCloneBench. In: Proceedings of the 32nd International Conference on Software
Maintenance and Evolution (ICSME ’16), pp 596–600

Tamada H, Okamoto K, Nakamura M (2004) Dynamic software birthmarks to detect the
theft of windows applications. In: ISFST ’04

Thomas SW, Hemmati H, Hassan AE, Blostein D (2014) Static test case prioritization using
topic models. Empirical Software Engineering 19(1):182–212

Tian Z, Zheng Q, Liu T, Fan M, Zhang X, Yang Z (2014) Plagiarism detection for multi-
threaded software based on thread-aware software birthmarks. In: ICPC ’14, pp 304–313

Turk J, Stephens M (2016) A python library for doing approximate and phonetic matching
of strings. https://github.com/jamesturk/jellyfish, accessed: 2016-02-14

Udupa SK, Debray SK, Madou M (2005) Deobfuscation: reverse engineering obfuscated
code. In: WCRE ’05, pp 45–56

United States District Court (2011) Oracle America, Inc. v. Google Inc., No. 3:2010cv03561
– Document 642 (N.D. Cal. 2011). http://law.justia.com/cases/federal/

http://crest.cs.ucl.ac.uk/resources/cloplag/
http://www.semdesigns.com/Products/Obfuscators/
http://www.semdesigns.com/Products/Obfuscators/
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler
http://stunnix.com
https://github.com/jamesturk/jellyfish
http://law.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/642/

54 Chaiyong Ragkhitwetsagul et al.

district-courts/california/candce/3:2010cv03561/231846/642/, accessed:
2016-02-14

Vargha A, Delaney HD (2000) A critique and improvement of the "cl" common language
effect size statistics of mcgraw and wong. Journal of Educational and Behavioral Statistics
25(2 (Summer, 2000)):101–132

Wang CWC, Davidson J, Hill J, Knight J (2001) Protection of software-based survivability
mechanisms. In: DSN ’01

Wang T, Harman M, Jia Y, Krinke J (2013) Searching for better configurations: A rigorous
approach to clone evaluation. In: FSE’13, pp 455–465

Whale G (1990) Identification of program similarity in large populations. The Computer
Journal 33(2):140–146

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bulletin 1(6):80
Wise MJ (1992) Detection of similarities in student programs. In: SIGCSE ’92, pp 268–271
Wise MJ (1996) YAP3: Improved detection of similarities in computer program and other

texts. In: SIGCSE ’96, pp 130–134
Yang D, Martins P, Saini V, Lopes C (2017) Stack Overflow in Github: Any snippets there?

In: Proceedings of the International Conference on Mining Software Repositories (MSR
’17)

Zhang F, Jhi YC, Wu D, Liu P, Zhu S (2012) A first step towards algorithm plagiarism
detection. In: ISSTA ’12

Zhang F, Huang H, Zhu S, Wu D, Liu P (2014) ViewDroid: Towards Obfuscation-Resilient
Mobile Application Repackaging Detection. In: WiSec ’14, pp 25–36

http://law.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/642/
http://law.justia.com/cases/federal/district-courts/california/candce/3:2010cv03561/231846/642/

	Introduction
	Background
	Empirical Study
	Experimental Scenarios
	Results
	Related Work
	Conclusions
	Acknowledgments

