
Software Team Member Configurations:
A Study of Team Effectiveness in Moodle

Noppadol Assavakamhaenghan*, Morakot Choetkiertikul*, Suppawong Tuarob*, Raula Gaikovina Kula†,
Hideaki Hata†, Chaiyong Ragkhitwetsagul*, Thanwadee Sunetnanta*, and Kenichi Matsumoto†

*Faculty of Information and Communication Technology (ICT), Mahidol University
†Nara Institute of Science and Technology (NAIST)

Email: noppadol.assava@gmail.com, {morakot.cho, suppawong.tua, chaiyong.rag, thanwadee.sun}@mahidol.ac.th
{raula-k, hata, matumoto}@is.naist.jp

Abstract—Many open source projects organize teams to collab-
oratively manage their software development activities (i.e. issue
resolution processes). Therefore good configurations of software
development teams can be an important factor, as effective
allocation and completion of tasks may result in a more effective
activity (i.e. changing configurations after an issue is reopened).
To validate this assumption, we present an exploratory study
on software team member configuration when resolving issues.
We mine the JIRA issue tracking system to assess whether
different team member configurations are quicker to resolve
issues after being reopened. In a case study of Moodle, our results
confirm that the combinations of team members in different roles
correlate with reopened issues and the changing of team members
is found to resolve those reopened issues. Moreover, the study
shows that the issue type is an important factor when assigning
team members.

Index Terms—Team Member Configuration, Issue Tracking
Systems, Reopened Issues

I. INTRODUCTION

Software development involves much non-trivial tasks that
requires a good collaboration between team members [1]. With
the rise of social coding platforms like GitHub, to collaborative
management systems, developers now are able to work in
teams to develop and maintain code. Software development
teams also demand different sets of skills from different roles
to deliver a software [1], [2]. An example is that during
the issue resolution process, there are specific roles that are
designated to members on any issue (e.g. developer, reviewer,
tester and so on).

Software quality is heavily based on software development
team performance. Sharp and Ryan [3] refer to the software
team member configuration as a pattern or combination among
team members involved in a specific task. The team member
configuration’s capability can be thus reflected by the quality
of the delivered products [4], [5]. Currently, teams usually
work together via an issue tracking system (e.g. JIRA Soft-
ware) where their progress and activities can be tracked and
monitored.

In this paper, we study the correlation between different
team member configurations and their performance in resolv-
ing issues. The study is empirically performed on over 80,000
issue reports collected from Moodle. An issue report can
present different characteristics based on its type such as bug,
new feature request, and task. Once an issue has been resolved,
it is reopened if the resolution does not meet the expectations
(e.g. poor quality). In particular, our study aim to mine and
explore whether the the quality of delivered products in forms
of issue resolving is affected by the different combinations of

team members (i.e. team member configuration). The follow-
ing research questions are developed to frame our study.

RQ1: Can effective team member configurations be identi-
fied?

answer: Yes, the teams which can resolve issues without
reopening can be identified.

RQ2: Does the team member configuration be changed
when issues require additional work (reopen)?

answer: Yes, the team size is changed when the prior
resolution does not meet expectations.

RQ3: Does the issue type affect the combinations of team
members?

answer: Yes, different types of issues involve with different
sets of team members.

II. BACKGROUND

A. Team Member Configurations in Software Development

A software development team consists of different roles
e.g. designers, developers, and testers. They work together to
deliver high quality software. Especially, there are four main
roles usually involved in issue resolving (e.g. fixing bugs,
implementing new features) which are developers, testers,
reviewers, and integrators [2]. We briefly discuss these four
roles as follows:

1) Developers: are responsible for writing programming
code to resolve an issue either adding new code or editing
the existing code. Technical skills is not only the essential
component required for developers, but also experiences in a
project and expertise in particular project components.

2) Testers: are responsible for testing software components
to ensure that it works properly, meets expectations, and does
not cause any error in other modules.

3) Reviewers: are responsible for inspecting the imple-
mented code to assure the code quality in several aspects (e.g.,
understandability, maintainability). This role needs highly ex-
pertise in both technical skills and experience in a project.

4) Integrators: are responsible for integrating new code
changes to the current code version. Rathan focusing on a
particular component of software, integrators need to consider
effects of the code changes on all related components.

An effective team configurations is essential to the success
of software projects. Especially, in a large software project,
software components are split to different teams where dif-
ferent team member configurations have different expertise
(e.g., experience in a project) [6]. By considering this, it is
important to have a team which suitable to specific tasks. The
study from Demirors et al. [7] confirms that the effective team

Dev - Developer,Rev - Reviewer, Int - Integrator, Tes - Tester

Fig. 1. MDL-47270’s Overall Process

increases their productivity over the capability of individual
team member.

B. Issue Tracking Systems

Issue tracking systems (e.g. JIRA1, Bugzilla2) are used to
manage software development project. These systems also
aim to support communication and collaboration among team
members such as discussion and task assignment. Our study
thus makes use of the data collected from the JIRA issue
tracking system. JIRA is a popular issue tracking system
that hosts a number of well-known open source projects
such as Apache, Moodle, and JBoss. This platform represents
software-related artifacts as an issue including bug report, new
feature request, and development task. The characteristics of
an issue are reflected by issue’s attributes: Status shows the
current development state of an issue (e.g., open, in-progress),
Component/s shows which part of the projects the issue
involved with, Summary/Description is a textual description
of an issue, Priority shows how important an issue is (e.g.,
high, medium, and low), and Resolution shows how an issue
is resolved (e.g., fix, duplicate).

In addition, an issue tracking system also enhances team’s
collaboration and motivates people to work as a team. For
example, an issue can be assigned to different team members
that performed different roles. Thus, the progress of each role
can be monitored by the status of an issue such as in-progress,
resolved, and reopened. The team members who resolve issues
are also recorded.

C. Motivating Example

Since our study focuses on team member configurations
in issue resolving, in this section we thus discuss scenarios
showing how team members use an issue tracking system.

MDL-472703 is an example of how a software team use
issue tracking system to work together. The overall process

1https://www.atlassian.com/software/jira
2https://www.bugzilla.org/
3https://tracker.moodle.org/browse/MDL-47270

of the issue is described in Figure 1. This issue is a bug
issue created by Dev A. Dev A is a developer who fixes
this bug, and uploads to github. Dev A then changes the
issue status to “Waiting for peer review”. After that, Rev B
reviews the code and then sets the status of the issue to “Peer
review in progress”. Once Rev B finishes reviewing, Rev B sets
the status of issue to “Waiting for integration review”. Then
Int C integrates the code and changes the status according
to the process that Int C does. After the code is integrated
Tes D performs a testing and also changes the issue status
accordingly. Upon completion of the testing process, the issue
is closed with “Fixed” resolution.

In this study, we would wonder if teams affect the quality
of issues resolving or not. Beaver and Schiavone [4] reported
that “development team skill is found to be a significant factor
in the adequacy of the design and implementation, and inex-
perienced software developers are tasked with responsibilities
ill-suited to their skill level, and thus have a significant adverse
effect on the quality of the software product.” The quality of
team members significantly associates with the performance of
resolving issues (e.g. resolving time, quality of work products)
[5]. These support an idea that the selection of software teams
affect the quality of resolving issue.

D. Quality of Issue Resolving

In this research, we use the status of reopened issue to
indicate the quality of issue resolving. Resolved issues usually
are reopened if they were not resolved correctly or the solution
did not pass the quality assessment process such as code
reviewing. For example, in MDL-505084, Dev A is a developer
who was trying to solve this issue. After Dev A finishes the
coding part, uploads the code to Github, and changes the issue
status to “Waiting for peer review”, Rev B reviews the code
and suggests Dev A what should be changed in the code.
After Dev A finishes editing the code and Rev B approves
the edited code, Dev A then asks for integration by setting
the issue’s status to “Waiting for integration review”. Int C
continues with integration review and Int C asks Dev A for the
explanation of Dev A’s work since Int C finds some code that
is not necessary. Int C then reopens the issue. Regardless, Dev
A remain unresponsive to Int C’s inquiry, consequently, the
issue remains reopened and unresolved. This example shows
that “Reopened” status of issue can be used to indicate the
quality of issue resolution.

III. ANALYSIS APPROACH

In this section, we briefly discuss the techniques that we use
in our study: Association Rule Mining, Jaccard Coefficient,
and the Kruskal-Wallis statistical testing.

A. Association Rule Mining

Association Rule Mining is a technique to find patterns in
data. The patterns are in the forms of association rules [8]
that can be defined as follows. Let I = {I1, I2, ..., In} be a
set of items. An association rule is an implication of the form
X → Y , where X ⊂ I ,Y ⊂ I and X ∩ Y = ∅. Tuples
T = {T1, T2, ..., Tn} occur in the dataset where T ⊂ I . There
are two important concepts related to the use of the association
rule analysis technique: Rule Support and Rule Confidence.
Rule Support is denoted by Support(X → Y) = (the number

4https://tracker.moodle.org/browse/MDL-50508

of tuples containing both X and Y) / (total number of tuples).
Rule Confidence is denoted by Confidence(X → Y) =
(the number of tuples containing both X and Y) / (the
number of tuples contain X). Therefore, support shows how
frequently the rule appear and confidences show how often
the rule appear to be true. The threshold of support and
confidence is selected to filter out the association rules with
low support or confidence. For example, there are 3 issue
in the dataset which are resolved by {DevA,RevB, TesC},
{DevA,RevB} and {DevA,RevD, TesC} consequently.
The Support of {RevB} → {DevA} = 2/3 and its Confi-
dence = 2/2. In this research we use the Apriori algorithm
[9] implemented in R to mine association patterns.

B. Jaccard Coefficient

Jaccard coefficient is a measurement of the similarity be-
tween two sets of items. The formula to calculate the Jaccard
coefficient between set A and B is J(A,B) = |A∩B|

|A∪B| . We
use this to measure the differences between two team member
configurations.

C. The Kruskal-Wallis statistical test

The Kruskal-Wallis test [10] is a non-parametric statistical
test to evaluate the statistically significant differences between
two or more groups of samples. Being non-parametric, the
test does not make any assumptions about the distribution of
the data. We use significance level (α) of 0.05 to conclude
whether the differences are significant. In this paper, we used
R implementation of the Kruskal-Wallis test [11].

IV. DATASET

In this section, we discuss about our dataset including data
collection, preprocessing, and the dataset statistics. We perform
our study on the Moodle project due to its large and well-
known community with hundreds of contributors.

A. Collecting Data

We used REST APIs provided by the JIRA platform to
collect 80,000 issues created between April 2002 to May
2019 from all sub-projects hosted by Moodle. Since our study
emphasizes on completed issues, we filtered out incomplete,
non-fixed (bug reports), and currently open issues from our
dataset. Furthermore, we found that there were some issues
which do not have any people in the key roles we are interested
in; therefore, we need to filter out these issues. After the
aforementioned process, there are 25,910 issues with the total
of 710 participants from different roles.

B. Extracting Teams from Issues

Our study focus on four roles (developer, reviewer, tester,
and integrator) which mainly involve in issue resolution. We
briefly discuss how we process the issue reports to extract team
members and their role involved in issue resolving.
• Developer: are defined as the users who perform code

commit in the Moodle’s Github repository. The code
commit are recorded in the development field of issue
reports where the information related to the development
activities can be found.

• Reviewer, Tester, and Integrator: As these roles are
explicitly recorded under an issue’s attributes (i.e. peer
reviewer, tester, and integrator field of an issue report),
they can be directly extracted.

Regarding extracting of team member configuration, there
are different ways to do it in different types of issues. In this
paper, we categorized issues into two types as followed:
• Issues that have not been reopened before. This kind

of issue is very straightforward as they have no indication
of reopening. We assume that the team members do
not change during the issue resolution. Therefore, the
developers, reviewers, integrators, and testers who are
participated in these issues are considered as the set of
people in a same team member configuration as shown in
Figure 2. To extract the team member configuration, we
looked into the change log of the issue to identify all of
the reviewers, integrators, and testers in the team. Then,
we looked at the commit history of issue to identify all
of the developers.

• Issues that have been reopened. This kind of issue is
more complex than the other as the issue was reopened
at least once. We partitioned the timeline of this kind
of issue into many periods by the time that the issue
is reopened as in Figure 2. In each period, we treat
the developers, reviewers, integrators, and testers who
participated in solving the issue in the period as a team
member configuration. Therefore, there can be more than
one team member configuration in this kind of issue. To
extract team member configurations from these issues,
we look at the change log to find the date and time
that the issue was reopened, and we separated them into
many team member configuration. We then added the
reviewers, integrators, and testers who was labeled as
their role in the team member configuration according
to the time they were labeled. After that, we added
the developers to the team member configuration at the
time they commit on the Github. In this paper, we call
the team member configuration at the initial of issue
as “initial team member configuration”, and the team
member configuration at the time issue is resolved as
“resolved issue team member configuration.”

After the aforementioned processes, we had the team member
configurations of both the issues that were reopened and the
issues that have not been reopened. The statistics of the dataset
are described in Table I. From this table, the issue type which
has the highest average of participants in both issues which
have never been reopened and issues which were reopened is
Epic. This is rational because, an Epic usually refers to a huge
chunk of work which can be broken down into many sub tasks.
Therefore, more people are typically required to work on an
Epic. In addition, we observe that the average of participants
in reopened issues is higher than one of issues which have
never been reopened. We then perform further analysis and
visualization on the dataset to find the answer of our research
questions.

V. RESEARCH QUESTIONS AND DISCUSSIONS

In this section, we described the motivation, approach, and
finding for each of our research questions which will show
whether the team member configuration affects the ability to
solve an issue or not.

A. RQ1: Can effective team member configurations be identi-
fied?

Motivation. To understand the team member configuration
of overall issues, we first need to know whether there is

TABLE I
DESCRIPTIVE STATISTICS OF THE ISSUE REPORTS IN OUR DATASET

Issue Types #Issues #Reopen No. of team members involved in resolved issues No. of team members involved in reopened issues

Min Mean Max S.D. Min Mean Max S.D.

Bug 16,126 1,735 1 2.9 8 1.45 1 3.48 10 1.69
Epic 27 8 1 3.37 11 2.6 1 5.63 11 3
Improvement 4,059 649 1 3.16 11 1.46 1 4.14 10 1.74
New Feature 934 139 1 3.1 14 1.71 1 4.19 9 1.96
Sub-task 3,436 495 1 2.16 8 1.27 1 3.22 9 1.65
Task 1,328 147 1 2.92 10 1.49 1 3.62 9 1.78

Total 25,910 3,173 1 2.85 14 1.47 1 3.62 11 1.75

Team members include developer, tester, reviewer, and integrator.

Fig. 2. Example of Team Member Configuration

sufficient evidence that could indicate effective team configu-
rations.

Approach. As we separate issues into issues which were
reopened and issues that have not been reopened, our approach
for this research question will be analyzing team member
configurations of the the two types of issues and compare them.
For an issue that was reopened, there are two team member
configurations: initial team member configuration and resolved
issue team member configuration. For the issue that has not
been reopened, there is only one team member configuration.
We removed all empty team member configurations. Then, we
apply the Apriori algorithm on each team member configura-
tion. The usernames of the issue’s participants were used as
items and the team member configurations of issues were used
as transactions. We set the support threshold to 0.0005 because
there will be 0 rule in all team member configurations if we
use the default value which is 0.1. This is because there are
a huge number of combinations of teams which do not occur
frequently, therefore, we need to lower the threshold.

The result is in Figure 3. It shows the number of association
rules in each team member configuration. The number of
rules of initial team member configuration of reopened issues
is lower than resolved issue team member configuration of
reopened issues. There are fewer rules than those of the
resolved issue team member configuration of issues which
have not been reopened. Since the support of association rule
mining is related to the frequency that the combination of
people occur, and we decreased only support threshold to
find the association rules, we can conclude that the team
member configuration which has higher number of rules is
the team member configuration that is more common, i.e., the
team that happens more frequent. In addition, the initial team
member configuration of a reopened issue is the team that
could not solve the issue, while the other two team member
configurations are the team member configurations that could
solve the issue. Therefore, the team member configuration

Fig. 3. Number of Association Rule in Each Team Member Configuration

which could solve the issue are more common than the team
member configuration which could not solve the issue. This is
the evidence of effective team member configuration.

There are differences between the team member
configuration which could solve and could not solve
the issue.

B. RQ2: Does the team configuration be changed when issues
require additional work (reopen)?

Motivation. Based on the finding of the previous research
question, we know that there exist both effective and ineffec-
tive team member configurations. In this research question, we
investigated whether there is a modification of team member
configuration after an issue is reopened to increase its effec-
tiveness or not.

Approach. We counted the number of people in both initial
team member configurations and resolved issue team member
configurations of issues that were reopened. A visualization
using bar-graph is presented to illustrate whether there is a
change in team member configurations or not. To know how
much the change is, we use Jaccard Coefficient, which can
tell the difference between two sets to compare the initial
team member configurations and resolved issue team member
configurations. After that, we visualize the Jaccard Coefficient
of every issue using a violin plot.

Figure 4 is the visualization of the number of people in a
team in initial team member configuration and resolved issue
team member configuration. We also observed that 54.82% of
the team member configuration become bigger, 30.67% remain
the same, and 14.51% become smaller. From this, we know
that the team tend to get bigger after an issue is reopened.
We also visualize the Jaccard coefficients of issues as in
Figure 5. The Jaccard coefficients between initial team member
configuration and resolved issue team member configuration
tend to be very low in the graph. Therefore, there are huge
differences between these two team member configurations.

Fig. 4. The Frequency of Size of Teams of Reopened Issue

Fig. 5. Distribution of Jaccard Coefficient between Initial and Resolved Issue
Team Member Configuration

There are huge differences between Initial and
Resolved Issue Team Member Configuration

C. RQ3: Does the issue type affect the combinations of team
members?

Motivation. Based on the previous research question, we
know that there is a change in team member configuration after
an issue is reopened. It is also interesting to know whether the
changes in team member configuration are different in each
type of issue or not.

Approach. To get the overall picture of the changing in
team member configurations in each type of issue, we first
calculate Jaccard coefficient of team member configurations in
each type of issues and visualize them using a box plot. After
that, we use KruskalWallis test on the distributions of Jaccard
coefficient of types of issues to examine the significance of
difference in changes in team member configurations among
the two types of issues.

The Kruskal-Wallis test returned the p-value = 7.783 ×
10−10, concluding that the change in team member config-
urations among types of issues are significantly different (p-
value< 0.05). In addition, the Figure 6 shows the distribu-
tion of Jaccard coefficient of the changes in team member
configurations when issues were reopened. As the Jaccard
coefficient of Bug and New Feature distribution is higher than
the other types of issues, we can say that Bug and Feature
team member configurations are less likely to change after an
issue is reopened.

Fig. 6. Boxplots of Jaccard Coefficient of Each Issue Type

There are significant differences between the
changes of team member configurations among the
types of issues.

VI. THREATS TO VALIDITY

In this section, we discuss the factors which could affect the
validity of our study consisting of threat to construct validity,
threat to internal validity, and threat to external validity.

Our threat to construct validity is that we did not take
other hidden roles which may be participated in issues into
our experiments. There might be other roles which are not
explicitly labeled in the dataset; therefore, this could affect
the results since our research focuses on the team member
configuration, the changing of team member configuration, and
size of teams.

Another important threat to validity of our research is the
threat to internal validity. Since, we consider the team member
configuration between the initial team member configuration
and the team member configuration that revolves an issue the
changing of the team configuration during the resolving was
not considered. In addition, the difficulty of issues was also
not considered. We thus mitigate this threat by removing in-
completed issues and non-resolved issues from our dataset.

The threat to external validity of our research is generaliz-
ability. Since we perform the study on an open source project
setting, we thus need to expand our study to other setting such
as a commercial software development project.

VII. RELATED WORK

In this section, we discuss the previous work on the team
structure and issue reopening.

A. Team Structure

Ortu et al. [12] studied communities-structure of developers
in JIRA by analyzing 7 popular projects. They built their
dataset by collecting issue from the Apache Software Founda-
tion Issue Tracking system from 2002 to December 2013. They
proposed a developer network where the nodes represent the
developers and and edge A→ B represents that the developer
A comments on developer B’s issue. They found that there is
a community of developers in open source project hosted by
JIRA. This work used the same data set as our work; however,
we perform further analysis on the team structure in JIRA.

Mezouar et al. [13] studied the team structures formed by the
developers within the projects on GitHub. They investigated
the 7,850 most popular projects and developed a pull-based
network which is a network that links two developers together

when one integrates a pull request submitted by each other.
They found that only low percentage of projects witness a
change of team structure; however, the improvement in team
structure shows strong association with the improvement of
performance of managing the pull requests. They also found
that the projects, characterized with a well-connected, central-
ized team around core contributors, are associated to higher
response, processing and closing of the pull requests. This
work is most related to our work since they also investigated
the changing of team structure. In addition, our finding that
the team member configuration changes over time to resolve
an issue is similar to their findings.

B. Reopening of Issues

Caglayan et al. [14] investigated the potential factors of issue
reopening. They analysed issues activities of a large release
of an enterprise software product. They considered that the
followings are the potential cause of issue reopening: developer
activity; issue proximity network; static code metrics of the
source code changed to fix an issue; issue reports and fixes.
They then built logistic regression models to identify the key
factors that trigger issue reopening. In addition, they conducted
a survey regarding the aforementioned factors with the QA
Team of the product. The study reveal that issue complexity
and developers workload affect issue reopening. This work
investigated on reopened issues, which are similar to ours;
however, we perform further analysis on the effects of issue
reopening on team member configuration.

Mi and Keung [15] performed empirical analysis on the
reopening of bugs. They used four of Eclipse’s open source
projects (e.g. CDT, JDT, PDE, and Platform). The projects
used an Bugzilla as the bug tracking system. They reported
the statistic on the bug reopening proportion, impacts, and bug
fixing time distribution. They then investigate the causes of
bug reopening by looking at developer discussions recorded
in Eclipse Bugzilla. They found that 6%-10% of bugs were
reopened, 93% of reopened bugs cause serious effect on
the normal operation of the system. In addition, they found
several key factors of bug reopening (e.g. poor communication,
further improvement and Unsuccessful fix). They proposed that
providing an effective and efficient communication among bug
reporters and developers could reduce the bug reopening rate.
This work studied several factors related to reopened issues
but not the combinations of the team members.

VIII. CONCLUSION AND FUTURE WORK

In this study, we performed empirical analysis on Moodle
Tracker, one of the projects which uses JIRA Software to
track their development process. We collected 8,865 issues
from Moodle Tracker to analyze the team member config-
uration in the issues. We found that there are differences
between team member configurations which can solve issues
and team member configurations which cannot solve issues.
We performed further analysis the change in team member
configuration between the initial team member configuration
and resolved issue team member configuration. We found
that 54.82% of teams become larger to solve an issue. We
also calculate the Jaccard coefficient between the two team
member configurations and found there are many team member
configurations which have low Jaccard coefficientd. This mean
that there are huge differences between Initial and Resolved

Issue Team Member Configurations. Furthermore, we calcu-
lated the Jaccard coefficient for each type of issue, and we used
Kruskal-Wallis test on the distributions of Jaccard coefficientd
of types of issues. We got p-value = 7.783×10−10; therefore,
we concluded that there are significant differences between
the changes of team member configurations among the types
of issues. Our findings in this research have established the
importance of having an effective team member configuration.
As our future direction, we will investigate the possibility
develop an algorithm for recommending effective software
teams for JIRA software projects. Furthermore, we would like
to perform extensive experiments on other projects on JIRA
as well.

ACKNOWLEDGMENT
This research project was partially supported by Faculty of

Information and Communication Technology, Mahidol Uni-
versity, and JSPS KAKENHI (Grant Numbers 16H05857,
17H00731, 18H04094).

REFERENCES

[1] Y. Dubinsky and O. Hazzan, “Roles in agile software development
teams,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
3092, pp. 157–165, 2004.

[2] H. Zhu, M. C. Zhou, and P. Seguin, “Supporting software development
with roles,” IEEE Transactions on Systems, Man, and Cybernetics Part
A:Systems and Humans, vol. 36, no. 6, pp. 1110–1123, 2006.

[3] J. Sharp and S. Ryan, “Global agile team configuration,” Journal of
Strategic Innovation and Sustainability, vol. 7, no. 1, p. 120, 2011.

[4] J. M. Beaver and G. A. Schiavone, “The effects of development team
skill on software product quality,” ACM SIGSOFT Software Engineering
Notes, vol. 31, no. 3, p. 1, 2006.

[5] M. Hoegl and H. G. Gemuenden, “Teamwork Quality and the Success
of Innovative Projects: A Theoretical Concept and Empirical Evidence,”
Organization Science, vol. 12, no. 4, pp. 435–449, 2001.

[6] D. Walz and B. Curtis, “Inside a software design team: Knowledge
acquisition, sharing, and integration,” Commun. ACM, vol. 36, pp. 63–
77, 10 1993.

[7] E. Demirors, G. Sarmasik, and O. Demirors, “The role of teamwork
in software development: Microsoft case study,” in EUROMICRO 97.
Proceedings of the 23rd EUROMICRO Conference: New Frontiers of
Information Technology (Cat. No.97TB100167), Sep. 1997, pp. 129–133.

[8] P. Prasad and L. Malik, “Using association rule mining for extracting
product sales patterns in retail store transactions,” International Journal
of Computer Science and Engineering, Volume 3, Issue 5, vol. 3, 05
2011.

[9] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules (expanded version). Research Report IBM RJ 9839,” Proc. of 20th
Intl. Conf. on VLDB, pp. 487—-499, 1994.

[10] A. Kruskal, William H. Wallis, “Use of Ranks in One-Criterion
Variance Analysis Author (s): William H . Kruskal and W .
Allen Wallis Published by : American Statistical Association Stable
URL : http://www.jstor.org/stable/2280779,” Journal of the American
Statistical Association, vol. 47, no. 260, pp. 583–621, 1952. [Online].
Available: http://www.jstor.org/stable/2280779

[11] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2019. [Online]. Available: https://www.R-project.org/

[12] M. Ortu, G. Destefanis, M. Kassab, and M. Marchesi, “Measuring and
understanding the effectiveness of JIRA developers communities,” Inter-
national Workshop on Emerging Trends in Software Metrics, WETSoM,
vol. 2015-Augus, pp. 3–10, 2015.

[13] M. El Mezouar, F. Zhang, and Y. Zou, “An empirical study on the teams
structures in social coding using GitHub projects,” Empirical Software
Engineering, may 2019.

[14] B. Caglayan, A. Misirli, A. Miranskyy, B. Turhan, and A. Bener, “Factors
characterizing reopened issues: A case study,” in PROMISE 2012 - 8th
International Conference on Predictive Models in Software Engineering,
Co-located with ESEM 2012, 10 2012, pp. 1–10.

[15] Q. Mi and J. Keung, “An empirical analysis of reopened bugs based
on open source projects,” in Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering, ser.

EASE ’16, 2016, pp. 37:1–37:10.

